
Understanding the Trade-offs of Blending
Collaboration Services in Support of Contextual

Collaboration

Roberto S. Silva Filho1, Werner Geyer2, Beth Brownholtz2, David F. Redmiles1

1 Department of Informatics

Donald Bren School of Information and
Computer Sciences, University of California

Irvine, CA, 92697 USA

2 IBM T.J. Watson Research
 One Rogers Street

Cambridge, MA 02142, USA

rsilvafi@ics.uci.edu, werner.geyer@us.ibm.com,
beth_brownholtz@us.ibm.com, redmiles@ics.uci.edu

Abstract. Contextual collaboration seamlessly integrates existing groupware
technologies into a uniform user experience that combines synchronous and
asynchronous interactions. This user experience is usually supported by a
contextual collaboration infrastructure that needs to efficiently cope with the
fast switching and integration of different modes of interaction. This paper
experiments with a new model for contextual collaboration based on the notion
of generic shared objects. We describe a native implementation of this model
and evaluate its behavior under different media traffic conditions. We compare
the native implementation with an alternative implementation that integrates
existing notification and meeting servers to deliver the same model behavior.
We discuss trade-offs and limitations of those two implementations.

1 Introduction

Contextual collaboration promises new levels of productivity by seamlessly
integrating content sharing, communication channels, and collaboration tools into a
unified user experience. One form of contextual collaboration embeds collaborative
features, such as presence awareness, instant messaging, real-time conferencing, file
exchange, and virtual workspaces into other business applications [10, 14] For
example, through the integration of communication channels and office tools, users
can easily switch between individual and collaborative work. Through a single click of
a button, they can start a chat from within their document editors, share a document on
their desktops by dragging it on their buddy lists, or start a remote presentation by
right-clicking on a presentation file on their desktop. Contextual collaboration lowers
the end-user’s barrier to engage in collaboration by transparently integrating existing
groupware technologies. By doing so, it reduces end-users’ cognitive cost of switching
between collaboration tools and applications, providing contextual points of access to
a set of inter-related applications and the artifacts they produce. A highly

2 Silva Filho et al.

contextualized user experience entails frequent changes in work mode and modalities.
From an infrastructural perspective, this requires the use of different services, for
example, meeting servers to support synchronous collaboration, notification servers to
support timely delivery of messages, or document repositories to allow sharing of
content.

In this paper, we study a model for contextual collaboration that supports multiple
modalities of media collaboration. Our model is based on generic shared objects that
provide building blocks for supporting contextual collaboration applications. We
present a native implementation of this interaction model and study its behavior under
different interaction patterns, representing different kinds of media collaborations. We
compare our native service implementation with an alternative integrated
implementation where existing services such as meeting and notification servers are
used. Our goal is to characterize and understand the trade-offs and limitations that
exist in different implementations of services supporting contextual collaboration with
respect to the responsiveness of the infrastructure and its ability to support the traffic
requirements of different collaboration tools.

This work was motivated by previous research on Activity Explorer (AE) [6, 8]. AE
provides a highly contextualized user experience integrating synchronous and
asynchronous types of collaboration. AE is built on top of our collaboration model
using generic shared objects. Previous works, however, did not analyze the limitations
of the model in terms of scalability, support for different media interaction, and the
trade-offs involved in building such an infrastructure using existing technologies.
Hence, with this work, we expect to understand the applicability of the model to
different traffic conditions, and to assess the use of existing services in supporting this
blended collaborative model. The lessons learned can be applied to the development
or improvement of contextual collaboration infrastructures.

Section 2 of this paper discusses related work. In Section 3 we describe the
contextual user experience in AE in more detail. Section 4 introduces the contextual
collaboration model used as the basis for our study. Section 5 describes the two
implementations of this model. In Section 6 we describe our simulation environment,
the experiments performed, and the experimental results comparing both
implementations. Section 0 discusses general trade-offs and lessons learned.

2 Related Work

The concept of using shared objects to support collaboration is similar to the Tuple
Space work, proposed by Gelernter as part of the Linda coordination language [5].
Tuple Spaces are currently implemented in IBM’s TSpaces system [18] and SUN’s
JavaSpaces [3]. They provide a persistent shared memory accessed through an API
that allows distributed processes to read, write, and remove information represented as
tuples. Compared to our shared objects, Tuple Spaces are rather a programming
paradigm that helps developers with concurrency control and other issues, while we
focus on offering a shared object service that can be used to build collaborative

Understanding the Trade-offs of Blending Collab. Services in Support of Context. Collab. 3

applications. As such, membership, notifications, and service-oriented communication
are an integral part of our model.

