Using Critiquing Systems for Inconsistency Detection
in Software Engineering Models

Cleidson R. B.
de Souza'”?

Hamilton L. R.
Oliveira®
'School of Information and Computer Science

University of California, Irvine
Irvine, CA, USA

Abstract

Many approaches have been proposed for consistency
management of software engineering documents and
specifications. A few others have been proposed to check
consistency among software engineering models. For
example, abstract state machines, knowledge-based
approaches and so on. In this paper, we apply a different
technique that uses critiquing systems. A critiquing system
monitors user's actions and triggers a signal when one of
those actions activates pre-specified rules, called critics.
Because critics are small, we argue that they might be
used to address two open issues in inconsistency detection,
namely efficiency and scalability. An example of this
approach is presented to check domain engineering
models (feature diagrams) and application engineering
models (class diagrams). Feature diagrams are used to
abstractly and concisely express commonality and
variability across a domain. These diagrams are used as
source of information in the generation of critics in UML
class diagrams. We present an environment, called DAISY
that uses three different critiquing systems to demonstrate
the feasibility of our approach.

Keywords: Inconsistency detection, consistency
management, critiquing systems, domain engineering,
application engineering.

1. Introduction

Developing software systems is a complex task where
participation and collaboration of a large number of
stakeholders (e.g. customers, users, analysts, designers,
and developers) is necessary to succeed. Often, these
stakeholders create different models of the software being
developed in order to properly model, understand, design,
and evaluate it. However, these software models can be
inconsistent with each other since they describe the system
under different points of view, and these perspectives
reflect the interests, background and skills of these
different stakeholders. Although inconsistent models can
have positive effects in software development [21], in
general it is not desirable to preserve this inconsistency.
Indeed, different solutions have already been proposed to
this problem, such as model-checking, knowledge-based
approaches and so on. In this paper we propose the use of

Cleber R. P.
da Rocha?

Kleder M.
Goncalves®

David F.
Redmiles’

Informatics Department
Federal University of Para
Belém, PA, Brazil

critiquing systems to deal with this problem. Critiquing
systems help detect suboptimal design situations and
possible errors. They monitor the user's actions and
activate a signal when any one of those actions violates a
rule [5]. In general, a critic is defined by a single rule, or a
small set of rules. For example, a kitchen floorplan design
environment might contain a "sink-not-in-front-of-
window" critic that has the sole job of identifying
situations in which the designer has located a sink
anywhere but in front of a window [5]. Because critics are
small, we argue that they might be used to address two
open issues in inconsistency detection, namely efficiency
and scalability [21].

In order to demonstrate the feasibility of our approach,
we present a critiquing system that is able to check the
consistency of models created during domain and
application engineering. In other words, constraints
defined in the domain diagrams might be used as critics to
evaluate the class diagram. This approach reminds
designers about domain characteristics that could be
forgotten during application engineering. In this paper we
also describe DAISY, an environment that supports the
construction of domain engineering and application
engineering models. It supports consistency checking of
these models through critiquing systems. During the
development of these models, three critiquing systems are
used to identify problematic situations: the first one
searches for constructions that violate heuristics about
object-oriented design [20]; the second supports the
construction of domain models and checking for problems
in its construction; finally, a third critiquing system detects
potential inconsistencies and other mistakes which might
occur in the mapping between these two models.

Section 2 briefly presents the concepts of critics and
critiquing systems. The next section describes our
approach. After that, we described the concepts of domain
and application engineering, and features diagrams in
order to be able to present our prototype in section 4.
Section 5 describes the DAISY environment, its critiquing
systems as well as some implementation details. In the
following section, related works are discussed. Finally,
section 7 concludes the paper and presents suggestions for
future work.

2. Critiquing systems

A critiquing system monitors user's actions and triggers a
signal when one of those actions activates the rules of “bad
design”. For example, in the object oriented modeling, one
may have a critic such as: “4 class should not have any
public attributes”. In this case, this critic will fire when the
user creates a class that has a public attribute. At the time
of detection, the critiquing system should present the
justification for triggering the critic [5]. This can be done
through the presentation of arguments that helps the user
to understand the problem and make his decision. The goal
in this case is to present a rationale to the user leading him
or her to reflect on the problem and change the design
accordingly.

