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Abstract 
 

The theme and title for this panel is inspired by 

Donald Schön’s writings about the reflective practitioner 

in which he describes professional practice as being a 

process of reflection in action. Ill-defined problems 

including design decisions lead to breakdowns, which 

become opportunities for reflection and modification of 

practice. This panel seeks to provide ICSE attendees with 

a broad cross section of the history, state of the art, and 

open issues with some of the methods and tools directed 

at supporting reflective software practitioners. 

 

1. Panel Theme at a Glance – Supporting 

Reflective Practitioners 
 

The theme and title for this panel is inspired by Donald 

Schön’s writings in which he described professional 

workers as reflective practitioners [1]. He observed how 

professionals frequently work on ill-defined problems— 

problems that defy rote solutions. Design decisions fall 

into this category. Ill-defined problems lead to 

breakdowns, which become opportunities for reflection, 

modification, and improvement of practice. Schön 

described this particular kind of reflection as an activity 

that transcends technical rationality, a process that he 

named reflection in action. It was a different kind of 

thinking than “simple logic.” This panel seeks to unriddle 

these concepts and ground them in the context of 

problems that software developers often face and 

problems that end users of software face. 

 

2. Further Background Related to Design 

and Software Development 
 

Authors such as Brooks, Simon, Suchman, and 

Winograd have articulated concepts and concerns similar 

to Schön’s puzzle about the design activity that people 

engage in when grappling with ill-defined problems. For 

instance, Fred Brooks distinguished between accidental 

and essential complexity for designers of software systems 

[2]. Software development tools could support mundane 

aspects of designers’ work, but the most creative aspects 

would still elude computer support. Herbert Simon also 

referred to the bounds of rationality and evoked the 

anecdote of the painter faced with a blank canvas to 

describe ill-defined problems, which required a different 

kind of thinking [3]. In her seminal characterization of 

situated action, Lucy Suchman demonstrated the limits of 

rationalized designs [4]. As she notes, anticipating all 

potential user behaviors is not a feasible approach to 

design. Winograd and Flores turned to models of 

conversation and theories of discourse analysis to explain 

design as an interpretive activity [5] [6]. 

In light of these observations, the panel will consider 

software development from the perspective of a human 

activity [7]. Reflective practitioners are needed in 

software design not so much for the accidental but the 

essential, to use Brooks’ terms. Observing another aspect 

of the puzzle of design, Greenbaum and Kyng observed 

that “system development is difficult not because of the 

complexity of technical problems, but because of the 

social interaction between users and system developers as 

they learn to create, develop, and express their ideas and 

visions” [8]. Software engineering (especially its upstream 

activities) is a human-oriented field, and as such will 

always have the openness of other design disciplines, such 

as architecture and graphic design, rather than the hard-

edged formulaic certainty of downstream engineering. 

Equal to the problem of software developers being 

reflective practitioners is the problem of end users acting 

reflectively. Namely, there is a large class of software 

systems in which end users act as designers as they 

perform both professional and personal tasks. In these 

systems, end users, who become designers themselves, 



act, reflect, and react because they do not have a definitive 

solution or clear-cut plan of action before they start 

interacting with a system. This growing class of systems 

raises important questions for ICSE community. Is this 

new class of systems different from old systems? Should 

there be a new foundation for this class of systems? 

The challenge of designing computer support for 

reflective practitioners has been approached sporadically 

by the software community, often in an intuitive rather 

than intentional fashion. It needs a more cohesive and 

focused response by the software community. To date, 

some of the following work is related. Software critics are 

an interface technique intended to trigger reflection by end 

users, providing feedback on design tasks while designers 

are still in the context of making design decisions [9]. 

Critics are not intended to replace human decision 

making, but to complement it [10][11]. Similarly, 

software agents proactively coordinate in order to assist 

end users, including in some instances software designers 

as end users [12]. Techniques for supporting software 

process descriptions have evolved from rigid prescriptive 

systems to reflective models that can adapt to exceptions 

[13]. Even the open source movement might be 

interpreted as a style of software development that 

supports reflective practice by opening up the evolution of 

a software system to public criticism and improvement 

with many improvements being directly motivated by 

breakdowns (in Schön’s sense) that the users experience 

[14]. 

Our target goal for this panel is to stimulate members 

of the ICSE community to think more deeply and 

comprehensively about software development as a human 

design activity especially in terms of the characteristics of 

design’s reflective and situated nature. We also seek to 

provoke the audience to think explicitly about developing 

software for end users who are themselves reflective 

practitioners, along with the theoretical and practical 

implications of that kind of software.  We believe that 

audience members will 1) learn about some new method 

or tool that they had not previously been familiar with, 

and 2) take away an understanding or how some problems 

of developing software systems can be framed in light of 

end users needing support for reflective action. We see the 

set of problems comprising this endeavor as the same 

comprising the broader topic of a science of design [3]. 
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