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Abstract. Contextual collaboration seamlessly integrates existing groupware 
technologies into a uniform user experience that combines synchronous and 
asynchronous interactions. This user experience is usually supported by a 
contextual collaboration infrastructure that needs to efficiently cope with the 
fast switching and integration of different modes of interaction. This paper 
experiments with a new model for contextual collaboration based on the notion 
of generic shared objects. We describe a native implementation of this model 
and evaluate its behavior under different media traffic conditions. We compare 
the native implementation with an alternative implementation that integrates 
existing notification and meeting servers to deliver the same model behavior. 
We discuss trade-offs and limitations of those two implementations. 

1 Introduction 

Contextual collaboration promises new levels of productivity by seamlessly 
integrating content sharing, communication channels, and collaboration tools into a 
unified user experience. One form of contextual collaboration embeds collaborative 
features, such as presence awareness, instant messaging, real-time conferencing, file 
exchange, and virtual workspaces into other business applications [10, 14] For 
example, through the integration of communication channels and office tools, users 
can easily switch between individual and collaborative work. Through a single click of 
a button, they can start a chat from within their document editors, share a document on 
their desktops by dragging it on their buddy lists, or start a remote presentation by 
right-clicking on a presentation file on their desktop. Contextual collaboration lowers 
the end-user’s barrier to engage in collaboration by transparently integrating existing 
groupware technologies. By doing so, it reduces end-users’ cognitive cost of switching 
between collaboration tools and applications, providing contextual points of access to 
a set of inter-related applications and the artifacts they produce. A highly 
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contextualized user experience entails frequent changes in work mode and modalities. 
From an infrastructural perspective, this requires the use of different services, for 
example, meeting servers to support synchronous collaboration, notification servers to 
support timely delivery of messages, or document repositories to allow sharing of 
content. 

In this paper, we study a model for contextual collaboration that supports multiple 
modalities of media collaboration. Our model is based on generic shared objects that 
provide building blocks for supporting contextual collaboration applications. We 
present a native implementation of this interaction model and study its behavior under 
different interaction patterns, representing different kinds of media collaborations. We 
compare our native service implementation with an alternative integrated 
implementation where existing services such as meeting and notification servers are 
used. Our goal is to characterize and understand the trade-offs and limitations that 
exist in different implementations of services supporting contextual collaboration with 
respect to the responsiveness of the infrastructure and its ability to support the traffic 
requirements of different collaboration tools. 

This work was motivated by previous research on Activity Explorer (AE) [6, 8]. AE 
provides a highly contextualized user experience integrating synchronous and 
asynchronous types of collaboration. AE is built on top of our collaboration model 
using generic shared objects. Previous works, however, did not analyze the limitations 
of the model in terms of scalability, support for different media interaction, and the 
trade-offs involved in building such an infrastructure using existing technologies. 
Hence, with this work, we expect to understand the applicability of the model to 
different traffic conditions, and to assess the use of existing services in supporting this 
blended collaborative model. The lessons learned can be applied to the development 
or improvement of contextual collaboration infrastructures. 

Section 2 of this paper discusses related work. In Section 3 we describe the 
contextual user experience in AE in more detail. Section 4 introduces the contextual 
collaboration model used as the basis for our study. Section 5 describes the two 
implementations of this model. In Section 6 we describe our simulation environment, 
the experiments performed, and the experimental results comparing both 
implementations. Section 0 discusses general trade-offs and lessons learned. 

2 Related Work 

The concept of using shared objects to support collaboration is similar to the Tuple 
Space work, proposed by Gelernter as part of the Linda coordination language [5]. 
Tuple Spaces are currently implemented in IBM’s TSpaces system [18] and SUN’s 
JavaSpaces [3]. They provide a persistent shared memory accessed through an API 
that allows distributed processes to read, write, and remove information represented as 
tuples. Compared to our shared objects, Tuple Spaces are rather a programming 
paradigm that helps developers with concurrency control and other issues, while we 
focus on offering a shared object service that can be used to build collaborative 
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applications. As such, membership, notifications, and service-oriented communication 
are an integral part of our model. 