Critiquing systems are well suited for complex domains
in which the traditional expert systems or automated
design approaches only had limited success. Furthermore,
they are also appropriate to problem domains with the
following characteristics [8][5]: (a) the knowledge about
the domain is incomplete and evolving; (b) the
requirements of the problem can only be partially specified;
and (c) the necessary project knowledge is distributed
among many project members. In other words, critiquing
systems are a good match for many software development
activities. In fact, some critiquing systems to object-
oriented design have already been created (see section 6.2).

Critiquing systems have often been embedded in
domain-oriented design environments, or DODE’s [3].
DODE’s contain other components such as catalogs with
collections of pre-stored designs in the domain; an
argumentative hypermedia system, which contains issues,
answers, and arguments about the design domain; among
other components. In this case, when the user does not
understand the critic, he may browse other designs that do
not violate the critic, or access the argumentative system in
order to learn about the critic.

Furthermore, a critiquing system should have different
intervention strategies that determine when and how the
design should be criticized. This is necessary because
critics should trigger at the right time to not disturb users
[5]. It is also desirable that the critiquing system allows the
user to add or modify critics, decide about their behavior,
and even disable the ones that he considers unhelpful.
Another important characteristic of critiquing systems is
that the knowledge that they encode is expansible and
modifiable, since critics are usually independent of each
other.

Formally, critics are composed by groups of rules or
procedures to evaluate different aspects of a product or
design. Although simple and sometimes empirical, the
knowledge encoded in critics can help in the detection of:
possible design mistakes, problematic solutions,
inconsistencies between the design and its specifications,
and violations of standards among other problems. This
can improve the software development process by

eliminating errors and also by helping designers to develop
better solutions to their problems.

It is important to note that a critic does not need to be
formally correct, i.e., it can just point to a possible error. In
fact, according to Hagglund [8] critics may even be used to
keep a knowledge base with alternative and conflicting
solutions for a problem. For instance, in an object oriented
design in which an association exists between two classes
A and B with "many-to-many” multiplicity, there are two
possible implementations: (i) the addition of a link
attribute to model the association properties [14]; or (ii) the
addition of a new class C, which has two associations: one
with the class A and other with B [1]. In the later case, the
properties are added as attributes of the new class. Then,
this critic may be implemented with a condition clause that
identifies "many-to-many" associations, and, in its
argumentation, the two possible solutions are described
and evaluated. Therefore, new critics can be added to the
system at any time and by different authors without the
need for checking the consistency of the knowledge base.

Note also that the user also does not need to agree with
the critic: he may not accept the solution presented, but he
will be aware of the implications of his action.

Finally, it is important to distinguish a critiquing system
from other approaches. In a critiquing system, the most
important input is a solution for a problem (like a kitchen
floorplan design [5] or UML class diagrams [16]), where
in expert systems and expert advisory systems this solution
is computed and reported to the user as the output [17].

3. Consistency Checking using Critiquing Systems

As mentioned before, our main goal is to support
consistency management in software engineering models.
In this paper, we argue that critiquing systems are useful to
deal with the main issues during the detection of
inconsistencies, namely: efficiency and scalability [21].

We believe that efficiency can be improved by using
critiquing systems because, in general, critics are defined
by a single rule or a small set of rules. In addition, these
rules are small because they only focus on specific parts of
the domain supported. For example, one critic could be
created to check that in UML class diagrams, the graph
formed by inheritance relationships is acyclic. This means
that this critic will only need to be checked, if
modifications are performed in components associated with
this graph. If one changes an aggregation relationship in
the model, this critic will not need to be checked. This is
an important characteristic that makes critiquing systems
more efficient than other knowledge-based approaches, and
more appropriate to deal with inconsistencies that occur
when a software model evolves.

Because of their limited size and because they are
mostly independent of each other, efficiency is not a
problem as difficult as in other approaches for detection of
inconsistencies such as model checking. This same

characteristic is important to minimize scalability problems
because the checking effort is proportional to the number
of aggregation relationships rather than the overall size of
the model.

Finally, because most critics are independent of each
other, new knowledge might be encoded in the critiquing
system as the models evolve, as new knowledge about the
domain is discovered, or as the requirements evolve.
Moreover, this new knowledge might be inserted by
different software developers. As mentioned before,
critiquing systems provide support to alternative and
conflicting solutions, as well as, provide recommendations
of actions to the user, but they leave the final decision-
making to the user. By doing that, critiquing systems
might also be used when one is deciding how to handle the
detected inconsistencies [21].

