

Management of Interdependencies in Collaborative Software Development

Cleidson R. B. de Souza1,2 David Redmiles1 Gloria Mark1 John Penix3 Maarten Sierhuis4

1School of Information
and Computer Science,

2Departmento de
Informática,

3Computacional
Sciences Division,

4Research Institute for
Advanced Computer Science,

University of California,
Irvine

Irvine, CA, USA

Universidade
Federal do Pará
Belém, PA, Brasil

NASA/Ames Research
Center

Moffett Field, CA, USA

NASA/ Ames Research
Center

Moffett Field, CA, USA

Abstract
In this paper we report results of an informal field study
of a software development team conducted during an
eight week internship at the NASA/Ames Research Center.
The team develops a suite of tools called MVP, and is
composed of 31 co-located software engineers, who de-
sign, test, document, and maintain the different MVP
tools. We describe the formal and informal approaches
used by this group to manage the interdependencies that
occur during the software development process. Formal
approaches are legitimated by the organization, whereas
informal approaches emerge due to the needs of the de-
velopers. We also describe how the software development
tools used by this team support these approaches and
explore where explicit support is needed. Finally, based
on our findings, we discuss implications for software en-
gineering research.

1. Introduction

Software development is typically a collaborative ac-
tivity in which experts from different domains work to-
gether to produce a software artifact. Indeed, formal and
informal communication account for more than half of
developers’ time [21], and cooperative activities account
for about 70% of this time [30]. Therefore, breakdowns in
communication and coordination efforts constitute one
major problem in software development [3].

One of the reasons that cooperative software develop-
ment is difficult is the large number of interdependencies
that occur. These include interdependencies among activi-
ties in the software development process, among different
software artifacts, and finally, in different parts of the
same artifact. One example involves the design document
and the requirements specification—if the specification
changes, the design normally needs to be changed as well.
Another example involves dependencies among parts of
the same artifact, such as program dependencies—
syntactic relationships between the statements of a pro-
gram that represent aspects of the program’s control flow
and data flow [22].

Software engineering has already identified the need to
manage these interdependencies and has been developing
formal approaches to deal with them. For example, soft-
ware development processes describe, among other
things, when each artifact should be created during the
software development effort. Such processes would pre-
scribe that the requirements specification to be created
before the design document to minimize problems due to
the dependency between these documents. Design tech-
niques have also been developed. Examples of such tech-
niques include information hiding [19], which tries to
minimize dependencies in the implementation by using
the concept of coupling, and design patterns [7], which
give dynamic (runtime) program dependencies explicit
representation as static program structures, making them
easier to manage. In addition to formal approaches, soft-
ware engineering tools have been built to support the
management of interdependencies. An example is con-
figuration management systems that deal with dependen-
cies in the source code.

Informal approaches are also used to manage the in-
terdependencies. These practices exist because no matter
how formal and well-defined a process may seem, it will
always be incomplete, and also because formal ap-
proaches have practical limitations [8]. Informal ap-
proaches are as important as formal approaches and need
to be understood if one wants to provide support for soft-
ware development. Informal approaches solve problems
not addressed by formal approaches, so formal and in-
formal approaches complement each other. An example
of an informal approach is the use of formal communica-
tion channels in software development organizations to
deal with dependencies among components of the same
subsystem when the developers are co-located [9].

In this paper, we describe an informal field study that
analyzes both formal and informal approaches used by a
software development team to manage the interdependen-
cies that occur during software development. We classify
this work as an informal study since it consists primarily
of observations made by the first author during an eight-
week internship during the Summer of 2002. The formal

approaches identified here are those legitimately adopted
by the organization, such as the software development
process; the software development tools used, namely the
configuration management (CM) and bug-tracking tools;
and other approaches, such as the division of labor, for-
mal meetings, and so on. The informal approaches are the
emerging practices adopted by the team to deal with these
interdependencies, such as the adoption of conventions;
partial check-ins; problem reports (PRs) that cross work
boundaries; and the role of e-mail as a coordination
mechanism. Our observations build on Grinter’s work
[9]; we identify several other informal approaches and
analyzed the role of formal approaches in the manage-
ment of interdependencies. The identification, analysis,
and support for formal and informal approaches are es-
sential in improving software development efforts. Inter-
dependencies affect the coordination success because
they decrease the certainty of a project [13].

2. The MVP Software Development Team

The field study was conducted in cooperation with a
team that develops a software application, which for the
purposes of this paper we call MVP (All names were
changed to preserve anonymity). MVP is a suite of 10
different tools developed at NASA/Ames Research Cen-
ter. The MVP source code is approximately one million
lines of C and C++.

2.1. Team Organization

The MVP team is divided in two groups: developers
and V&V staff. Developers are responsible for writing
new code, fixing bugs, adding new features, and so on.
This group comprises 25 members, 3 of whom are also
researchers who write their own code to explore new
ideas. The overall experience of these developers ranges
from 3 months to more than 25 years. Experience in the
MVP group ranges from 2.5 months to 9 years. This
group is spread along several offices across two floors in
the same building.

