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Abstract. Contextual collaboration seamlessly integrates iegjsgroupware

technologies into a uniform user experience thahhines synchronous and
asynchronous interactions. This user experiencesislly supported by a
contextual collaboration infrastructure that neéalsfficiently cope with the

fast switching and integration of different modesimteraction. This paper
experiments with a new model for contextual collation based on the notion
of generic shared objects. We describe a nativéemmgntation of this model
and evaluate its behavior under different mediticraonditions. We compare
the native implementation with an alternative inmpémtation that integrates
existing notification and meeting servers to delittee same model behavior.
We discuss trade-offs and limitations of those implementations.

1 Introduction

Contextual collaboration promises new levels of dpivity by seamlessly
integrating content sharing, communication channetel collaboration tools into a
unified user experience. One form of contextualatmiration embeds collaborative
features, such as presence awareness, instantgingssaal-time conferencing, file
exchange, and virtual workspaces into other busiregsplications [10, 14] For
example, through the integration of communicatibarmels and office tools, users
can easily switch between individual and collabweatvork. Through a single click of
a button, they can start a chat from within th@icament editors, share a document on
their desktops by dragging it on their buddy ligis,start a remote presentation by
right-clicking on a presentation file on their degk Contextual collaboration lowers
the end-user’s barrier to engage in collaboratiprirnsparently integrating existing
groupware technologies. By doing so, it reducesis®is’ cognitive cost of switching
between collaboration tools and applications, piimg contextual points of access to
a set of inter-related applications and the arsfathey produce. A highly
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contextualized user experience entails frequenigdmin work mode and modalities.
From an infrastructural perspective, this requittes use of different services, for
example, meeting servers to support synchronodsbaohtion, notification servers to
support timely delivery of messages, or documepbs#ories to allow sharing of
content.

In this paper, we study a model for contextualatmdiration that supports multiple
modalities of media collaboration. Our model isdthen generic shared objects that
provide building blocks for supporting contextualllaboration applications. We
present a native implementation of this interactimodel and study its behavior under
different interaction patterns, representing déferkinds of media collaborations. We
compare our native service implementation with alteri@ative integrated
implementation where existing services such as ing@nd notification servers are
used. Our goal is to characterize and understaadrétue-offs and limitations that
exist in different implementations of services sotipg contextual collaboration with
respect to the responsiveness of the infrastruendeits ability to support the traffic
requirements of different collaboration tools.

This work was motivated by previous research onvitgtExplorer (AE) [6, 8]. AE
provides a highly contextualized user experienctegirating synchronous and
asynchronous types of collaboration. AE is builttop of our collaboration model
using generic shared objects. Previous works, hewealid not analyze the limitations
of the model in terms of scalability, support faffetent media interaction, and the
trade-offs involved in building such an infrasturet using existing technologies.
Hence, with this work, we expect to understand dpelicability of the model to
different traffic conditions, and to assess the afsexisting services in supporting this
blended collaborative model. The lessons learnedbeaapplied to the development
or improvement of contextual collaboration infrastures.

Section 2 of this paper discusses related workSégtion 3 we describe the
contextual user experience in AE in more detaitti®a 4 introduces the contextual
collaboration model used as the basis for our st®bction 5 describes the two
implementations of this model. In Section 6 we dbgcour simulation environment,
the experiments performed, and the experimentalulteescomparing both
implementations. Section 0 discusses general wéfdexnd lessons learned.

2 Redated Work

The concept of using shared objects to supportleothtion is similar to the Tuple
Space work, proposed by Gelernter as part of theld.icoordination language [5].
Tuple Spaces are currently implemented in IBM’'s 3&s system [18] and SUN'’s
JavaSpaces [3]. They provide a persistent sharedonyeaccessed through an API
that allows distributed processes to read, write, imove information represented as
tuples. Compared to our shared objects, Tuple Space rather a programming
paradigm that helps developers with concurrencytroband other issues, while we
focus on offering a shared object service that lbanused to build collaborative
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applications. As such, membership, notificatioms] aervice-oriented communication
are an integral part of our model.