In order to demonstrate the feasibility of our approach,
we developed a critiquing system that implements the
functionalities described above. This prototype, called
DAISY, was built on top of another one called ABCDE-
Critic [20]. Both will be described in section 5.

4. Domain and Application Engineering

4.1. Domain Engineering (DE)

The intent of domain engineering (DE) is to identify,
construct, classify and disseminate a set of software
components that have applicability to existing and future
software in a particular domain [13]. DE encompasses a set
of methods and procedures for software reuse that has been
developed since the late 80’s. It deals with the analysis and
modeling of a given application domain that will provide
the scope for future software systems.

In this paper a domain is defined as a knowledge area
characterized by a group of problems with similar
techniques, operational and functional specifications [9].
Examples of domains are telephony, banking, Internet
browsers, and airline ticket reservation, among others.
Usually, a domain presents a set of well-defined and
coherent concepts and functions. Software products in this
domain can be built based on these concepts and functions.

DE includes three major activities: (a) domain analysis,
(b) domain design, and (c) domain implementation. In this
paper, we are more concerned with domain analysis and
domain design because the diagrams used by the critiquing
systems are built during these activities. During domain
analysis common characteristics from similar systems are
generalized, objects and operations that are found in
systems within the same domain and that vary from system
to system are identified, and a domain model is defined to
describe their relationships. This model is established to
serve as a unified source of definitions, a repository of
shared knowledge, and a basis for standardized reusable
components [10]. In general, this model includes feature
diagrams to represent the domain characteristics (features)
and its similarities and differences. These diagrams are

discussed in section 4.3.

Domain analysis takes into consideration the
specifications of a family of systems and predicts possible
changes that may occur in these specifications. This must
be done in such a way that the created models can
encompass target systems and be able to evolve. By doing
that, it provides several benefits: it aids understanding of
domain concepts and functions by the development team
members; it creates a common vocabulary among the
several stakeholders; it facilitates maintenance; and, it
identifies similar characteristics among different products
in the same domain, therefore supporting reuse [6].

After domain analysis, the domain design activity may
begin. It is the process of developing a design model from
the products of the domain analysis (the features diagram
for example). It produces a design model that represents
the generic architecture created for the analyzed domain
and provides the framework for the development of
reusable components during the next activity [18]. Usually,
software architecture diagrams and class diagrams are used
to represent this design.

The last activity of DE is the domain implementation.
Using the domain knowledge gathered during domain
analysis and the generic architecture developed during
domain design, domain engineers acquire and, when
possible, create reusable assets. These assets are catalogued
into a component library to be used by application
engineers. These reusable components, as well as
application generators and domain languages, are the main
outputs of this activity [18].

4.2. Application Engineering (AE)

Application engineering (AE) is the complementary
process of domain engineering. This process generates
software products from software assets created during the
domain engineering [18]. Usually, an application is created
by "slicing” the domain model according to individual
requirements of the application, i.e., the specific
application requirements are identified and the components
that implement these requirements are selected to serve as
a framework to the application development.

During AE, the necessary components of the application
are chosen in a high level of abstraction, through the
domain model, gradually descending in abstraction levels
to reach the domain semi-developed or implemented
components.

4.3. The Feature Diagram

One of the most important tasks during domain analysis is
the creation of feature diagrams. The key utility of these
diagrams is to characterize in an abstract and concise way,
the commonality and variability among the applications of
a domain [18]. In addition, they describe other
characteristics that could be added, if needed (optional
features). In general, features can be defined as functional

abstractions that are implemented, tested and maintained.
They can be implemented as classes or any kind of reusable
components. An example is presented in Figure 2.

Feature diagrams should be general enough to be valid
for different applications in the same domain. In fact, in
order to test these diagrams, one should create several
applications of the domain, which were not used in the
definition of the feature diagram. In other words, feature
diagrams show the architectural composition of software
features, indicating, for instance, which one is optional,
their definition, and rules that define how they can be
combined.

It is important to note that according to the adopted DE
process, the number of diagrams and relationships among
them can be different. In this paper, we deal with feature
diagrams and class diagrams.