V&V members are responsible for testing and report-
ing identified bugs, keeping a running version of the soft-
ware for demonstration purposes, and maintaining the
documentation (mainly user manuals) of the software.
This group comprises 6 members, half located in the
V&V Laboratory, and the rest in several offices on the
same floor as the laboratory. The V&V Lab and the de-
velopers’ offices are located in the same building.

2.2. The MVP Software

Each of the MVP’s 10 tools uses a specific set of
“processes.” A process, for the MVP team, is a program
that runs with the appropriate run-time options. It is not

formally related to the concept of processes in operating
systems and/or distributed systems. MVP’s processes
typically run on distributed Sun workstations and com-
municate using a TCP/IP socket protocol. Running a
MVP tool means running the processes required by this
tool with their appropriate run-time options. Processes are
used to divide the work among the developers (see sec-
tion 4.3).

3. Methods

As an intern with the MVP team, the first author was
able to make observations and collect information about
several aspects of the team. Additional material was col-
lected by reading manuals for the MVP tools, manuals for
the software development tools used, formal documents
(such as the description of the software development
process and the ISO 9001 procedures), training documen-
tation for new developers, problem reports, and so on, as
well as talking to colleagues. Some of the team mem-
bers—the documentation expert, V&V members, testers,
process leaders, and process developers—agreed to let the
intern shadow them for a few days to better learn about
their functions and responsibilities. A representative sub-
set of the MVP group was interviewed. Interviews lasted
between 45 to 120 minutes. A total of seven interviews
[15] were used to find out about the usage patterns of
various tools. The data has been analyzed by using
grounded theory [28].

4. Formal Approaches

Formal approaches are those legitimately adopted by
the team to support the management of interdependencies.
They facilitate the software development effort by im-
proving the coordination of activities. These approaches
have long been studied in the software engineering and
organizational research literature (e.g., [6, 26]), so we will
mention only aspects of these approaches in the context
of the MVP team.

4.1. The Software Development Process

The MVP team uses a formal software development
process that prescribes the steps needed to be performed
by the developers. For example, the following steps must
be performed by all developers after finishing the imple-
mentation of a change. Initially, they should integrate
their code with the main baseline. After that, must test
their changes to check if their integrations have inserted
bugs in the code. Finally, after checking-in files into the
repository, developers must send e-mails to the software
development mailing list describing the problem report
(PR) associated with the changes, the files that were

changed, and the branch where the check-in will be per-
formed, among other pieces of information.

The MVP software process also prescribes the usage
of code reviews before the integration of any change and
design reviews for major changes in the software. Code
reviews are performed by the manager of each process.
Therefore, if a change involves two processes, a devel-
oper’s code will be reviewed twice: once by each man-
ager. Design reviews are recommended for changes that
involve major reorganizations of the source code; their
use is decided by the software manager.

4.2. The CM and Bug Tracking Tools

We observed that MVP developers employ mainly two
software development tools for coordinating their work: a
configuration management (CM) system and a bug-
tracking system [2, 9, 11]. These tools are integrated so
that there is a link between the PRs (in the bug-tracking
system) and the respective changes in the source code (in
the CM tool). Both tools are provided by one of the leader
vendors in the market. Other tools, such as CASE tools,
compilers, linkers, debuggers, and source-code editors,
are also used.

A CM tool supports the management of source-code
dependencies through its embedded building mechanisms,
which indicate what parts of the code need to be recom-
piled when one file is modified. In this case, we use
Grinter’s classification of dependencies: “Compile-time
dependencies occur when a sub-system is being com-
piled. Build-time dependencies occur when several sub-
systems or the entire system is being linked. Run-time
dependencies occur when the executable is running [9].”
According to this classification, CM tools support com-
pile and build-time dependencies. Similarly, a bug-
tracking tool, when associated with the CM tool, supports
the tracking of changes performed in the source code dur-
ing the development effort.

Two members of the MVP team play important roles
in the usage of these tools: the configuration and release
manager and the bug-tracking manager. Both help in the
administration of the tools and try to relieve the develop-
ers of some of most common tasks (e.g., the CM manager
created a command interface on top of the CM tool to
make it easier for MVP developers to use). The CM man-
ager provides full-time support for the CM tool, and the
bug-tracking manager is also an MVP software devel-
oper. Both managers have been receiving training in those
tools, and other developers are trained before starting
work in the group. Their training includes the software
development tools and the MVP software development
process.

The MVP team employs several advanced features of
the CM tool, such as triggers, “winking in” techniques to
reduce compilation time, labeling, and branching strate-

gies. Indeed, the branching strategy employed is one of
the most important aspects of a CM tool because it prin-
cipally affects the work of MVP developers. It is a way of
deciding when and why to branch. This strategy affects
the task of coordinating parallel changes. According to
the nomenclature proposed by Walrad and Strom [31], the
following branching strategies are used by the MVP
team: (1) branch-by-purpose, in which all bug fixes, en-
hancements, and other changes in the code are imple-
mented on separated branches; (2) branch-by-project, in
which branches are created for some of the development
projects; and (3) branch-by-release, in which the code
branches upon a decision to release a new version of the
product. The branch-by-purpose strategy is employed by
MVP developers in their daily work, whereas the other
strategies are used only by the CM manager. In other
words, the developers themselves create new branches for
each new bug fix or enhancement, but branches for pro-
jects and releases are created only by the manager.