Notification servers, as defined by Patterson et al. [12], provide a simple common 
service for sharing state in synchronous multi-user applications. They address the 
problem of maintaining consistency in real-time applications and supporting 
awareness. Compared to Tuple Spaces and our shared objects, state is usually not 
persistent.  

Publish/subscribe systems are similar to our work since they offer general purpose 
event notification functionality based on the observer design pattern [4]. Notification 
servers such as Elvin [2] or YANCEES [16] are usually employed as event routing 
infrastructure to support the development of awareness applications. Elvin provides a 
relatively simple but optimized set of functionalities, efficiently processing large 
quantities of events based on content-based routing of tuple-based events. In such 
systems, however, event persistency is usually not supported. Moreover, those systems 
are not usually designed to support synchronous real-time interaction. The 
insufficiency of the publish/subscribe model in supporting different groupware 
applications is also discussed in [17] and [9], where new services around this model 
are proposed to address some of the deficiencies such as the lack of flexibility in the 
notification model, and support for end-user subscriptions. 

The technical aspects of blending of synchronous and asynchronous collaboration 
have been also addressed in [13] and [8]. Preguiça et al. [13] provide a very good 
description of the general problem space. Compared to our work, they mainly address 
consistency control issues. 

3 Activity Explorer 

Activity Explorer (AE) is a contextual collaboration application based on the 
paradigm of activity-centric collaboration [7]. AE runs as a stand-alone desktop 
application that connects to a contextual collaboration server implementing our 
collaboration model. In AE an activity is a set of related, shared objects representing a 
task or project. The set of related objects is structured as a hierarchical thread called 
activity thread, representing the context of the task at hand. Users create new activity 
threads by creating root objects from any type of content or communication. Users add 
items to an activity thread by posting either a response or a resource addition to its 
parent object. Activity threads combine different types of objects, membership, and 
alerts. The context (membership and content of the activity thread) is made persistent 
thought the use of shared objects. AE supports sharing of six types of objects: 
message, chat transcript, file, folder, annotated screen snapshot, and to-do item. 

Fig. 1 shows the main AE user interface. My Activities (A) is a multi column 
“inbox-like” activity list that supports sorting and filtering of activities and shared 
objects. Selecting a shared object in this list populates a read-only info pane (B). The 
Activity Thread pane (C), maps a shared object as a node in a tree representing an 
entire activity thread. Activity Thread and My Activities are synchronized by object 
selection. My People (D) is a buddy list showing all members the current user shares 
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activities with. Users interact with objects or members, as displayed in these views, 
through right-click context menus. Representative icons are highlighted green to cue 
users of shared object access and member presence (2a, 2b). 

The following scenario illustrates a contextual user experience in which shared 
objects are used in a collaborative context, as part of an activity. The activity starts 
from a document. The outcome of the activity is shown in Fig. 1. 

Bob and Dan are working on a project (a file) using Activity Explorer. Bob right clicks on 
the file object in his list to add a message asking Dan for his comments (1b). A few hours later, 
Dan returns to his desktop (2a). In the system tray, Dan is alerted to the new activity. Clicking 
on the alert, he is taken to the activity thread. He opens the message and while he is reading it, 
Bob perceives Dan is looking at the message due to the turning of the object icon to green (2b). 
Bob then seizes the opportunity to expedite their progress; he right clicks on the initial message 
and adds a chat to this activity (2c). A chat window pops up on Dan’s desktop and they start a 
chat session (2d). Bob refers to a detail in the project description; for clarity he wants to show 
Dan what he would like changed. By right clicking on the chat object, Bob creates a shared 
screen object (3a). A transparent window allows Bob to select and “screen scrape” any region 
on his desktop. He freezes the transparent window over the project text. The screen shot pops 
up on Dan’s desktop (3b). Bob and Dan begin annotating the web content in real-time like a 
shared whiteboard (3c).  
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Fig. 1. Activity Explorer User Interface 