Notification servers, as defined by Patterson efldl], provide a simple common
service for sharing state in synchronous multi-uesgplications. They address the
problem of maintaining consistency in real-time lag@gtions and supporting
awareness. Compared to Tuple Spaces and our shhjecds, state is usually not
persistent.

Publish/subscribe systems are similar to our wiankesthey offer general purpose
event notification functionality based on the obserdesign pattern [4]. Notification
servers such as Elvin [2] or YANCEES [16] are usuamployed as event routing
infrastructure to support the development of awassrapplications. Elvin provides a
relatively simple but optimized set of functionigd, efficiently processing large
guantities of events based on content-based rowtinple-based events. In such
systems, however, event persistency is usuallgmoported. Moreover, those systems
are not usually designed to support synchronoud-tirea interaction. The
insufficiency of the publish/subscribe model in goging different groupware
applications is also discussed in [17] and [9], reheew services around this model
are proposed to address some of the deficiencis asithe lack of flexibility in the
notification model, and support for end-user supsions.

The technical aspects of blending of synchronowsasynchronous collaboration
have been also addressed in [13] and [8]. Pregetigd. [13] provide a very good
description of the general problem space. Comptredir work, they mainly address
consistency control issues.

3 Activity Explorer

Activity Explorer (AE) is a contextual collaboratioapplication based on the
paradigm of activity-centric collaboration [7]. AEIns as a stand-alone desktop
application that connects to a contextual collatbonaserver implementing our
collaboration model. In AE an activity is a setrefated, shared objects representing a
task or project. The set of related objects iscstined as a hierarchical thread called
activity thread representing the context of the task at handrdJs®ate new activity
threads by creating root objects from any typeawitent or communication. Users add
items to an activity thread by posting either gooese or a resource addition to its
parent object. Activity threads combine differeppes of objects, membership, and
alerts. The context (membership and content oathiity thread) is made persistent
thought the use of shared objects. AE supportsirghaf six types of objects:
message, chat transcript, file, folder, annotatedesy snapshot, and to-do item.

Fig. 1 shows the main AE user interface. My Actast (A) is a multi column
“inbox-like” activity list that supports sorting dnfiltering of activities and shared
objects. Selecting a shared object in this listytaies a read-only info pane (B). The
Activity Thread pane (C), maps a shared object aspde in a tree representing an
entire activity thread. Activity Thread and My Adties are synchronized by object
selection. My People (D) is a buddy list showingnaémbers the current user shares
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activities with. Users interact with objects or nirs, as displayed in these views,
through right-click context menus. Representatoans are highlighted green to cue
users of shared object access and member prestn .

The following scenario illustrates a contextual rusgperience in which shared
objects are used in a collaborative context, as gfaan activity. The activity starts
from a document. The outcome of the activity isvalin Fig. 1.

Bob and Dan are working on a project (a file) usifgtivity Explorer. Bob right clicks on
the file object in his list to add a message askdag for his comments (1b). A few hours later,
Dan returns to his desktop (2a). In the system, tten is alerted to the new activity. Clicking
on the alert, he is taken to the activity threa@. ¢pens the message and while he is reading it,
Bob perceives Dan is looking at the message dtleetturning of the object icon to green (2Db).
Bob then seizes the opportunity to expedite theiggess; he right clicks on the initial message
and adds a chat to this activity (2c). A chat windmps up on Dan’s desktop and they start a
chat session (2d). Bob refers to a detail in thejgxt description; for clarity he wants to show
Dan what he would like changed. By right clickingtbe chat object, Bob creates a shared
screen object (3a). A transparent window allows Bobelect and “screen scrape” any region
on his desktop. He freezes the transparent windowtheeproject text. The screen shot pops
up on Dan’s desktop (3b). Bob and Dan begin aninigathe web content in real-time like a
shared whiteboard (3c).
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=
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Casual Displays: A Collaborative User Experience Project
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places as meartry as a [abby or conference room. This praject is investigating the =
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Fig. 1. Activity Explorer User Interface

4 Contextual Collaboration Model

The contextual collaboration model behind AE isdaasn the concept dbeneric
Shared Objects (GS(Q3]. GSOs are persistent collaboration objects ¢tha be used
as building blocks for new collaborative applicagothat require a seamless,
contextual user experience with blended synchroandsasynchronous collaboration.
This generic model provides both simplicity andfommity, allowing the extension of
the service to new media types, and the uniform pasition of artifacts into
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hierarchies such as activity threads. GSOs combam®us collaborative functions
such as group communication, content managemetificatons, and membership-
based access control policies into objects thabeamerarchically composed.