The branch-by-purpose strategy supports a high-level
of parallel development by allowing developers to work
on different branches at the same time, thus avoiding
problems that exist in other strategies [31]. According to
this strategy, each developer is responsible for integrating
his or her changes into the main code, which is often
called “push integration” [1]. The changes are then avail-
able to all other developers. Therefore, if one bug is in-
troduced, other developers will notice it because their
work will be disrupted. Indeed, we observed and
collected reports of different instances of this situation. A
developer who suspects there is a problem introduced by
recent changes will contact the author of the changes to
check the change, or to provide more information about
it.
4.3. Other Approaches: Meetings and

Division of Labor

MVP developers employ other formal approaches to
manage the interdependencies in the software. For exam-
ple, the V&V group holds weekly meetings to discuss
problems, deadlines, etc. These meetings are also used for
official announcements, such as trips, dates of new re-
leases, demonstrations, audits, and so on. Likewise, the
entire MVP team (developers and V&V staff) holds bi-
weekly “software pre-design meetings.” In these meet-
ings, formal announcements are also made, but the most
important part of the meeting involves the discussion of
new PRs. In this case, the developers each announce their
new PRs, describing them through their number and
headline. In general, the headline provides enough infor-
mation about the nature of the PR, but other developers
might ask for more details. This is an opportunity for de-
velopers to discuss their work, obtain help, and be aware
of what is happening in the team. For example, it is not

uncommon after a developer reports a PR that another
developer mentions that the problem has already been
fixed. PRs that are almost finished might also be an-
nounced to warn others about possible “weird” behavior
in the tools. Finally, during these meetings the software
manager will decide if design reviews are necessary.

The MVP software development team also adopts a
clear division of labor based on the processes that com-
pose each MVP tool. Each developer is assigned to one or
more processes and tends to specialize in it. There are
process leaders and process developers, who mostly work
only on a particular process. This is important because it
allows the developers to understand the behavior of the
process more deeply and become familiar with its struc-
ture, therefore helping them to deal with the complexity
of the code. Indeed, during the software development
activity, managers tend to assign work according to these
processes. However, it is not unusual to find developers
working in different processes under various circum-
stances (e.g., before launching a new release, a developer
might be assigned to fix bugs in other processes). Devel-
opers also work in different processes due to the continu-
ity of the work. Sometimes bugs that seem to be located
in a process and therefore are allocated to the developer
who works with this process are later discovered to be
located in another process. In this case, it is better to let
the developers finish the work because so much time was
invested in it. Thus, this allows developers to gain a com-
prehensive view of the whole MVP software.

5. Informal Approaches

Informal approaches are the practices adopted by the
MVP team to deal with the interdependencies that occur
during the software development process. We call them
informal because they emerged naturally in response to
the needs of the team and are not taught to new members.
The approaches that we identified are discussed below.

5.1. Problem Reports Are Boundary Objects

In our analysis we identified that PRs are used to fa-
cilitate the management of interdependencies of develop-
ers from different groups and with different roles. In other
words, PRs are “boundary objects” in the sense of Star
and Griesemer [27]: objects whose common identity is
robust enough to support coordination, but whose internal
structure, meaning, and consequences emerge from local
negotiations between groups. Indeed, PRs are used by
end-user liaisons, developers, and testers for different
purposes.

Consider the following. When a bug is identified, it is
associated with a specific PR. Whoever identified the
problem is also responsible for including information
about ‘how to repeat it’ in the PR. This description is

used by the developer assigned to fix the bug to specify
the circumstances (adaptation data, tools, and their pa-
rameters) under which the bug appears. After fixing the
bug, this developer must fill a field in the PR that de-
scribes how the testing should be performed to properly
validate the fix. This field is called ‘how to test.’ This
information is then used by the test manager, who creates
test matrices that will be used later by the testers during
regression testing. The developer who fixes the bug also
indicates in another field of the PR whether the documen-
tation of the tool needs to be updated. Then, the docu-
mentation expert uses this information to determine
whether the manuals need to be updated based on the
changes the PR introduced. Finally, another field in the
PR conveys what needs to be checked by the manager
when closing it. Therefore, the PR reminds the software
manager of the aspects that need to be validated.

In short, the information provided by the PR is used by
the developers to manage the several interdependencies in
the software being developed. For example, since the user
manual of an MVP tool depends on part of that tool’s
source code, so changes in this source code need to be
reflected in the manual. The information about such
changes is provided to the documentation expert through
one of the fields in the PR.

5.2. Naming Conventions

Developers share repositories containing the source
code (the CM tool) and information about changes in this
code (the bug-tracking tool). As a result, the team estab-
lishes naming conventions that must be followed when
dealing with these tools. Conventions are common and
accessible rules or arrangements established in the group
that act as a means to merge the different perspectives and
work styles involved in handling shared objects [14].