4 Contextual Collaboration Model 

The contextual collaboration model behind AE is based on the concept of Generic 
Shared Objects (GSO) [8]. GSOs are persistent collaboration objects that can be used 
as building blocks for new collaborative applications that require a seamless, 
contextual user experience with blended synchronous and asynchronous collaboration. 
This generic model provides both simplicity and uniformity, allowing the extension of 
the service to new media types, and the uniform composition of artifacts into 
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hierarchies such as activity threads. GSOs combine various collaborative functions 
such as group communication, content management, notifications, and membership-
based access control policies into objects that can be hierarchically composed. 

In this paper, we assume a client/server architecture in which many clients interact 
with each other through a collaboration server (or service) implementing the concept 
of GSOs. This architectural style was selected for being currently supported in the AE 
prototype, as well as in existing technologies such as notification servers and meeting 
servers used in our experiments in the integrated implementation described later on in 
the paper. Note that the GSO model can be also implemented in different architectural 
styles (e.g. see [8]).  

The GSO communication protocol is based on three basic primitives: Request, 
Response, and Notification: A client interacts with a GSO by issuing a Request to that 
object (for example, reading an attribute, adding a new member, reorganizing the 
object hierarchy and so on). The object then replies with a Response to the requesting 
client. Depending on the type of request, the object can also send out Notifications to 
currently online clients as illustrated in Fig. 2 (b). 

 

Fig. 2. Generic Shared Object behavior 

Our contextual collaboration service manages a collection of GSOs and their 
relationships, i.e. by containment and/or reference. This facilitates the aggregation of 
GSOs into hierarchical structures, thus modeling complex collaborations such as the 
previously mentioned activity threads in AE (see Fig. 1 C). 

Each GSO provides a simple content model based on a set of properties. The 
content model describes what kind of data an object shares and stores, for example, 
chat transcripts, e-mails, file contents, streaming media and so on; e.g. each Shared 
Object in AE is represented by a GSO. Jazz [1] and C&BSeen [11] are other examples 
of applications that use GSOs in a less direct way. Note that a GSO does not provide 
any means for semantically describing the content. Content is associated with a GSO 
by adding arbitrary numbers of <name, value> pairs. The interpretation and use of the 
<name, value> pairs is left to client applications, which provides flexibility to the 
model. For example, the persistent chat object in AE, stores each chat message as an 
arbitrary long String property.  

Every GSO represents a “persistent conferencing session” between its members. 
The distribution of content (synchronous or asynchronous) is performed through the 
use of notifications. Any modification to the set of properties of a GSO is not only 
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stored in the underlying data store, but also automatically sent as notifications to all 
the other members of that GSO. Hence, our model provides a different paradigm for 
real-time collaboration based on persistent state and state change notifications. 

Each GSO also manages a list of members (e.g. A, B, and C in Fig. 2). The GSO 
member list controls the access to its content and represents a distribution list for 
sending notifications about the creation and modifications of a GSO. The member list 
is dynamic, allowing the addition and removal of existing members at runtime. Since 
the member list is also a property of the GSO, any modification to this list, triggers 
notifications that are sent to all online GSO members. 

Notifications of content change come in two different modalities controlled by the 
use of open and close requests. Change notifications (without the actual content) are 
sent to all online members of the object whose open status for that object is false. 
Notifications with the actual content (or a delta change) are sent to all online members 
whose open status for that object is true. This semantic is important to prevent 
members that are not interested in certain objects from receiving unnecessary 
information each time a change is made in the object.  

Since all GSO content changes persist, GSO properties are still available when 
clients disconnect and later reconnect to the service. This allows members of an object 
to interact asynchronously. In summary, the described behavior of GSOs inherently 
merges real-time conferencing with content management and asynchronous 
collaboration modes.  

5 Implementation 

In order to study and better understand the implications and trade-offs of combining 
various interaction modes of collaboration in a common model, we have built two 
implementations: (1) a server that implements the GSO collaboration model natively; 
and (2) a server that uses existing collaboration technologies to deliver the same 
functionality offered by our model. 