4.4. Feature Diagram Notation
There are several notations to represent feature models
such as FODA [9], FODACom [22] and [12]. In this paper,
we used the notation proposed by Miler [11]. This notation
is based on existing concepts from other notations, and
provides additional concepts such as restrictions and
associations. There are six different types of features:
(1) Essential: they model domain’s fundamental
characteristics. These features are intimately linked to
the domain essence. They describe characteristics that
represent the model's functionalities and concepts.
(i1) Organizational: these features are created with the
purpose of organization. They do not really represent
domain features.
(iii) Actors: These features are entities of the real
world that act on the domain. They can, for instance,
expose the need for an interface or control procedure.
(iv) External: Features that belong to other domains.
They may be defined in the model or not. They show the
boundaries of the domain.
(v) Undefined: features already identified in the domain,
but that have not yet been defined.
(vi) Additional: Important additional characteristics
for understanding the domain.

While features are used to represent the most important
concepts and functions involved in a domain, relationships
are elements that make it possible to express the way that
these features interact. The types of relationships are:

(i) Composition: Relationship in which a feature is
composed of several others. It is a relationship where a
feature is a fundamental part of another, so that one
does not exist without the other.

(i1) Aggregation: Relationship in which a feature
represents the whole, and the others represent the
parts. It is similar to the composition without the
dependence relationship among its members.

(i) Inheritance: This relationship is similar to

inheritance in object-oriented ~ programming
languages, i.e., there is a super-feature where the
common characteristics are placed and sub-features
that are special types of the super-feature. Sub-features
also inherit super-features’ characteristics.

(iv) Association: It is a simple association between two
features. It denotes some relationship among its
members. It can be named indicating a specific type of
connection.

The previous set of relationships is intentionally similar to
UML’s relationships. There are also relationships based on
other DE methods (for example [7]), such as:

(1) Exclusiveness: Type of connection where the sub-
features can not be used at the same time. It can
denote variations or incompatibility problems.

(i1) Optional: denotes a domain's non-mandatory feature.

(iii) Restriction: It expresses the need of combined use
of two features, or that problems occur if two features
are used together. In this case, the features do not have
a direct relationship between them as in the
exclusiveness relationship.

An example of a feature diagram created according to this
notation, is presented in section 5.

5. The DAISY' Environment

DAISY provides support to the domain and application
engineering modeling activities by integrating three
different critiquing systems. The first one evaluates the
feature diagram. Therefore, domain-engineering activities
are improved. A second critiquing system is used during
application engineering to evaluate the class diagram
according to object-oriented design heuristics. The main
goal of these two systems is to check their models against
well-formedness rules, i.e., rules that must be satisfied by
the models for them to be legitimate models of the
language in which they have been expressed [21].
However, as mentioned, the second critiquing system is
also used to check object-oriented design heuristics.
Finally, the third critiquing system is used to improve
the application engineering activities (in this case the
construction of class diagrams) by using the information
collected from the domain engineering models (feature
diagrams). In short, this critiquing system is used to check
development compatibility rules, i.e., “rules which require
that it must be possible to construct at least one model that
develops further two or more other models or model
elements and conforms to the restrictions which apply to
both of them” [21]. Specifically, class diagrams are
evaluated according to the feature diagram because
relationships between features are seen as either constraints
that must be met, or recommendations that must be taken

' Domain and Application engineering using Integrated critiquing SY stems.

into consideration. Generally, the underlying idea in our
approach is to use information expressed in a diagram as
input for critics in other diagrams. This has been explored
by other authors such as [19] and [2]. It is important to
note that our approach is dependent of the notation used in
the feature diagrams. If a rich notation is used, more
information can be extracted from the diagram and,
therefore, be used for checking class diagrams.

By using three different -critiquing systems, our
environment provides support to the development of
feature and class diagrams, as well as reminds designers
about characteristics identified during DE that could be
forgotten during AE activities. In other words, the third
critiquing system is the more important, because it
implements the inconsistency detection. The other two
systems were only used to improve the overall quality of
the models created.

5.1. DAISY’s Architecture

DAISY was developed using Java and is composed of
about 40 classes. It has two main subsystems: the
FeatureEditor and the ClassEditor. These subsystems were
developed based on the critiquing system for UML class
diagrams ABCDE-Critic [FSWO00]. By extending ABCDE-
Critic, we were able to easily develop two different
critiquing systems: one for feature diagrams and another
one for class diagrams. Figure 1 presents DAISY’s
architecture.

uses

ABCDE-Critic | —

JEOPS

FeatureEditor ClassEditor

Figure 1: DAISY’s Architecture.