An example of a convention is the naming convention
used in the creation of branches in the CM tool: it must be
based on the PR number recorded in the bug-tracking tool
as well as on the developer’s name. This allows the rela-
tionship that exists between a change and its correspond-
ing PR to be clearly represented, therefore facilitating
identification by MVP developers. However, these con-
ventions are not properly supported by these tools, which
is a source of complaints by the developers. Indeed, creat-
ing and naming branches is a cumbersome task with four
or five different tedious steps that could be automated
because they follow a naming convention.

5.3. E-mail Conventions

As mentioned before, the MVP software development
process prescribes that after checking-in code into the
repository, a developer needs to send an e-mail to the
software developers’ mailing list. However, we found out

that MVP developers perform these activities in the re-
verse order—they will send e-mail before, not after, the
check-in. By doing so, MVP developers allow their col-
leagues to prepare for the changes. Indeed, developers
might even send e-mail to the author of the change asking
for a delay of its check-in. We also found out that in this
same e-mail developers describe the impact that their
changes will have on others’ work. A developer who
reads these e-mails might walk to the co-worker’s office
to ask about the changes or, if the change has already
been committed, browse the CM and bug-tracking sys-
tems to understand them. The following list presents
some usual comments sent by MVP developers:

“No one should notice.”
“(…) only EDP users will notice any change.”
 “Will be removing the following [x] file. No effect on re-
compiling.”
“Also, if you recompile your views today you will need to
start your own [z] daemon to run with live data.”
“The changes only affect [y]-mode so you shouldn't notice
anything.”
“If you are planning on recompiling your view this evening
([current date]) and running an MVP tool with live [z] data,
you will need to run your own [z] daemon.”

Sending e-mail before the check-ins with the descrip-

tion of the impact of the changes is an important conven-
tion because it allows other developers to prepare and
reflect about the effect of their colleagues’ changes in
their current work. Because they are aware of some of the
interdependencies in the source-code, they might conse-
quently adjust to these changes.

In addition to the flexibility that allows the description
of the impact of the changes, e-mail provides asynchro-
nous communication, which requires storage of the mes-
sages until their delivery to the recipient. This is used by
MVP developers to learn about what changed in the code
in a certain timeframe. For example, these e-mails were
used by a developer to catch up with the changes that
occurred while out of the office. They contained informa-
tion that allowed the developer to identify changes that
did not affect current work, but might affect future work.
The following comment from another MVP developer
supports this:

 “(…) all of the sudden you were working and everything
was going great and an e-mail comes through, you look at
it, it does not mean a lot, you blow it (…) you keep working
and one hour later things were broken. Why is that not
working? Oh, that last check-in! You go back to that e-mail:
who did this? And maybe you can go talk to that person:
‘you broke something’ (…)”

The information in the e-mail is also important be-
cause it informs (or reminds) developers that they have
been engaged in parallel development. Often, developers

are unaware of parallel activity because they do not check
the version tree that displays information about other de-
velopers working on the same file. The information in the
e-mail is usually enough to tell the developer whether
these changes should be incorporated right away or
whether they can wait until just before check-in. In either
case, the latest changes must be “merged back” into the
developer’s version of the file. In general, if one file has
been checked-in several times and a developer has the
same file checked-out, he or she “merges back” the
changes indicated in the e-mail to avoid working with an
outdated file.

The asynchronous nature of e-mail could be problem-
atic because developers might miss important notifica-
tions about changes. However, during the field work, we
did not notice any such problems. Furthermore, sending
e-mail before a check-in is also used by other developers
to support expertise identification and as a learning
mechanism. Developers associate the author of the
change with the “process” where the changes are being
performed. In other words, MVP developers assume that
if one developer constantly and repeatedly performs
check-in in a specific process, it is very likely that the
developer is an expert on that process. Therefore, another
developer needing help with that process will look to that
developer for help:

 “[talking about a bug in a process that he is not expert] (…)
I don’t understand why this behaves the way it does. But,
most of these PR’s seem to have John’s name on it. So you
go around to see John. So by just by reading the [PR] head-
line of who does what, you kind of get the feeling of who’s
working on what (…).So they [e-mails] tend to be helpful in
that aspect as well. If you’ve been around for ten years, you
don’t care, you already know that [who works with what],
but if you’ve been here for two years that stuff can really
make difference (…)”

In addition, the simple fact that developers read the e-

mails sent by other developers to check for the impact of
others’ changes facilitates learning about the MVP soft-
ware. Interestingly, the two developers who reported
these aspects of e-mail were relative novices at MVP,
with 2 years and 2.5 months experience there.

5.4. Holding onto Check-ins

As mentioned, MVP developers add to the e-mail the
description of the impact of their changes in other devel-
opers’ code. The two most common types of impact
statements are changes in run-time parameters of a proc-
ess and the need to recompile parts or the whole source

code1. The former case is very important because other
developers might be running the process that will be
changed. The latter case is described because when a file
is modified, it, as well as the other files that depend on it,
will be recompiled, and this recompilation process is
time-consuming—up to 45 minutes. Developers are
aware of the delay they might cause to others; therefore,
they hold check-ins until the evening. According to one
of the developers:

 “(…) and the other thing that you find is that when people
also know that if they are going to check-in a file they will
do in the later afternoon … you’re gonna do a check-in and
this is gonna cause anybody who recompiles that day have
to watch their computer for 45 minutes (…) and most of the
time, you’re gonna see this coming at 2 or 3 in the after-
noon, you don’t see folks (….) you don’t see people doing
[file 1] or [file 2] checking-in at 8 in the morning, because
everybody all day is gonna sit and recompile.”