5.1 Native Implementation 

In our native implementation, the GSO concept is directly mapped to persistent 
objects (using the OO programming paradigm). The implementation of the GSO 
manages every aspect of the model, i.e. content management, membership, access 
control, notifications, data transfer and persistency. The GSO service manages a 
collection of GSOs and their aggregation into hierarchical structures (trees). Clients 
access the GSO service through a client side API (see Fig. 2). 

In the example of Fig. 2 (a), clients A, B, and C are all members of a GSO object. 
Client A and B open the object for real-time interaction by submitting an openSO() 
requests to the server (1, 3). The server GSO then sends open notifications to all its 
members, by iterating over the member list and invoking the registered callback 
interface methods (2, 4). The open state of the GSO is now changed to true for clients 
A and B. Sending notifications to every member of the GSO keeps all connected 
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clients in a consistent state (i.e. with the latest view of the GSOs they are members of). 
Client C, for example, knows that A and B are currently working on the GSO content. 
Based on this information, client C can decide to open the GSO object and start 
receiving the actual new content as it gets changed. In Fig. 2 (b), client A changes the 
content of the GSO by submitting a setProperty() request (5); client B receives a 
content change notification including the content data (7). Client C is online but 
receives only a content change notification without the data because its open state is 
false (6). However, knowing that the content has changed, Client C could now read the 
updated content of the object by submitting a getContent() request to the server. 

The server is implemented in Java and communicates via Remote Method 
Invocation (RMI) with its clients. Notifications are sent to clients through RMI also. 
Upon logon, each client registers an RMI callback interface with the server. Since we 
assume storage to be a constant throughout this paper, we did not implement a 
particular storage mechanism in our prototypes. 

5.2 Integrated Implementation 

In our alternative integrated implementation, the initial native implementation was 
modified to perform synchronous interaction through meeting servers and to deliver 
events using a notification service. The integration of the two new backend 
technologies was completely transparent to the end users. Clients interact through the 
same GSO service API. In the backend, however, the implementation complexity 
increased significantly. A more detailed description of the service integration and the 
data flow can be found in [15]. 

For example, in order to integrate the meeting server with our model, we introduced 
the concept of a server-side client (SSC) that acts as a connector between the 
synchronous meeting and the persistent aspects of the model. A SSC is a special client 
in a meeting session. A meeting is a session created between two or more 
participants/clients that provides a non-persistent shared space where messages are 
sent to all the meeting members. The SSC is responsible for storing session data in a 
persistent repository by updating the respective GSO when content is changed. For 
example, when a chat message is posted to a meeting session, the SSC for that session 
stores the message in the GSO, which itself triggers a notification. This approach 
provides a generic mechanism that can be used to transparently integrate any meeting 
server. 

Note that using meeting servers to support real-time collaboration entails setting up 
a meeting session with the meeting server every time a client opens a shared object for 
real-time interaction (see Fig. 2 (a)). Likewise the meeting session needs to be 
disposed every time the client closes the GSO. For each session, a SSC also needs to 
be created in the beginning and disposed in the end. 

We integrated a notification server into the service to support assynchronous 
change notifications. Whenever a GSO’s property or content is changed, a single 
notification is produced. Differently from the previous native implementation, that 
produced one notification per GSO member, a single message is now relayed to a 
notification server that is responsible for distributing the notification to all the 
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members of the object. The subscription style used was topic-based: each client 
subscribes/un-subscribes to a global GSO notification topic when logging on and off 
the service. In this approach, the notification server acts as a broadcast channel; a bus 
connecting all online clients. Notifications are subsequently filtered in the client side 
API, i.e. the client API ignores notifications that are not addressed to that particular 
client. 

