

Supporting Reflective Practitioners

David Redmiles

Department of Informatics

School of Information and

Computer Science

University of California, Irvine

Irvine, CA 92697-3425 USA

redmiles@ics.uci.edu

Kumiyo Nakakoji

RCAST

University of Tokyo

and PRESTO, JST

4-6-1 Komaba, Meguro, Tokyo,

153-8904 Japan

kumiyo@kid.rcast.u-tokyo.ac.jp

Abstract

The theme and title for this panel is inspired by

Donald Schön’s writings about the reflective practitioner

in which he describes professional practice as being a

process of reflection in action. Ill-defined problems

including design decisions lead to breakdowns, which

become opportunities for reflection and modification of

practice. This panel seeks to provide ICSE attendees with

a broad cross section of the history, state of the art, and

open issues with some of the methods and tools directed

at supporting reflective software practitioners.

1. Panel Theme at a Glance – Supporting

Reflective Practitioners

The theme and title for this panel is inspired by Donald

Schön’s writings in which he described professional

workers as reflective practitioners [1]. He observed how

professionals frequently work on ill-defined problems—

problems that defy rote solutions. Design decisions fall

into this category. Ill-defined problems lead to

breakdowns, which become opportunities for reflection,

modification, and improvement of practice. Schön

described this particular kind of reflection as an activity

that transcends technical rationality, a process that he

named reflection in action. It was a different kind of

thinking than “simple logic.” This panel seeks to unriddle

these concepts and ground them in the context of

problems that software developers often face and

problems that end users of software face.

2. Further Background Related to Design

and Software Development

Authors such as Brooks, Simon, Suchman, and

Winograd have articulated concepts and concerns similar

to Schön’s puzzle about the design activity that people

engage in when grappling with ill-defined problems. For

instance, Fred Brooks distinguished between accidental

and essential complexity for designers of software systems

[2]. Software development tools could support mundane

aspects of designers’ work, but the most creative aspects

would still elude computer support. Herbert Simon also

referred to the bounds of rationality and evoked the

anecdote of the painter faced with a blank canvas to

describe ill-defined problems, which required a different

kind of thinking [3]. In her seminal characterization of

situated action, Lucy Suchman demonstrated the limits of

rationalized designs [4]. As she notes, anticipating all

potential user behaviors is not a feasible approach to

design. Winograd and Flores turned to models of

conversation and theories of discourse analysis to explain

design as an interpretive activity [5] [6].

In light of these observations, the panel will consider

software development from the perspective of a human

activity [7]. Reflective practitioners are needed in

software design not so much for the accidental but the

essential, to use Brooks’ terms. Observing another aspect

of the puzzle of design, Greenbaum and Kyng observed

that “system development is difficult not because of the

complexity of technical problems, but because of the

social interaction between users and system developers as

they learn to create, develop, and express their ideas and

visions” [8]. Software engineering (especially its upstream

activities) is a human-oriented field, and as such will

always have the openness of other design disciplines, such

as architecture and graphic design, rather than the hard-

edged formulaic certainty of downstream engineering.

Equal to the problem of software developers being

reflective practitioners is the problem of end users acting

reflectively. Namely, there is a large class of software

systems in which end users act as designers as they

perform both professional and personal tasks. In these

systems, end users, who become designers themselves,

act, reflect, and react because they do not have a definitive

solution or clear-cut plan of action before they start

interacting with a system. This growing class of systems

raises important questions for ICSE community. Is this

new class of systems different from old systems? Should

there be a new foundation for this class of systems?

The challenge of designing computer support for

reflective practitioners has been approached sporadically

by the software community, often in an intuitive rather

than intentional fashion. It needs a more cohesive and

focused response by the software community. To date,

some of the following work is related. Software critics are

an interface technique intended to trigger reflection by end

users, providing feedback on design tasks while designers

are still in the context of making design decisions [9].