Holding onto check-ins is an informal approach

adopted by the MVP software development team to mini-
mize the problems caused by the interdependencies that
exist on the source code. However, this is possible only
because MVP developers are aware of the existing inter-
dependencies.

5.5. Engagement in Parallel Development: Partial
Check-ins and “Speeding Up” the Process

We also noted that MVP developers engage very often
in parallel development. This happens when more than
one developer has the same file checked-out. Conflicts
might occur when one of these developers checks-in this
file back into the repository because the other developer’s
version will then be outdated, and any changes that de-
veloper makes will potentially be inappropriate. To up-
date the version, the developer needs to merge the other’s
changes back in his or her code. This operation is called
by the developers “back merging,” and in CM terminol-
ogy is named “synchronization of workspaces.” Due to
the need to perform these back merges, a new depend-
ency between artifacts is created during parallel develop-
ment. This dependency occurs between any version of a
file that has not yet been checked-in and the new version
of this same file created after the check-in (i.e., the cur-
rent version of a file checked-out by a developer is now
dependent on the new version checked-in into the reposi-
tory because the former needs to incorporate the changes
of the latter before being checked-in). This is another
example of dependency in software development.

1 The CM tool used by the MVP team allows developers to choose if
they want to incorporate others’ changes, meaning that they are able to
decide if they want to recompile the code or not.

Conflicting changes are more likely to occur in files
that are accessed by several developers at the same time.
For example, in MVP software, some files are used to
define programming language structures that are used all
over the code. Different developers often change these
files, which means that they have a high degree of parallel
development. These files are especially important because
there is a significant correlation between them and the
number of defects reported [20]. MVP developers re-
ported that they do not avoid parallel development in
these files because conflicts are infrequent and not likely
to occur. But, without access to the CM tool, it was not
possible to statistically test this claim. MVP developers
accepted parallel development because it was necessary
to achieve high productivity. However, we identified that
they adopted a strategy to deal with files with a high de-
gree of parallel development. To minimize the possibility
of conflicts, developers would perform “partial check-
ins,” which consists of checking-in some of the files back
into the repository, even when the developers have not
yet finished all their changes. This strategy decreases the
number of dependencies that occur, and consequently
reduces the number of necessary back merges. Note that
partial check-ins are variations of the formal software
development process, which establishes that check-ins
will be performed only when the changes in all files are
finished.

Finally, according to Grinter [9], software developers
might rush to finish their work when they engage in par-
allel development because they want to avoid merging.
We identified that developers will rush only when they
are testing their changes right before check-in. As one
developer plainly pointed out: “This is a race!” According
to the software development process, this testing is neces-
sary to guarantee that the changes will not introduce bugs
into the system. We observed that this testing is very in-
formal. For example, developers will sit in the V&V
Laboratory and compare the current version of the MVP
with the one with changes. In short, MVP developers do
not use regression testing at this moment. That will be
used by the V&V staff before creating a new release of
the software. This means that techniques that minimize
the number of test cases necessary to validate the changes
in the software (e.g., [23]) cannot be used by MVP devel-
opers to determine whether the tests they need to run can
be impacted by changes that another developer makes.
These techniques can be used only by the V&V staff.

Although we observed that some check-ins introduced
errors, we do not have evidence that these errors were
introduced due to this “racing.” Similar to partial check-
ins, “speeding up” the process is employed by the MVP
developers to avoid the additional work necessary to deal
with the extra-dependencies that occur during parallel
development.

6. Computational Support for Informal
Approaches

Figure 1 summarizes the formal and informal ap-
proaches used by the MVP team to manage the interde-
pendencies that occur during their software development
activities. As mentioned before, formal and informal ap-
proaches complement each other, so problems not solved
by the formal approaches might be solved by the informal
ones. For example, none of the formal approaches used
by the MVP team addresses the issue of how to manage
the crossing-boundaries dependencies that occur when a
change is committed into the repository. This problem is
solved by the MVP team by adopting a particular PR
structure that provides information for developers with
different roles (see section 5.1).

Figure 1: Formal and Informal Approaches Adopted by
the MVP Software Development Team

The tools used by the MVP team assist some of the in-
formal approaches. For example, the CM tool allows
software developers to perform partial check-ins. In con-
trast, due to the lack of tool support, developers need to
rush to finish their work when they are testing their
changes. In this section, we discuss the existence (or lack)
of support for informal approaches in more detail. In ad-
dition, we discuss implications for software engineering
research when there is a lack of support.

6.1. Problem Reports as Boundary Objects

Bug-tracking tools are flexible enough to allow their
managers to define the fields that will compose a PR. In
addition, these tools allow a manager to specify a simple
workflow describing when each one of these fields needs
to be filled in [12]. By doing that, they allow the creation
of PRs with fields that contain information that is useful

to developers who are members of different groups. In the
MVP team, the information in these fields describes how
each developer’s work is going to be affected by the PR.
This means that these tools allow PRs to be defined and
used as coordination mechanisms to manage interdepend-
encies during software development.