The integrated solution was also completely implemented in Java. We used 
YANCEES [16] as the notification server because of its ability to be configured with a 
simple topic-based core, and for having a simple API, similar to Elvin [2]. We used a 
simple Java-based meeting server from the TeamSpace project [7]. We sought to keep 
the two implementations as similar as possible in order to get meaningful results for a 
comparison, e.g. both implementations share the same common GSO model and 
externalize the same GSO API. However, given the number of different existing 
publish/subscribe and real-time collaboration systems, our simulation results may vary 
depending on the backend technologies used. 

6 Experimental Results 

The model described in Section 4 unifies characteristics of publish/subscribe systems, 
synchronous collaboration servers, and content management in a uniform and flexible 
way. As such, it facilitates the development of collaborative applications that have 
contextual collaboration characteristics. This blending of synchronous and 
asynchronous collaboration, however, requires the compromising of different 
requirements from these two interaction modalities. For example, traditional 
synchronous communication infrastructures, such as meeting servers, are usually 
designed to support the collaboration of small groups, under more strict timing and 
bandwidth conditions such as audio or video. Notification servers, on the other hand, 
generally are employed in applications with less strict timing and real-time constraints, 
focusing on awareness and messaging, where the number of clients is potentially large 
and the data traffic is relatively small. When those two different interaction modes are 
combined in a single collaboration model, different trade-offs involving scalability, 
responsiveness, robustness, and implementation complexity have to be considered. We 
conducted a series of experiments to understand these trade-offs and answer the 
following questions: How well do the two different implementations of the model 
handle the blending of synchronous an asynchronous collaboration? What is the 
impact of different data rates and data sizes depending on the type of media 
interaction? How is the response of the infrastructure to different combinations of 
those factors? 

6.1 Experimental Setup 

Since we wanted to understand the behavior of the model under regular use conditions 
and have strict control of the number of clients connected, we developed an automated 
client simulator that interacts with our service implementation using different patterns. 
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Those patterns simulate the use of different collaborative tools with their traffic 
conditions, number of users and data size. The simulator client exercises the server 
APIs performing regular actions such as: create new object, set properties, open, close, 
add member and so forth. For the purpose of our tests, we defined four different 
patterns approximating the traffic conditions of chat, file sharing, message exchange, 
and streaming media. The streaming media pattern was defined to analyze the server 
behavior under heavier load, testing its scalability limits. Note that these patterns are 
only approximations of actual interaction patterns. Table 1 describes the different 
patterns with their data characteristics and probabilities. 

The main differences between the four media traffic patterns are in the size of the 
data, the number of messages exchanged by each member, and the frequency (defined 
by the interval between messages). For example, a typical chat session in our 
simulator client corresponds to an interaction with a GSO with two members on 
average exchanging an average of 10 messages each member. Each message has an 
average length of 40 characters. Each chat GSO also has an average of seven 
properties that are modified with 16 characters on average. Chat messages are 
exchanged at every 15 seconds on average. During this interaction, periods of 
inactivity may also occur with an average duration of 15 seconds. 

Table 1: Media pattern programming used in our experiments 

Data Content change  
probabilities 

Media 
Pattern 

no 
Mem
bers Size 

(chars) 
no msg interval Set Add Del 

Streaming 5 64K  100 50 ms 0.5 0.5 0.0 
Chat 2 40  10 15 sec 0.0 1.0 0.0 
File Sharing 4 100K  10 5 min 0.7 0.1 0.2 
Message 
Exchange 

8 1K  1 1 sec 1.0 0.0 0.0 

In our GSO model, a property can be set (overwritten or created), added (appended 
to the end of the current content), or deleted. Table 1 also shows the probabilities for 
these content change actions. In the chat pattern, for example, all chat content changes 
are of type “Add” because chat transcripts are typically not randomly modified, but 
they grow over time as new messages are exchanged.  

For each pattern, we reproduce the actions of a typical work day of 8 hours. We 
programmed our automatic client to perform those actions in a simulation time of 4 
minutes. This setup is similar to [8] and allow us to stress test the infrastructures using 
a reduced number of clients. During one simulated workday, the following actions are 
performed by the client: A total of 15 shared objects are created on average with five 
objects being root objects (representing a new activity thread). Each client listens to an 
average number of 10 objects. 15 open and 15 closed objects on average are modified 
that day. The interaction patterns also differ with respect to the time span that each 
client is working either online or offline. 