In this paper, we assume a client/server architegtuwhich many clients interact
with each other through a collaboration servers@wice) implementing the concept
of GSOs. This architectural style was selectecb&ng currently supported in the AE
prototype, as well as in existing technologies sasmotification servers and meeting
servers used in our experiments in the integratgrdeimentation described later on in
the paper. Note that the GSO model can be alseemmited in different architectural
styles (e.g. see [8]).

The GSO communication protocol is based on thresicharimitives: Request
ResponseandNotificationt A client interacts with a GSO by issuingRaquesto that
object (for example, reading an attribute, addingesv member, reorganizing the
object hierarchy and so on). The object then replith aResponséo the requesting
client. Depending on the type of request, the dljaa also send out Notifications to
currently online clients as illustrated in Fig.t9.(

(7) content change
Y ﬂ a Ay notification + o
\ Client B Client B

content data

ﬂ ﬂ (5) setProperty() -
-

Cllent A (1) openso() (2) openSONotify() Client A
“ DPGHSOM ) ﬂ (6) content change a
(2) openSONotify( notification a
, /A ,
2: (4) openSONGtify() Client € e Client
“a
Members: @ @ persistent: Members: @ @ persistent:
A B C @ structure A B,C @ structure
g @ - content properties @ @ - content properties
@) =
@) )
(a) Open Semantics (b) Content Semantics

Fig. 2. Generic Shared Object behavior

Our contextual collaboration service manages aectiin of GSOs and their
relationships, i.e. by containment and/or referefidgs facilitates the aggregation of
GSOs into hierarchical structures, thus modelingex collaborations such as the
previously mentioned activity threads in AE (seg.Hi C).

Each GSO provides a simple content model based eet af properties. The
content model describes what kind of data an olgkates and stores, for example,
chat transcripts, e-mails, file contents, streanimggia and so on; e.g. each Shared
Object in AE is represented by a GSO. Jazz [1]@&BSeen [11] are other examples
of applications that use GSOs in a less direct Wae that a GSO does not provide
any means for semantically describing the cont€ontent is associated with a GSO
by adding arbitrary numbers of <name, value> pdih& interpretation and use of the
<name, value> pairs is left to client applicatiomdich provides flexibility to the
model. For example, the persistent chat objecthn $tores each chat message as an
arbitrary long String property.

Every GSO represents a “persistent conferencingi@®sbetween its members.
The distribution of content (synchronous or asyonbus) is performed through the
use of notifications. Any modification to the sdtpyoperties of a GSO is not only
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stored in the underlying data store, but also aatmally sent as notifications to all
the other members of that GSO. Hence, our modeliges a different paradigm for
real-time collaboration based on persistent stadestate change notifications.

Each GSO also manages a list of members (e.g. An8,C in Fig. 2). The GSO
member list controls the access to its content r@pdesents a distribution list for
sending notifications about the creation and modiifons of a GSO. The member list
is dynamic, allowing the addition and removal oisérg members at runtime. Since
the member list is also a property of the GSO, mayification to this list, triggers
notifications that are sent to all online GSO merabe

Notifications of content change come in two différenodalities controlled by the
use ofopenandcloserequests. Change notifications (without the actwaitent) are
sent to all online members of the object whose ogiatus for that object is false.
Notifications with the actual content (or a deltenge) are sent to all online members
whose open status for that object is true. Thisasgim is important to prevent
members that are not interested in certain objéam receiving unnecessary
information each time a change is made in the ébjec

Since all GSO content changes persist, GSO pregedie still available when
clients disconnect and later reconnect to the servihis allows members of an object
to interact asynchronously. In summary, the deedribehavior of GSOs inherently
merges real-time conferencing with content managémand asynchronous
collaboration modes.