In our work, we used feature diagrams to represent the
concepts of the domain; therefore we created a graphic
editor to support the development of these diagrams. It is
called FeatureEditor and supports the development of
diagrams created according to the notation described in
section 4.4. As discussed in the previous section, this editor
was created based on the ABCDE-Critic, thus using a
critiquing system to evaluate its diagrams. The critics for
this critiquing system are very simple and based on the
notation used. Figure 2 presents a screenshot of the
FeatureEditor with an example of feature diagram in the
telephony domain (model extracted from [11]). We used

UML stereotypes to express the feature types.

The model presented on Figure 2 describes a
telecommunication domain where a telephony system is
“composed” of several stations, and has more than one
charging mode and possible use. There are two types of
stations: PABX or individual stations, but one station can
not be both at the same time. Furthermore, the charging
mode can be based on the receiver or the sender, and it is
connected with an organizational feature (bank). This
connection expresses that a financial institution, the bank,
needs to exist so that the telephony system is able to charge
its customer.

An example of critic used by the FeatureEditor is
described below:

External Features should not be refined

External features are those that belong to other domains [11].
They model the boundaries of the domain. In other words, these
features do not belong to the domain of the problem, therefore,
they do not need to be refined, because they are not really
important in this domain. If these features are refined, they may
add an unnecessary complexity to the model, turning it error-
prone. For example, a designer could connect an essential
feature to a sub-feature of an external feature.

At the moment, our environment is being “seeded" [3] with
new critics to feature diagrams. As mentioned before, users
might add critics. Therefore, a domain expert can also
encode his knowledge about the domain as critics. It other
words, besides critics about the notation used to create
feature diagrams, the environment supports domain-
specific critics. For example, in a telephony domain, one
could define that a Station must have at least three sub-
features. This constraint can not be expressed using the
notation itself, but it can be expressed using the language
used to express critics.

5.3. ClassEditor

ClassEditor is the most important component of our
environment. It implements a UML class diagram
integrated with two critiquing system. Critics already
implemented in ABCDE-Critic based on heuristics for
object-oriented design were reused.

However, the ClassEditor goes beyond that by adding
new critics. These critics were created from relationship
among features in the features diagram. This is possible,
because the relationships in the feature diagram are seen as
(1) either constraints that must be met or (ii)
recommendations that must be taken into consideration
during the design of the class diagram. Then, we are
assuming that the class diagram is the “implementation” of
the feature diagram. Examples of such critics will be
described later in the paper.

E%Annntalinn Baszed Cooperative Diagram E ditor [ABCDE-Feature] - ClassEditor 1.0

File Edit View Tools Add Annotation Critic Menu

EEEE

MECRRR N EGEIEE G

’;: == Organizational== e Fuberngles
Telephony system Bank
==Mandatan==| |e=0Organizational== ==Orpanizational==
Use Charging Maode
- X X
<=Mandaton== | |e=Mandaton==| |2=Mandaton== ==Mandatons== | [*=Mandaton==
L PABX J Inchiviciual Videa Receiver Sender

4]

[*]

Figure 2: FeatureEditor with a feature diagram about telephony.

In order to support the integration between the feature
diagram (description of the domain) and the class
diagram (that implements this domain), we created a
trace relationship among features and classes. This
relationship allows the connection of any number of
features with any number of classes. In other words, a
feature can be implemented as several classes, as well as
several features can be mapped as only one class. The
environment also supports bi-directional navigation
among the models: from a class, it can identify the
feature(s) that it implements or, given a feature, it is
possible to check the class that it implements.

In the rest of the section, two examples of critics that
implement development compatibility rules [21] are
presented.

Essential Features should be mapped in the
Class Diagram
Essential features indicate concrete concepts and functions in
the domain, i.e., characteristics of the domain that should exist
in all applications. According to that, these features must be
mapped in classes in the class diagram. This critic just checks
if all essential features have classes that implement them.

The critic above is an example of a critic that should
be passive, because it only needs to evaluate the diagram
when the application engineer asks for it. Otherwise, this
critic would trigger when one essential feature were not
mapped into a class. By doing so, this critic would be
more a disturbance than a help to the designer [5].

Restrictions among Features
Miler [11] defines the concept of restrictions among features
(section 2.4). According to his definition, two features
connected by a restriction either can not be used together or

must be used together. There is no distinction between the two
cases.