6.2. Support for Naming Conventions

Following conventions for dealing with shared objects
(or repositories) implies additional effort; hence, technical
support often is needed [14]. As mentioned before, MVP
developers follow a naming convention in which the
name of the branches in the CM tool should be based on
the PR number recorded in the bug-tracking tool. MVP
developers have complained that the task of creating
branches is very cumbersome, with four or five different
tedious steps to be performed. Because this task is based
on a convention, it could be automated. Unfortunately,
the current integration between the CM and the bug-
tracking tool does not support that. That is a major source
of complaints repeatedly reported by the MVP software
developers during the interviews.

6.3. Support for E-mail Conventions

NASA requires ISO 9001 certification for all software
development efforts, which means that all changes in the
software must be documented, reviewed, and formally
authorized before the changes are integrated in the code.
In other words, developers need to be accountable for
their work. The MVP team chose to use e-mail as a for-
mal communication channel in the organization, as
clearly mentioned in the software development process.
Indeed, some of the tasks (such as requesting and answer-
ing code reviews) were performed by using e-mail. These
tasks require the use of software development tools such
as source-code editors, CM tools, and so on. Unfortu-
nately, e-mail is not integrated with these tools, which
means that developers need to move back and forth be-
tween e-mail and the other tools in order to get their work
done. Integration of e-mail with software development
technology seems easy to implement; it is also very prom-
ising because more and more software development or-
ganizations are seeking certifications such as ISO 9001
and CMM (Capability Maturity Model). This aspect was
identified during the field work and later corroborated by
MVP software developers during the interviews. In addi-
tion, e-mail messages exchanged among developers are
also used to identify expertise in parts of the source code,
as well as a history mechanism to identify changes that
happened in the past. Again, this information could and
should be properly organized and indexed in order to fa-
cilitate these activities.

Management of

Interdependencies

Formal

Approaches

Informal

Approaches

- Software development process
- Software development tools
- Pre-design and V&V meetings
- Division of labor, etc.

- PRs as boundary objects
- Conventions
- Holding onto check-ins
- Partial check-ins

6.4. Holding onto Check-ins

The informal approach of holding onto check-ins is
used to avoid disrupting others’ work. The support for
this task provided by CM tools is appropriate because
these tools allow a developer to check files in or out and
merge different versions of them at any time. However,
this approach is useful only if the developer who is going
to check-in some code is aware that his or her work will
cause the recompilation of other files. This suggests that
software visualization tools (e.g., [4]) that use existing
information from the CM tool could be used to support
the identification of these files by novice developers who
are not aware of the interdependencies in the source code.

6.5. Partial Check-ins

A check-in is called “partial” by the MVP developers
when it is performed without a code review to avoid sev-
eral “back merges” due to the file being changed by sev-
eral other developers at the same time. CM tools support
partial check-ins because they usually do not impose con-
straints about when check-ins might be performed, allow-
ing one to check-in code into the repository at any time.
However, the current trend of integrating CM tools with
software process technology [5] might disrupt that. We
recognize this integration is essential because it allows the
efficient automation of repetitive tasks (such as building a
software release) [12]. Nevertheless, the enforcement of
the process that usually goes along with this integration
must be managed, because it has long been recognized as
problematic [29]. CM tools must be flexible enough to
allow software developers to use workarounds that devi-
ate from the process in order to properly deal with the
problems that they face. One example of such work-
arounds is the partial check-in. Another approach is to
update the software development process to reflect the
need for partial check-ins, and consequently legitimate
them. In this case, similar to holding check-ins, the in-
formation already present in the CM tool could be used
by software visualization tools [4] to allow novice devel-
opers to identify files with a high degree of parallel de-
velopment that need to be partially checked-in.

6.6. Speeding Up the Process

MVP developers rush their activities during the devel-
opment process to minimize the number of dependencies
between their code and recently committed changes in the
repository (section 5.5). Current CM and bug-tracking
tools create the need to speed up because they shield a
developer’s workspace from other developers’ work-
spaces to support parallel development. Although it is
desirable to isolate one developer’s work from others, it
does not allow developers to coordinate their check-ins,

and hence avoid the need to re-do their work. To the best
of our knowledge, no existing software engineering tool
solves this problem. However, a promising approach re-
cently emerged with tools that attempt to break the isola-
tion of CM workspaces (e.g., [24] and [17]). These tools
achieve that by distributing the CM commands happening
in a developer’s workspace to other selected workspaces.
These tools focus on the actions of the developers (con-
veyed as CM commands) because they want to avoid con-
flicts between the files that two or more developers have
checked-out. In addition, we argue that these tools need
to provide information about the “status” of other devel-
opers’ work. By doing that, they allow a developer to
identify who is about to check-in code into the repository
and, therefore, to coordinate their work, so that a devel-
oper does not need to rush. We believe that this can be
achieved by extending these tools to collect information
from sources other than the CM tool, such as e-mail, the
bug-tracking tool, the software process specification, and
so on.