All experiments were carried out on three client machines (IBM T30, 1.6GHz, 
512MB) and one server machine (IBM MPro, 3 GHz, 1.5 GB). The client machines 
and the server were connected on an isolated 100Mbps Ethernet local network to 
eliminate interference with other network traffic. Client machines were equally loaded 
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with a set of client simulators in steps of one, i.e. the first test starts with 3 clients (one 
in each client machine), then 6 clients (two per client machine) and so forth. Please 
note the number of simulator client processes running on a single client machine 
impacts the overall simulation results. Based on tests, we decided to limit the number 
of automated clients to eight per client machine in order to minimize this effect. 

6.2 Results: Native Implementation 

In order to understand the overall service behavior to the different media patterns, we 
plotted the total average execution times for each one of the four patterns against the 
number of clients interacting with the system. In this experiment, each client process 
executes a typical work day, using a single interaction pattern which includes open and 
closing objects, logging in and out, offline times and content changes. 

Fig. 3 shows that the system has a linear response to the increase in the number of 
clients, for low-frequency traffic patterns such as chat, message exchange, and file 
sharing. The graph also shows that the size of the data, as in the case of file sharing, 
does not impact performance as much as the frequency of the messages. The main 
characteristic of streaming media is its high frequency of relatively large data 
messages. As can be seen in Fig. 3, our reference implementation does not scale as 
well for this pattern (it grows in a non-linear fashion). This can be explained by the 
fact that we send out content change notifications (with or without the actual content) 
to every member of the GSO. Given the high data frequency of streaming media, the 
server load increases quickly, since each data message triggers a series of content 
change notifications, typically one for each member of the objects involved. 
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Fig. 3. Average total simulation execution times of the native implementation under different 

activity patterns for a typical workday 

In another experiment, under the same experimental conditions, we sought to 
understand the responsiveness of our implementation. The responsiveness of a 
collaborative system is defined by its response and notification times. The response 
time describes how fast the system reacts to user input, i.e. how fast actions are 
reflected in the user interface of the clients executing the action and receiving 
responses. The notification time describes how fast a collaborative system updates 
remote clients. In a collaborative setting, it is desirable to keep this number as low as 
possible in order to keep all clients in sync with each other minimizing lag. Response 
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time in our model is determined by the execution time of the client API calls. Fig. 4 
shows the average method execution times for setting the content property of a GSO 
performed by the setContent() API call. 
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Fig. 4. Average execution time of the setContent() call in the native implementation with 

different media patterns 

Fig. 4, shows that the execution times for the setContent() API call are relatively 
low (in the order of milliseconds). They grow linearly with the number of clients for 
all interaction patterns, except for the streaming media pattern. For a small number of 
clients, and consequently a small number of method calls on the server, the streaming 
media pattern is comparable to the other patterns but, as the number of method calls 
increases with the number of clients, the response time of the system to this pattern 
grows quadratically. Note that the message pattern initially has a relatively high 
execution time compared to streaming media. The reason is the higher number of 
members in that pattern (eight on average). This demonstrates the low impact of 
notifications (without data) relative to the frequency of interaction with the system. 

In the same experiment, we also measured notification times: the period of time 
from calling a method in the client API to the delivery of its notification to the other 
members of a GSO.  
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Fig. 5. Average execution vs. notification time for creating new GSOs in the native 

implementation 

Fig. 5 shows the average execution vs. notification times for creating new GSOs. In 
this experiment, the notification times are slightly lower than execution times. At an 
almost constant difference of about 1 ms (in the trend lines), each local user 
interaction is made visible to remote clients at about the same time. Except for 
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streaming media setContent() calls, the response times of the native implementation 
are relatively high (i.e. below 10ms) and the notification delays are extremely low. 