However, this definition can not be used to generate
critics, because it implies two different conditions.
Therefore, we decided to create two subtypes of
restrictions called of exclusion restriction and inclusion
restriction. The first models the first case, where two
features can not be used together; while the second
means that it is mandatory to use the two features. Now,
if two features A and B should be used together
(inclusion restriction), a critic could check that both
features should have mappings to classes in the class
diagram. Or, if these features can not be used together
(exclusion restriction), the class diagram should be
checked to avoid two mappings at the same time. With
this approach, we created two powerful critics without
increasing the complexity of the notation and the tool for
domain engineers.

It is important to note that any amount of design
knowledge embedded in the environment (as critics) will
never be complete because real-world situations are
complex, unique, uncertain, conflicted, and unstable, and
knowledge is tacit, which means that additional
knowledge is triggered and activated only by
experiencing breakdowns in the context of specific use
situations [3]. In this case, the knowledge is triggered
during the process of domain and/or application
engineering. In the former case, developers can easily
update the feature diagram to reflect the new knowledge.
In the latter, a domain designer can easily update the
feature diagram, and the critics will be automatically
enabled in the class diagram.

gAnnolalion Based Cooperative Diagram Editor [ABCDE-Feature] - ClassEditor 1.0

File Edit View Tools Add Annotation Critic Menu Feature
IR EY ES SRR [151 P VAR
: @Show Feature Diagram
Name: f._name | Station
= Mandaton== f-"l
Statian /
/
LY |l."
PABX
<<Mandatary>
PABX
Close_|
E%;Things to take care of x|
Inheritance required: a different relationship is being used in the feature diagram 7 s j
Show Argu... | { Mark Eleme... ‘ [Unmark Ele... ‘ [Reject ‘ [Disable ‘

Figure 3: A critic is triggered pointing out that there is an incorrect relationship among the classes.

6. Related Work

6.1. Consistency Checking

Several approaches have already been proposed to
support consistency checking in software development.
For example, it is possible to check consistency of
software engineering documents and specifications. It is
also possible to ensure consistency among the several
UML diagrams using abstract state machines [19],
knowledge-based approaches [23], and so on. Our
approach goes beyond those because it addresses the
main issues in inconsistency detection, namely
scalability and efficiency [21].

On the other hand, transformation-based approaches
[2] also address the scalability issues by “abstracting”
the models to be checked and then checking those new
models. Our approach is similar to this one, but brings
additional advantages to the efficiency process.

6.2. Critiquing Systems

Only a few critiquing systems to support software
development activities have been identified. For
example, Robbins et al. [15] describe Argo, a critiquing
system based on cognitive theories, to support the
development of software architecture models. Later,
Robbins and Redmiles [16] describe ArgoUML, a tool
for object-oriented modeling. This tool supports the
edition of diagrams according to UML and detects
common mistakes made by designers. In this case, the

critics for the critiquing systems are object-oriented
modeling heuristics, as well as the UML semantics.

Finally, Souza et al. [20] describe an environment
called ABCDE-Critic, that uses a critiquing system to
check UML class diagrams. ABCDE-Critic allows the
users themselves to add critics to the critiquing system,
because it uses a first-order production system.

None of these systems allows the construction of
domain models. They also do not use critics to support
inconsistency detection as in the DAISY environment.

7. Conclusions and Future Work

In this work, we presented the environment DAISY
which provides support to domain and application
engineering modeling. This is possible because it uses
three different critiquing systems. The first one helps
the development of feature diagrams and has defined
seven different critics. The second critiquing system
supports the creation of UML class diagrams using
object-oriented design heuristics. It has about twenty
critics. Finally, the most important critiquing system to
this work uses the relationships defined in the feature
diagram as critics in the class diagram. Therefore,
constraints defined in the domain model are checked in
the application model in order to detect inconsistencies
between these models. Right now, there are seven
different critics implemented. Despite the small number
of critics, the authors believe that this approach is
valuable in the process of domain and application

engineering.

In the future, we are planning to integrate critics
from different UML diagrams into other UML
diagrams. For example, one could use the information
defined in the sequence diagram to check the class
diagram. We also plan to use our environment to create
representative systems in order to properly evaluate its
features.

Acknowledgments

The authors wish to thank Jason Robbins whose comments
have helped us to improve this paper. We also thank PIPES
and CAPES (grant BEX 1312/99-5) for the financial support.
Effort sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement number
F30602-00-2-0599. Effort also partially funded by the
National Science Foundation under grant number CCR-
0205724 and 9624846. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency
(DARPA), the Air Force Laboratory, or the U.S. Government.