5 Implementation

In order to study and better understand the imfitina and trade-offs of combining
various interaction modes of collaboration in a own model, we have built two
implementations: (1) a server that implements tl&&ollaboration model natively;
and (2) a server that uses existing collaboratEohriologies to deliver the same
functionality offered by our model.

5.1 Native Implementation

In our native implementation, the GSO concept ieadly mapped to persistent
objects (using the OO programming paradigm). Theléementation of the GSO
manages every aspect of the model, i.e. contenbgasnent, membership, access
control, notifications, data transfer and persisferiThe GSO service manages a
collection of GSOs and their aggregation into Miehical structures (trees). Clients
access the GSO service through a client side Adel F&g. 2).

In the example of Fig. 2 (a), clients A, B, and € all members of a GSO object.
Client A and B open the object for real-time intti@n by submitting aropenSO()
requests to the server (1, 3). The server GSO dhads open natifications to all its
members, by iterating over the member list and king the registered callback
interface methods (2, 4). The open state of the GS@w changed to true for clients
A and B. Sending notifications to every member e GSO keeps all connected
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clients in a consistent state (i.e. with the latésiv of the GSOs they are members of).
Client C, for example, knows that A and B are catfseworking on the GSO content.
Based on this information, client C can decide perothe GSO object and start
receiving the actual new content as it gets chanigellig. 2 (b), client A changes the
content of the GSO by submitting setProperty()request (5); client B receives a
content change notification including the conteatad(7). Client C is online but
receives only a content change notification withihwet data because its open state is
false (6). However, knowing that the content haenged, Client C could now read the
updated content of the object by submittingesContent(yequest to the server.

The server is implemented in Java and communicates Remote Method
Invocation (RMI) with its clients. Notifications @rsent to clients through RMI also.
Upon logon, each client registers an RMI callbatkriface with the server. Since we
assume storage to be a constant throughout thierpag did not implement a
particular storage mechanism in our prototypes.

5.2 Integrated mplementation

In our alternative integrated implementation, th#idl native implementation was
modified to perform synchronous interaction througéeting servers and to deliver
events using a notification service. The integratiof the two new backend
technologies was completely transparent to theuseds. Clients interact through the
same GSO service API. In the backend, however,itfpdementation complexity
increased significantly. A more detailed descriptaf the service integration and the
data flow can be found in [15].

For example, in order to integrate the meetingesamith our model, we introduced
the concept of a server-side client (SSC) that astsa connector between the
synchronous meeting and the persistent aspedte ahddel. A SSC is a special client
in a meeting session. A meeting is a session aeaktween two or more
participants/clients that provides a non-persissrdred space where messages are
sent to all the meeting members. The SSC is redgerfsr storing session data in a
persistent repository by updating the respectivddGd#en content is changed. For
example, when a chat message is posted to a meetisgpn, the SSC for that session
stores the message in the GSO, which itself triggemnotification. This approach
provides a generic mechanism that can be use@dnegarently integrate any meeting
server.

Note that using meeting servers to support rea-tilaboration entails setting up
a meeting session with the meeting server every siralient opens a shared object for
real-time interaction (see Fig. 2 (a)). Likewisee tmeeting session needs to be
disposed every time the client closes the GSO.eBgh session, a SSC also needs to
be created in the beginning and disposed in the end

We integrated a notification server into the sesvio support assynchronous
change notifications. Whenever a GSO’s propertycamtent is changed, a single
notification is produced. Differently from the pieus native implementation, that
produced one notification per GSO member, a singéssage is now relayed to a
notification server that is responsible for distitihg the notification to all the
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members of the object. The subscription style used topic-based: each client
subscribes/un-subscribes to a global GSO notifioatbpic when logging on and off
the service. In this approach, the notificatiorveemacts as a broadcast channel; a bus
connecting all online clients. Notifications aréysequently filtered in the client side
API, i.e. the client API ignores notifications thete not addressed to that particular
client.