7. Discussion

As mentioned before, a formal process description can
never completely represent all variations that might occur
in a software development effort [8]. Therefore, as the
data have suggested, informal approaches need to be
adopted to complement the formal approaches to properly
support the management of the interdependencies that
occur in the software development process. However, to
properly support cooperative software development, we
need to unveil these informal approaches and provide
computational support for them to minimize errors and
improve their performance. One of the reasons these in-
formal approaches are important is the high level of paral-
lel development that occurs in large-scale collaborative
efforts [20]. Indeed, the engagement in parallel develop-
ment identified in this field study helps to substantiate the
results of Perry et al. [20] that describe high levels of par-
allel development, but contrasts with the groups studied
by Grinter [9, 11], in which developers avoided this situa-
tion. Technical improvements in merging techniques from
1995 to 2002 [2] might be the cause of divergence from
Grinter’s earlier observations. Grinter, however, does not
clearly describe the branching strategy used by the team
studied, whereas the MVP team adopted the “branch-by-
purpose” strategy. According to Walrad and Strom [31]
this “strategy supports a high level of parallel develop-
ment by allowing developers to work on different
branches at the same time. Therefore, this might be an-
other explanation for the difference between the two
groups. Finally, an organization’s structural properties
(e.g., reward systems, policies, norms, and so on) are
other factors that influence the adoption and use of col-

laborative tools [18]. The two organizations studied are
different, hence they are very likely to have different
structural properties, which might explain the different
levels of engagement in parallel development.

Meanwhile, this field study supports Grinter’s [9] find-
ing that during parallel development developers will rush
to finish their changes. However, while the developers
studied by Grinter will speed up because they want to
avoid the complexity of merging, MVP developers rush
because they do not know when another developer might
check-in some code that will lead them to another set of
tests. In both studies, developers describe their dilemma:
they want to produce high-quality code, but they also
want to finish their changes fast.

The MVP team needs to perform extra work to suc-
cessfully manage the interdependencies in the software.
This extra work is a form of articulation work necessary
to coordinate, negotiate, mesh, and schedule their activi-
ties [25]. It is different from recomposition work [10],
which is the coordination required to assemble software
development artifacts from their parts, because recompo-
sition work focuses on choosing the right components to
create a software artifact due to source-code dependen-
cies, whereas this extra work focuses on the management
of all dependencies that exist in a software development
effort.

Finally, in this informal field study we identified an-
other approach used by software developers to identify
experts. Whereas McDonald and Ackerman [16] describe
the usage of change history data (equivalent to PRs in the
MVP team), novice developers in the MVP team use the
broadcasted e-mail messages prescribed by the software
development process. The importance of finding experts
for problem-solving in any organization and the complex-
ity of the MVP code suggest that the operation of sending
e-mail before a check-in is essential.

8. Conclusion and Final Remarks

This paper reports the findings of an informal field
study conducted at the NASA/Ames Research Center
during the course of an eight-week internship with a
software development. The results of this field study de-
scribe the formal and informal practices adopted by team
members to manage the interdependencies that occur dur-
ing software development. Formal approaches are those
legitimated by the organization; the informal ones are
those that emerge naturally due to the needs of the devel-
opers. Examples of formal approaches adopted by the
team are the software development process, some soft-
ware development tools, design meetings, and a clear
division of labor. The informal approaches that we identi-
fied are partial check-ins, problem reports that cross work

boundaries, holding onto check-ins, e-mail and naming
conventions, and the action of speeding up the processes.

In this work, we also indicate current and nonexisting
computational support to the informal approaches. In-
deed, partial check-ins, problem reports that cross work
boundaries, and holding onto check-ins are work prac-
tices currently supported by CM and bug-tracking tools.
E-mail and naming conventions and the action of speed-
ing up the processes are adopted by MVP developers due
to the lack of tool support. We believe that these interest-
ing research areas should be further investigated. Pointing
out these areas is an important contribution of this paper.

Finally, we are planning a future study in a different
organization. We seek to identify similarities and differ-
ences in the formal and informal approaches that we iden-
tified here and to learn how the ones that we identified are
used in a different context.

Acknowledgments

The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for financial support. This effort was also spon-
sored by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Mate-
riel Command, USAF, under agreement number F30602-00-2-
0599. Funding also was provided by the National Science Foun-
dation under grant numbers 0205724 and 0083099. The U.S.
Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of DARPA, the Air Force Laboratory, or the
U.S. Government.

9. References

[1] Appleton, B., Berczuk, S., et al., "Streamed Lines: Branch-
ing Patterns for Parallel Software Development," Proceed-
ings of Pattern Languages of Programs (PLoP'98),
Washington University Technical Report #WUCS-98-25,
1998.

[2] Conradi, R., and Westfechtel, B., "Version Models for
Software Configuration Management," ACM Computing
Surveys, vol. 30, pp. 232-282, 1998.

[3] Curtis, B., Krasner, H., et al., "A Field study of the Soft-
ware Design Process for Large Systems," Communications
of the ACM, vol. 31, pp. 1268-1287, 1988.