References

[1] Coad, P. and Yourdon, E. Object Oriented Analysis,
Prentice-Hall International, Second edition, 1991.

[2] Egyed, A. Scalable Consistency Checking between
Diagrams — the VIEWINTEGRA Approach. In
Proceedings of the 16™ Conference on Automated
Software Engineering, pp. 387-390, IEEE Press, 2001.

[3] Fischer, G. Domain-Oriented Design Environments.
International ~ Journal of Automated Software
Engineering, vol. 1, pp. 177-203, 1992.

[4] Fischer, G. Seeding, Evolutionary Growth and
Reseeding: Constructing, Capturing and Evolving
Knowledge in Domain-Oriented Design Environments,
International ~ Journal of Automated Software
Engineering, 5(4), pp. 447-464, 1998.

[5] Fisher, G., Nakakoji, K. Embedding critics in design
environments. The Knowledge Engineering Review, 8
(4); pp. 285-307, 1993.

[6] Fraser, S., et al Patterns, Teams and Domain
Engineering. In Proceedings of the International
Conference on Software Engineering - Symposium on
software reusability, pp. 222 — 224, 1995.

[71 Gomaa, H. An object-Oriented domain analysis and
modeling method for software reuse.. Proceedings of the
Twenty-Fifth Hawaii International Conference on
System Sciences, volume: ii, pp. 46 —56, 1992.

[8] Hagglund, S. Introducing Expert Critiquing Systems,
The Knowledge Engineering Review, 8(4), pp. 281-284,
1993.

[9] Kang, K., Cohen, S., Hess, J. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, 1990.

[10] Lung, C., Urban, J. Integration of Domain Analysis and
Analogical Approach for Software Reuse. In:
Proceedings of the Symposium on Applied Computing:
State of the Art and Practice, pp. 48 — 53, 1993.

[11] Miler Jr., N. Application Engineering within the context
of Domain Model based Reuse. (in Portuguese) Master’s
thesis. Universidade Federal do Rio de Janeiro, 2000.

[12] Morisio, M.; Travassos, G.H.; Stark, M.E. Extending
UML to support domain analysis, In Proceeding of the
15™ International Conference on Automated Software
Engineering, pp. 321 —324, 2000.

[13] Pressman, R. S. Software Engineering: A Practitioner’s
Approach, Fifth edition, McGraw-Hill, 2000.

[14] Rumbaugh, J., et al. Object-Oriented Modeling and
Design, Prentice Hall International, 1991.

[15] Robbins, J, Hilbert, D.M. and Redmiles, D.F. Extending
Design Environments to Software Architecture Design,
International ~ Journal — of Automated Software
Engineering. vol. 5. pp. 261-290, 1998.

[16] Robbins, J. E. and Redmiles, D.F., Cognitive Support,
UML Adherence, and XMI Interchange in Argo/UML,
Proceedings of the International Conference on
Construction of Software Engineering Tools, 1999.

[17] Silverman, D. Survey of Expert Critiquing Systems:
Practical and Theoretical Frontiers. Communications of
the ACM, 35(4), pp. 106-127, 1992.

[18] Software Engineering Institute, CMU. Domain
Engineering:http://www.sei.cmu.edu/domain_engineerin
g/domain_eng.html, 2001.

[19] Shen, W., et al. A UML Validation Toolset Based on
Abstract State Machines, In Proceedings of the 16" IEEE
Conference on Automated Software Engineering, pp.
315-318, IEEE Press, 2001.

[20] Souza, C.R.B.; ef al. A group critic system for object-
oriented analysis and design, In Proceedings of the
Fifteenth IEEE Conference on Automated Software
Engineering, pp. 313-316, IEEE Press, 2000.

[21] Spanoudakis, G. and Zisman, A. Inconsistency
Management in Software Engineering: Survey and Open
Research Issues. Handbook of Software Engineering and
Knowledge Engineering, S. K. Chang (ed.), World
Science Publishing Co., pp. 329-380, 2001.

[22] Vici, A.D.; et al FODAcom: an experience with domain
analysis in the Italian telecom industry, In Proceedings of
the Fifth International Conference on Software Reuse,
pp. 166-175, 1998.

[23] Zisman, A and Koslenkov, A. Knowledge based
Approach to Consistency Management of UML
specifications. In Proceedings of the 16™ Conference on
Automated Software Engineering, pp. 359-363, IEEE
Press, 2001.