The integrated solution was also completely implete@ in Java. We used
YANCEES [16] as the notification server becauséoébility to be configured with a
simple topic-based core, and for having a simplé Aiilar to Elvin [2]. We used a
simple Java-based meeting server from the TeamSpaject [7]. We sought to keep
the two implementations as similar as possiblergeoto get meaningful results for a
comparison, e.g. both implementations share theesaommon GSO model and
externalize the same GSO API. However, given thebar of different existing
publish/subscribe and real-time collaboration systeour simulation results may vary
depending on the backend technologies used.

6 Experimental Results

The model described in Section 4 unifies charastiesi of publish/subscribe systems,
synchronous collaboration servers, and content ganant in a uniform and flexible
way. As such, it facilitates the development ofladmbrative applications that have
contextual collaboration characteristics. This Hieg of synchronous and
asynchronous collaboration, however, requires tlenpzomising of different
requirements from these two interaction modaliti€r example, traditional
synchronous communication infrastructures, suchmagting servers, are usually
designed to support the collaboration of small gepwnder more strict timing and
bandwidth conditions such as audio or video. Nmdiibn servers, on the other hand,
generally are employed in applications with lesgtstiming and real-time constraints,
focusing on awareness and messaging, where theemwhblients is potentially large
and the data traffic is relatively small. When #dso different interaction modes are
combined in a single collaboration model, differémide-offs involving scalability,
responsiveness, robustness, and implementationlerityphave to be considered. We
conducted a series of experiments to understansk tirade-offs and answer the
following questions: How well do the two differeimhplementations of the model
handle the blending of synchronous an asynchromaligboration? What is the
impact of different data rates and data sizes dipgnon the type of media
interaction? How is the response of the infrastmectto different combinations of
those factors?

6.1 Experimental Setup
Since we wanted to understand the behavior of th@etrunder regular use conditions

and have strict control of the number of clientareected, we developed an automated
client simulator that interacts with our servicgplamentation using different patterns.
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Those patterns simulate the use of different collative tools with their traffic
conditions, number of users and data size. Thelatowclient exercises the server
APIs performing regular actions such as: create olgject, set properties, open, close,
add member and so forth. For the purpose of ous,tege defined four different
patterns approximating the traffic conditions oftlfile sharing, message exchange,
and streaming media. The streaming media pattesndefined to analyze the server
behavior under heavier load, testing its scalabiiihits. Note that these patterns are
only approximations of actual interaction patterfiable 1 describes the different
patterns with their data characteristics and pribitiab.

The main differences between the four media trggéitterns are in the size of the
data, the number of messages exchanged by eachemeanld the frequency (defined
by the interval between messages). For exampleypmal chat session in our
simulator client corresponds to an interaction wathGSO with two members on
average exchanging an average of 10 messages e&mhem Each message has an
average length of 40 characters. Each chat GSO l@soan average of seven
properties that are modified with 16 characters awerage. Chat messages are
exchanged at every 15 seconds on average. Durisgirtteraction, periods of
inactivity may also occur with an average duratéd5 seconds.

Table 1: Media pattern programming used in our experiments

Media n° Data Content change
Pattern Mem probabilities
bers Size n°msy | interval Set Add Del
(chars)

Streaming 5 64K 100 50 ms 0.5 0.5 0.0
Chat 2 40 10 15 sec 0.0 1.0 0.0
File Sharing 4 100K 10 5 min 0.7 0.1 0.2
M essage 8 1K 1 1sec 1.0 0.0 0.0
Exchange

In our GSO model, a property can be set (overwrittecreated), added (appended
to the end of the current content), or deleted.|dabalso shows the probabilities for
these content change actions. In the chat paftarexample, all chat content changes
are of type “Add” because chat transcripts arecgihr not randomly modified, but
they grow over time as new messages are exchanged.

For each pattern, we reproduce the actions of malywork day of 8 hours. We
programmed our automatic client to perform thosgoas in a simulation time of 4
minutes. This setup is similar to [8] and allomaostress test the infrastructures using
a reduced number of clients. During one simulatedkday, the following actions are
performed by the client: A total of 15 shared objesre created on average with five
objects being root objects (representing a newisicthread). Each client listens to an
average number of 10 objects. 15 open and 15 cloisfegts on average are modified
that day. The interaction patterns also differ witspect to the time span that each
client is working either online or offline.