Critics are not intended to replace human decision

making, but to complement it [10][11]. Similarly,

software agents proactively coordinate in order to assist

end users, including in some instances software designers

as end users [12]. Techniques for supporting software

process descriptions have evolved from rigid prescriptive

systems to reflective models that can adapt to exceptions

[13]. Even the open source movement might be

interpreted as a style of software development that

supports reflective practice by opening up the evolution of

a software system to public criticism and improvement

with many improvements being directly motivated by

breakdowns (in Schön’s sense) that the users experience

[14].

Our target goal for this panel is to stimulate members

of the ICSE community to think more deeply and

comprehensively about software development as a human

design activity especially in terms of the characteristics of

design’s reflective and situated nature. We also seek to

provoke the audience to think explicitly about developing

software for end users who are themselves reflective

practitioners, along with the theoretical and practical

implications of that kind of software. We believe that

audience members will 1) learn about some new method

or tool that they had not previously been familiar with,

and 2) take away an understanding or how some problems

of developing software systems can be framed in light of

end users needing support for reflective action. We see the

set of problems comprising this endeavor as the same

comprising the broader topic of a science of design [3].

3. Biographies of the Organizers and

Panelists

David Redmiles is an Associate Professor in the

Department of Informatics at the University of California,

Irvine. Most recently, his research has examined

knowledge-based support for object-oriented design;

automated, agent-based support for collecting usage data;

tools for supporting awareness; event-based distributed

architectures; and field studies of collaborative software

engineering. He received his PhD from the University of

Colorado, Boulder, and previously worked at the National

Institute of Standards and Technology (NIST). He served

as a program co-chair for the 1998 IEEE Conference on

Automated Software Engineering and will be general

chair of that conference in 2005. He has organized

workshops on Collaborative Software Engineering and

Automated Software Engineering. He is a joint editor on a

2002 special issue of the Journal of Computer Supported

Cooperative Work on Activity Theory and Design.

Kumiyo Nakakoji is a Full Professor at the Research

Center for Advanced Science and Technology, University

of Tokyo, Japan. Her current research interests include the

knowledge interaction design framework for the

development of interactive systems for creative

knowledge work and for supporting collective creativity.

She is active in the ICSE community and is a program

committee member. She has served as Workshop Co-chair

at CHI 2003, Tutorial Co-chair at CHI 2002, Associate

Paper Chair at CHI 1997 and CHI 1994, and CHI Asia-

Pacific Regional Liaison for a number of years. She has

served as editor-in-chief for the Information Processing

Society of Japan, guest editor for International Journal of

Human-Computer Studies, Knowledge Based Systems

Journal, and program committee member for a number of

conferences. She co-organized three previous CHI

workshops: the 2001 Workshop on Tools, Conceptual

Frameworks, and Empirical Studies for Early Stages of

Design, the 1995 Workshop on Knowledge-based Support

for User Interface Design, and the 1993 Workshop on

Cross-Cultural Issues on Human-Computer Interaction.

Gerhard Fischer is a Full Professor of Computer

Science, a fellow of the Institute of Cognitive Science, and

director of the Center for LifeLong Learning & Design

(L3D) at the University of Colorado at Boulder. His

current research interests include creativity and meta-

design, computer-assisted technologies for people with

cognitive disabilities, and the integration of computational

and physical artifacts for collaboration and learning. He is

a pioneer of the concept of software critics in design and

has authored numerous publications on domain-oriented

design environments and lifelong learning and design. He

is on the editorial board of several journals in areas of

learning, software engineering, and human-computer

interaction. Recently, he chaired the 2002 Computer-

Supported Collaborative Learning Conference held in

Boulder, Colorado.

Yunwen Ye is a Chief Researcher at SRA Key

Technology Laboratories, Tokyo, Japan. His current

research interests include developer-centric software

development environments, software reuse, evolution of

open source software systems and communities, social and

cognitive aspects of software development, and

knowledge management issues in software development

communities and organizations. He has published many

journal and conference papers in the above research areas.

Recently, he co-organized the International Symposium

on Social Creativity in 2002, and served as a panelist in

the State-of-the-Art in Open Source Forum, held jointly

by Software Engineer’s Association (Japan) and Free

Software Initiative Japan.