As a general conclusion, our experiments show that the performance of the model is 
a function of the data frequency of the interaction pattern (number of data 
messages/second), and the number of members of a GSO. For general traffic (low 
frequency and low bandwidth) the model scales very well having good responsiveness. 
However, for streaming media traffic, with a relatively medium number of members, 
and an average volume of information, the system delays increase quadratically. 

6.3 Results: Integrated Implementation 

Existing real-time collaboration servers are optimized for online meetings with a 
smaller number of participants but relatively high data volume, e.g. audio, video. 
Given the results in the previous section, it seems reasonable to apply real-time 
meeting servers to support frequent and high volume property changes in a GSO. We 
hypothesized that the implementation of the synchronous aspects of our model with a 
meeting server would increase the overall system performance. 

Notifications are another aspect of our model that we believed to be well 
understood today. Publish/subscribe systems provide general-purpose event 
notification services. Notification servers receive anonymous notifications and route 
them to interested parties. This routing is orchestrated by subscriptions. These systems 
are typically optimized for a very large number of subscribers and small to medium 
data volumes for each subscriber. We hypothesized that GSO events such as create / 
delete GSO, add/remove member, or infrequent property changes (e.g. changing the 
presence status of a member on an object) would be well supported by a 
publish/subscribe system. 

Hence, we expected that our integrated implementation of the model using meeting 
and notification servers, would result in better scalability of both the notification 
process (asynchronous mode in our model), and the synchronous collaboration 
through content exchange (the synchronous mode of our model). An expected price to 
be paid, however, would be the extra cost of integration and the increased complexity 
of the architecture. In order to verify this hypothesis, we repeated the same set of tests 
with the integrated service implementation. 

Fig. 6 (a) compares the cost of the set/add content calls in both implementations for 
the streaming media pattern. As expected, the integrated implementation scales better, 
in a more linear fashion, than our original native implementation. In other words, 
using a dedicated meeting server seems to pay off for this type of traffic. 

The chat and the file sharing media patterns did not expose any significant 
differences in the integrated implementation with regards to the cost of the 
setContent() call. The message exchange pattern, however, yielded some interesting 
results. Fig. 6 (b) shows that the use of our meeting server was more costly, in terms of 
performance, than the native implementation for this pattern. Both implementations 
though seem to expose linear behavior as indicated by the trend lines. One of the 
major differences between the message exchange pattern and the other patterns is the 
number of members per GSO (eight on average for the message pattern). While our 
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meeting server seems to handle high bandwidth, high frequency traffic well, 
performance seems to degrade with an increased number of meeting participants. 
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(a) Streaming media pattern 
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(b) message exchange pattern 

Fig. 6. Comparison of the average execution times for setContent() calls  

Since the use of a meeting server introduces additional complexity (see Section 
5.2), we expected that the price for better scalability during the synchronous 
interaction phase of a GSO would come with additional delays in the start up of the 
shared meeting that handles it. The data in Fig. 7 compares the cost for opening GSOs 
in both implementations. The data confirms that the open call, where a new meeting 
session is started, has become one of the most costly calls in the integrated 
implementation. However, it still scales in a linear fashion indicated by the trend line. 
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Fig. 7. Comparison of the average execution times for openSO() calls 

When comparing the average execution times of other GSO API calls for both 
implementations, we noticed that the registerMember() and loginMember() calls also 
impose high delays in the integrated implementation. The reason for these delays is 
our notification server. Creating subscriptions when registering members and when 
logging in comes at an additional expense. Note that subscriptions in our native 
implementation were implicit through the member list. 