All experiments were carried out on three clientchiaes (IBM T30, 1.6GHz,
512MB) and one server machine (IBM MPro, 3 GHz, GB). The client machines
and the server were connected on an isolated 108NHvpernet local network to
eliminate interference with other network traffi@ient machines were equally loaded
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with a set of client simulators in steps of one, ihe first test starts with 3 clients (one
in each client machine), then 6 clients (two pégrtl machine) and so forth. Please
note the number of simulator client processes ngtin a single client machine
impacts the overall simulation results. Based ststave decided to limit the number
of automated clients to eight per client machineriter to minimize this effect.

6.2 Results: Native Implementation

In order to understand the overall service behawidghe different media patterns, we
plotted the total average execution times for emwh of the four patterns against the
number of clients interacting with the system. His texperiment, each client process
executes a typical work day, using a single intsmagattern which includes open and
closing objects, logging in and out, offline timeasd content changes.

Fig. 3 shows that the system has a linear respwonee increase in the number of
clients, for low-frequency traffic patterns such @dsat, message exchange, and file
sharing. The graph also shows that the size ofittte, as in the case of file sharing,
does not impact performance as much as the fregueinthe messages. The main
characteristic of streaming media is its high femmgy of relatively large data
messages. As can be seen in Fig. 3, our referemglernentation does not scale as
well for this pattern (it grows in a non-linear lfiéen). This can be explained by the
fact that we send out content change notificatigvith or without the actual content)
to every member of the GSO. Given the high datquieacy of streaming media, the
server load increases quickly, since each dataagessiggers a series of content
change notifications, typically one for each memifethe objects involved.

5.3 1

o
N

4.9 = file sharing
a7 message

me

Average total execution time (minutes)
IS
w

*> 2
37 0 * T 2 L g

o 3 & 9 1 15 18 21 24
Number of clients

Fig. 3. Average total simulation execution times of thaveimplementation under different

activity patterns for a typical workday

In another experiment, under the same experimesuatlitions, we sought to
understand the responsiveness of our implementafid'e responsiveness of a
collaborative system is defined by its response raotification times. The response
time describes how fast the system reacts to usmrt,ii.e. how fast actions are
reflected in the user interface of the clients eieg the action and receiving
responses. The notification time describes how &asbllaborative system updates
remote clients. In a collaborative setting, it esidable to keep this number as low as
possible in order to keep all clients in sync vatich other minimizing lag. Response
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time in our model is determined by the executionetiof the client API calls. Fig. 4
shows the average method execution times for getti@ content property of a GSO
performed by theetContent(API call.

average execution delay (ms)

T T T T
0 5 10 15 20 25

Number of clients

Fig. 4. Average execution time of tleetContent(kall in the native implementation with
different media patterns

Fig. 4, shows that the execution times for se¢Content()API call are relatively
low (in the order of milliseconds). They grow limgawith the number of clients for
all interaction patterns, except for the streanmmeglia pattern. For a small number of
clients, and consequently a small number of mettadid on the server, the streaming
media pattern is comparable to the other pattenhsds the number of method calls
increases with the number of clients, the respainse of the system to this pattern
grows quadratically. Note that the message patieitially has a relatively high
execution time compared to streaming media. Theoreas the higher number of
members in that pattern (eight on average). Thimadestrates the low impact of
notifications (without data) relative to the freqag of interaction with the system.

In the same experiment, we also measured notificdiimes: the period of time
from calling a method in the client API to the deliy of its notification to the other
members of a GSO.

ms

o r N W A O O N ® ©
L L

3 6 9 12 15 18 21 24
Number of clients

Fig. 5. Average execution vs. notification time for cregtimew GSOs in the native

implementation

Fig. 5 shows the average execution vs. notificatiimes for creating new GSOs. In
this experiment, the notification times are sligHdwer than execution times. At an
almost constant difference of about 1 ms (in thendr lines), each local user
interaction is made visible to remote clients abubthe same time. Except for
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streaming mediagetContent(alls, the response times of the native implentiemta
are relatively high (i.e. below 10ms) and the ncdifion delays are extremely low.