Alistair Sutcliffe is a Full Professor of Systems

Engineering, and Director of the Centre for HCI Design,

in the School of Informatics, University of Manchester,

UK. His research spans software engineering, human

computer interaction and cognitive science, with current

interests in scenario based design, methods for

requirements engineering, and creative design for the

Internet. He is a leading authority on multimedia user

interfaces, has authored 6 books and over 200

publications on user interface design, requirements

engineering, software and domain knowledge reuse. He

serves on the editorial boards of several journals in the

software engineering and human computer interaction,

and recently co-chaired the ACM conference Designing

Interactive Systems 2002.

Sol Greenspan is a Program Director in the

Foundations of Computing Processes and Artifacts Cluster

at the National Science Foundation. Previously, he

worked at GTE Laboratories, consulted in the health care

industry, and taught graduate courses in both London

(UK) and Massachusetts. He recently became a Research

Affiliate at MIT in the Software Design Group. He has

served on the editorial boards of the Automated Software

Engineering Journal and the Requirements Engineering

Journal, and IEEE Communications Magazine. He has

served on the Steering Committee for the International

Workshop on Software Specification and Design, chaired

IFIP Working Group 2.9 (Software Requirements

Engineering) from 1998-2002, and program committees

for many conferences. He received his Ph.D. at the

University of Toronto in 1984 on work using concepts of

AI knowledge representation in the area of requirements

analysis. This work led to a paper, “Capturing More

World Knowledge in the Requirements Specification,”

which later received the award for most influential paper

from ICSE-6.

6. References

[1] Schön, D. The Reflective Practitioner: How Professionals

Think in Action, Basic Books, New York, 1983.

[2] Brooks, F. No Silver Bullet: Essence and Accident in

Software Engineering. IEEE Computer, 20(4), 10-19, 1987.

[3] Simon, H. The Sciences of the Artificial, The MIT Press,

Cambridge, MA, 1996.

[4] Suchman, L. Plans and Situated Actions, Cambridge

University Press, Cambridge, UK, 1987.

[5] Winograd, T. and Flores, F. Understanding Computers and

Cognition: A New Foundation for Design. Ablex Publishing

Corporation, Norwood, NJ, 1986.

[6] Winograd, T., Ed. Bringing Design to Software. ACM Press

and Addison-Wesley, New York, NY, 1996.

[7] Fischer, G. Desert Island: Software Engineering — A

Human Activity, International Journal Automated Software

Engineering, Kluwer Academic Publishers, Dordrecht,

Netherlands, 10(2): 233-237, 2003.

[8] Greenbaum, J. and Kyng, M., Eds. Design at Work:

Cooperative Design of Computer Systems. Lawrence Erlbaum

Associates, Inc., Hillsdale, NJ, 1991.

[9] Fischer, G. Domain-Oriented Design Environments,

Automated Software Engineering, Kluwer Academic Publishers,

Boston, MA, 177-203, 1994.

[10] Fischer, G., Nakakoji, K. Beyond the Macho Approach of

AI: Empower Human Designers - Do Not Replace Them,

Knowledge-Based Systems Journal, Special Issue of AI in

Design, 5(1), 15-30, 1992.

[11] Terveen, L. An Overview of Human-Computer

Collaboration, Knowledge-Based Systems Journal, Special Issue

on Human-Computer Collaboration, 8(2-3): 67-81, 1995.

[12] Hilbert, D., Redmiles, D. Large-Scale Collection of Usage

Data to Inform Design, Eighth IFIP TC 13 Conference on

Human-Computer Interaction (INTERACT 2001, Tokyo,

Japan), 569-576, July 2001.

[13] Nutt, G. The Evolution Towards Flexible Workflow

Systems, Distributed Systems Engineering, 3(4), 276-294,

December 1996.

[14] Raymond, E.S, Young B. The Cathedral and the Bazaar:

Musings on Linux and Open Source by an Accidental

Revolutionary, O'Reilly & Associates. Sebastopol, CA, 2001.