[4] Eick, S. G., Graves, T. L., et al., "Visualizing Software
Changes," Software Engineering, vol. 28, pp. 396-412,
2002.

[5] Estublier, J., "Software Configuration Management: A
Roadmap," Future of Software Engineering, pp. 279-289,
Limerick, Ireland, 2001.

[6] Finkelstein, A., Kramer, J., et al., Software Process Model-
ing and Technology: Wiley, 1994.

[7] Gamma, E., Helm, R., et al., Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addi-

son-Wesley, 1995.
[8] Gerson, E. M., and Star, S. L., "Analyzing Due Process in

the Workplace," ACM Transactions on Office Information
Systems, vol. 4, pp. 257-270, 1986.

[9] Grinter, R., "Supporting Articulation Work Using Configu-
ration Management Systems," Computer Supported Coop-
erative Work, vol. 5, pp. 447-465, 1996.

[10] Grinter, R. E., "Recomposition: Putting It All Back To-
gether Again," Conference on Computer Supported Coop-
erative Work (CSCW'98), pp. 393-402, 1998.

[11] Grinter, R. E., "Using a Configuration Management Tool to
Coordinate Software Development," Conference on Organ-
izational Computing Systems, pp. 168-177, 1995.

[12] Grinter, R. E., "Workflow Systems: Occasions for Success
and Failure," Computer Supported Cooperative Work, vol.
9, pp. 189-214, 2000.

[13] Kraut, R. E., and Streeter, L. A., "Coordination in Software
Development," Communications of the ACM, vol. 38, pp.
69-81, 1995.

[14] Mark, G., Fuchs, L., et al., "Supporting Groupware Con-
ventions through Contextual Awareness," European Con-
ference on Computer-Supported Cooperative Work
(ECSCW '97), pp. 253-268, Lancaster, England, 1997.

[15] McCracken, G., The Long Interview: Thousand Oaks, CA:
SAGE Publications, 1988.

[16] McDonald, D., and Ackerman, M., "Just Talk to Me: A
Field Study of Expertise Location," Conference on Com-
puter Supported Cooperative Work, pp. 315-324, 1998.

[17] O'Reilly, C., Morrow, P., et al., "Improving Conflict Detec-
tion in Optimistic Concurrency Control Models," 11th In-
ternational Workshop on Software Configuration Manage-
ment (SCM-11), Portland, Oregon, 2003.

[18] Orlikowski, W., "Learning from Notes: Organizational
Issues in Groupware Implementation," The Information So-
ciety, vol. 9, 1993.

[19] Parnas, D. L., "On the Criteria to Be Used in Decomposing
Systems into Modules," Communications of the ACM, vol.
15, pp. 1053-1058, 1972.

[20] Perry, D. E., and, Siy, H. P., et al., "Parallel Changes in
Large-Scale Software Development: An Observational
Case Study," ACM Transactions on Software Engineering
and Methodology, vol. 10, pp. 308-337, 2001.

[21] Perry, D. E., Staudenmayer, N. A., et al., "People, Organi-
zations, and Process Improvement," IEEE Software, vol.
11, pp. 36-45, 1994.

[22] Podgurski, A., and Clarke, L. A., "The Implications of
Program Dependencies for Software Testing, Debugging,
and Maintenance," Symposium on Software Testing,
Analysis, and Verification, pp. 168-178, 1989.

[23] Rothermel, G. and Harrold, M. J., "A Safe, Efficient Re-
gression Testing Selection Technique," ACM Transactions
on Software Engineering and Methodology, vol. 6, pp. 173-
210, 1997.

[24] Sarma, A., Noroozi, Z., et al., "Palantír: Raising Awareness
among Configuration Management Workspaces," Twenty-
fifth International Conference on Software Engineering,
pp. 444-453, Portland, Oregon, 2003.

[25] Schmidt, K., and Bannon, L., "Taking CSCW Seriously:
Supporting Articulation Work," Journal of Computer Sup-
ported Cooperative Work, vol. 1, pp. 7-40, 1992.

[26] Shull, F., Carver, J., et al., "An Empirical Methodology for
Introducing Software Processes," Joint 8th European Soft-
ware Engineering Conference and 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
pp. 288-296, Vienna, Austria, 2001.

[27] Star, S. L., and Griesemer, J. R., "Institutional Ecology,
Translations and Boundary Objects: Amateurs and Profes-
sionals in Berkeley's Museum of Vertebrate Zoology," So-
cial Studies of Science, vol. 19, pp. 387-420, 1989.

[28] Strauss, A., and Corbin, J., Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory, Thousand Oaks, CA: SAGE publications, 1998.

[29] Suchman, L., Plans and Situated Actions: The Problem of
Human-Machine Communication. Cambridge: Cambridge
University Press, 1987.

[30] Vessey, I., and Sravanapudi, A. P., "CASE Tools as Col-
laborative Support Technologies," Communications of the
ACM, vol. 38, pp. 83-95, 1995.

[31] Walrad, C., and Strom, D., "The Importance of Branching
Models in SCM," IEEE Computer, vol. 35, pp. 31-38,
2002.