As a general conclusion, our experiments showttieaperformance of the model is
a function of the data frequency of the interactipattern (number of data
messages/second), and the number of members ofCa B8 general traffic (low
frequency and low bandwidth) the model scales wely having good responsiveness.
However, for streaming media traffic, with a relaty medium number of members,
and an average volume of information, the systelaydencrease quadratically.

6.3 Results: Integrated Implementation

Existing real-time collaboration servers are optied for online meetings with a
smaller number of participants but relatively hidgata volume, e.g. audio, video.
Given the results in the previous section, it sees@sonable to apply real-time
meeting servers to support frequent and high volproperty changes in a GSO. We
hypothesized that the implementation of the synobus aspects of our model with a
meeting server would increase the overall systerfopeance.

Notifications are another aspect of our model thet believed to be well
understood today. Publish/subscribe systems proviggmeral-purpose event
notification services. Notification servers recemeonymous notifications and route
them to interested parties. This routing is oratastl by subscriptions. These systems
are typically optimized for a very large numbersobscribers and small to medium
data volumes for each subscriber. We hypotheskzadGSO events such as create /
delete GSO, add/remove member, or infrequent ptpmiranges (e.g. changing the
presence status of a member on an object) wouldwbk supported by a
publish/subscribe system.

Hence, we expected that our integrated implememtaif the model using meeting
and notification servers, would result in bettealability of both the notification
process (asynchronous mode in our model), and ymehsonous collaboration
through content exchange (the synchronous moderaiodel). An expected price to
be paid, however, would be the extra cost of irtegn and the increased complexity
of the architecture. In order to verify this hypesis, we repeated the same set of tests
with the integrated service implementation.

Fig. 6 (a) compares the cost of the set/add cowtdlst in both implementations for
the streaming media pattern. As expected, theriated implementation scales better,
in a more linear fashion, than our original natiaglementation. In other words,
using a dedicated meeting server seems to pagpiofifiis type of traffic.

The chat and the file sharing media patterns ditl expose any significant
differences in the integrated implementation witkgards to the cost of the
setContent()all. The message exchange pattern, however,egdes®me interesting
results. Fig. 6 (b) shows that the use of our mgeterver was more costly, in terms of
performance, than the native implementation fos thattern. Both implementations
though seem to expose linear behavior as indichiethe trend lines. One of the
major differences between the message exchangsmpattd the other patterns is the
number of members per GSO (eight on average fomibesage pattern). While our
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meeting server seems to handle high bandwidth, Higlquency traffic well,
performance seems to degrade with an increasedaruwhineeting participants.
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Fig. 6. Comparison of the average execution times&€Content(kalls

Since the use of a meeting server introduces aadditicomplexity (see Section
5.2), we expected that the price for better schtabduring the synchronous
interaction phase of a GSO would come with add#tiafelays in the start up of the
shared meeting that handles it. The data in F@priipares the cost for opening GSOs
in both implementations. The data confirms thatdpen call, where a new meeting
session is started, has become one of the mosly coslis in the integrated
implementation. However, it still scales in a linéashion indicated by the trend line.
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Fig. 7. Comparison of the average execution timeofienSO(xalls

When comparing the average execution times of o8®0O API calls for both
implementations, we noticed that tregisterMember(andloginMember()calls also
impose high delays in the integrated implementatidme reason for these delays is
our notification server. Creating subscriptions whegistering members and when
logging in comes at an additional expense. Noté¢ $ldscriptions in our native
implementation were implicit through the membet: lis

While we expected that subscription managementdvoaime at an extra cost, we
were surprised to see that the notification seineoduced high delays in delivering
notifications. Fig. 8 compares execution times foeating GSOs against the
notification time. The integrated implementatiors hew response times but does not
scale well with regards to notifications. On avesagnder a load of 24 clients, remote
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clients are updated only 0.5 second after the G&®areated locally. The notification
times seem to grow exponentially according to thad line.
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Fig. 8: Average response vs. notification times for creptisew GSOs in the integrated
implementation