While we expected that subscription management would come at an extra cost, we 
were surprised to see that the notification server introduced high delays in delivering 
notifications. Fig. 8 compares execution times for creating GSOs against the 
notification time. The integrated implementation has low response times but does not 
scale well with regards to notifications. On average, under a load of 24 clients, remote 
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clients are updated only 0.5 second after the GSO was created locally. The notification 
times seem to grow exponentially according to the trend line. 
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Fig. 8: Average response vs. notification times for creating new GSOs in the integrated 

implementation 

One could argue that the use of the notification server as a shared bus is one of the 
reasons for the notification server behavior observed in Fig. 8. In another alternative 
implementation, we tested server-side filtering of events, i.e. the configuration of the 
notification server with more accurate subscriptions that filter out events that are not 
of interest of the client. This approach, however, required constant update of the 
subscriptions (each client manages one or more subscriptions filtering out events that 
do not belong to the objects they are members of). Subscriptions need to be updated 
when new objects are created, members log on/off, or members are removed/added to 
objects. Given the high subscription costs impacting the registerMember() and login() 
operations, this solution did not scale well. These membership and object life-cycle 
dynamics resulted in similar or worse delays than the ones observed in Fig. 8. 

7 Lessons Learned 

Interference of conflicting requirements. The support of synchronous and 
asynchronous interaction in a common and simple model is not a trivial task. While 
the native implementation of the GSO model supported well the majority of traffic 
patters, it did not scale well for high frequency, high-bandwidth data as in our stream 
media pattern. The use of meeting servers can improve the performance of 
synchronous message exchange under those circumstances. However, the notification 
server in our integrated implementation became a bottleneck, impacting the scalability 
of the entire model. This demonstrates how a combination of different services can 
interfere with one another, limiting the performance of the overall infrastructure. 

Integration complexity. Our initial hypothesis, that the integration of existing 
services to support contextual collaboration, would combine the strengths of both 
services, showed not to be completely true. It had shortcomings in the form of extra 
complexity. Even though an integrated solution, that uses specialized services, can 
perform better than a more simple implementation, the integration of those off-the-
shelf components usually demands special attention to matters such as timing, 
synchronization, and adequacy to the model. It also makes the implementation of the 
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system more prone to errors and additional setup delays, such as startup times, as 
observed in our experiments, during member log-in and opening objects.  

Mismatch of programming models. Another issue elucidated in our experiments 
was a mismatch of the programming models of the different components used. For 
example, the extension of the meeting server to support persistency was not trivial; our 
solution was to use a server-side client acting as meeting recorder. Another example 
was the inadequacy of the notification server in handling frequent subscription 
changes. In our experiments, we tested the integrated GSO implementation with two 
subscription models: server-side filtering and client-side filtering. Client-side filtering 
was the approach that better scaled in our implementation. Both approaches, however, 
had their own trade-offs and limitations: client-side filtering moves part of the 
processing to the client side, but requires the delivery of extra notifications through the 
network. Server-side filtering limits the amount of traffic to the clients and relieves 
them from discarding unnecessary notifications. However, the latter approach results 
in an extra burden to the notification server, that needs to deal with constantly 
changing subscriptions in order to accommodate changes in the GSO membership. 

Impact of distribution. An advantage of using separate components such as a 
meeting server and a notification server is the ability to distribute processing 
throughout different hosts in a network. In additional tests, we distributed the 
notification and meeting servers across different machines in the network. We found 
that, with more than 30 clients, the distributed configuration begins to perform better 
than the centralized approach. This shows that with a significant number of clients, the 
distribution of main system components is a good approach for scalability. 

8 Conclusion 

In this paper we studied two implementations of a new collaboration model that 
seamlessly integrates different collaboration modalities into a single interaction model. 
Our model facilitates the development of contextual collaboration applications such as 
Activity Explorer. Our experiments show the trade-offs of developing contextual 
collaboration systems based on existing collaboration services such as meeting and 
notification server. The simultaneous support for synchronous and asynchronous 
interaction in a single model tends to work well in a native implementation for the 
average case, where neither the synchronous nor the asynchronous aspects of the 
model are put to exceeding stress. The low complexity of a native implementation 
together with high responsiveness might satisfy the requirements of the majority of 
contextual collaboration applications today. The integration of meeting servers 
restricted to only media traffic can significantly improve the scalability of the 
implementation. The use of generic notification servers to support the model, 
however, was problematic because mapping GSO behavior onto publish/subscribe 
semantics caused additional overhead. 
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