One could argue that the use of the notificationeseas a shared bus is one of the
reasons for the notification server behavior obsgnwv Fig. 8. In another alternative
implementation, we tested server-side filteringeeénts, i.e. the configuration of the
notification server with more accurate subscripgitimat filter out events that are not
of interest of the client. This approach, howewequired constant update of the
subscriptions (each client manages one or morecgphens filtering out events that
do not belong to the objects they are membersSafpscriptions need to be updated
when new objects are created, members log on/offjembers are removed/added to
objects. Given the high subscription costs impactireregisterMember(jandlogin()
operations, this solution did not scale well. Thesambership and object life-cycle
dynamics resulted in similar or worse delays thendnes observed in Fig. 8.

7 LessonsLearned

Interference of conflicting requirements. The support of synchronous and
asynchronous interaction in a common and simpleemizdnot a trivial task. While
the native implementation of the GSO model supgortell the majority of traffic
patters, it did not scale well for high frequenhigh-bandwidth data as in our stream
media pattern. The use of meeting servers can waprhe performance of
synchronous message exchange under those circumstafowever, the notification
server in our integrated implementation becamettielpeck, impacting the scalability
of the entire model. This demonstrates how a coatiuin of different services can
interfere with one another, limiting the performaruf the overall infrastructure.
Integration complexity. Our initial hypothesis, that the integration ofistixg
services to support contextual collaboration, woatanbine the strengths of both
services, showed not to be completely true. It stagrtcomings in the form of extra
complexity. Even though an integrated solutiont thees specialized services, can
perform better than a more simple implementatitme, integration of those off-the-
shelf components usually demands special attertiiormatters such as timing,
synchronization, and adequacy to the model. It alakes the implementation of the
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system more prone to errors and additional setd@yslesuch as startup times, as
observed in our experiments, during member logath @pening objects.

Mismatch of programming models. Another issue elucidated in our experiments
was a mismatch of the programming models of théemint components used. For
example, the extension of the meeting server tpapersistency was not trivial; our
solution was to use a server-side client actinghasting recorder. Another example
was the inadequacy of the notification server imdtiag frequent subscription
changes. In our experiments, we tested the inlegr&éSO implementation with two
subscription models: server-side filtering andrdtiside filtering. Client-side filtering
was the approach that better scaled in our impléamtien. Both approaches, however,
had their own trade-offs and limitations: clierdesifiltering moves part of the
processing to the client side, but requires thevelsl of extra notifications through the
network. Server-side filtering limits the amount tadffic to the clients and relieves
them from discarding unnecessary notifications. Eleav, the latter approach results
in an extra burden to the notification server, thatds to deal with constantly
changing subscriptions in order to accommodategdmgmim the GSO membership.

Impact of distribution. An advantage of using separate components such as
meeting server and a notification server is thelitgbto distribute processing
throughout different hosts in a network. In additib tests, we distributed the
notification and meeting servers across differeatimes in the network. We found
that, with more than 30 clients, the distributedfaguration begins to perform better
than the centralized approach. This shows that avglgnificant number of clients, the
distribution of main system components is a goqat@gch for scalability.

8 Conclusion

In this paper we studied two implementations of eavrcollaboration model that

seamlessly integrates different collaboration mitidalinto a single interaction model.

Our model facilitates the development of contextudlaboration applications such as
Activity Explorer. Our experiments show the tradésoof developing contextual

collaboration systems based on existing collabonaiervices such as meeting and
notification server. The simultaneous support fgnchironous and asynchronous
interaction in a single model tends to work wellamative implementation for the

average case, where neither the synchronous noagyrechronous aspects of the
model are put to exceeding stress. The low comyledi a native implementation

together with high responsiveness might satisfy rdiguirements of the majority of

contextual collaboration applications today. Theegmation of meeting servers
restricted to only media traffic can significantlgnprove the scalability of the

implementation. The use of generic notificationvees to support the model,

however, was problematic because mapping GSO bmhawito publish/subscribe

semantics caused additional overhead.
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