Notification servers, as defined by Patterson et al. [12], provide a simple common
service for sharing state in synchronous multi-user applications. They address the
problem of maintaining consistency in real-time applications and supporting
awareness. Compared to Tuple Spaces and our shared objects, state is usually not
persistent.

Publish/subscribe systems are similar to our work since they offer general purpose
event notification functionality based on the observer design pattern [4]. Notification
servers such as Elvin [2] or YANCEES [16] are usually employed as event routing
infrastructure to support the development of awareness applications. Elvin provides a
relatively simple but optimized set of functionalities, efficiently processing large
quantities of events based on content-based routing of tuple-based events. In such
systems, however, event persistency is usually not supported. Moreover, those systems
are not usually designed to support synchronous real-time interaction. The
insufficiency of the publish/subscribe model in supporting different groupware
applications is also discussed in [17] and [9], where new services around this model
are proposed to address some of the deficiencies such as the lack of flexibility in the
notification model, and support for end-user subscriptions.

The technical aspects of blending of synchronous and asynchronous collaboration
have been also addressed in [13] and [8]. Preguiça et al. [13] provide a very good
description of the general problem space. Compared to our work, they mainly address
consistency control issues.

3 Activity Explorer

Activity Explorer (AE) is a contextual collaboration application based on the
paradigm of activity-centric collaboration [7]. AE runs as a stand-alone desktop
application that connects to a contextual collaboration server implementing our
collaboration model. In AE an activity is a set of related, shared objects representing a
task or project. The set of related objects is structured as a hierarchical thread called
activity thread, representing the context of the task at hand. Users create new activity
threads by creating root objects from any type of content or communication. Users add
items to an activity thread by posting either a response or a resource addition to its
parent object. Activity threads combine different types of objects, membership, and
alerts. The context (membership and content of the activity thread) is made persistent
thought the use of shared objects. AE supports sharing of six types of objects:
message, chat transcript, file, folder, annotated screen snapshot, and to-do item.

Fig. 1 shows the main AE user interface. My Activities (A) is a multi column
“inbox-like” activity list that supports sorting and filtering of activities and shared
objects. Selecting a shared object in this list populates a read-only info pane (B). The
Activity Thread pane (C), maps a shared object as a node in a tree representing an
entire activity thread. Activity Thread and My Activities are synchronized by object
selection. My People (D) is a buddy list showing all members the current user shares

4 Silva Filho et al.

activities with. Users interact with objects or members, as displayed in these views,
through right-click context menus. Representative icons are highlighted green to cue
users of shared object access and member presence (2a, 2b).

The following scenario illustrates a contextual user experience in which shared
objects are used in a collaborative context, as part of an activity. The activity starts
from a document. The outcome of the activity is shown in Fig. 1.

Bob and Dan are working on a project (a file) using Activity Explorer. Bob right clicks on
the file object in his list to add a message asking Dan for his comments (1b). A few hours later,
Dan returns to his desktop (2a). In the system tray, Dan is alerted to the new activity. Clicking
on the alert, he is taken to the activity thread. He opens the message and while he is reading it,
Bob perceives Dan is looking at the message due to the turning of the object icon to green (2b).
Bob then seizes the opportunity to expedite their progress; he right clicks on the initial message
and adds a chat to this activity (2c). A chat window pops up on Dan’s desktop and they start a
chat session (2d). Bob refers to a detail in the project description; for clarity he wants to show
Dan what he would like changed. By right clicking on the chat object, Bob creates a shared
screen object (3a). A transparent window allows Bob to select and “screen scrape” any region
on his desktop. He freezes the transparent window over the project text. The screen shot pops
up on Dan’s desktop (3b). Bob and Dan begin annotating the web content in real-time like a
shared whiteboard (3c).

1a

2a

3b

2d

2c

2b

1b

3c

3a

A
B

C

D

1a

2a

3b

2d

2c

2b

1b

3c

3a

A
B

C

D

Fig. 1. Activity Explorer User Interface

4 Contextual Collaboration Model

The contextual collaboration model behind AE is based on the concept of Generic
Shared Objects (GSO) [8]. GSOs are persistent collaboration objects that can be used
as building blocks for new collaborative applications that require a seamless,
contextual user experience with blended synchronous and asynchronous collaboration.
This generic model provides both simplicity and uniformity, allowing the extension of
the service to new media types, and the uniform composition of artifacts into

Understanding the Trade-offs of Blending Collab. Services in Support of Context. Collab. 5

hierarchies such as activity threads. GSOs combine various collaborative functions
such as group communication, content management, notifications, and membership-
based access control policies into objects that can be hierarchically composed.

In this paper, we assume a client/server architecture in which many clients interact
with each other through a collaboration server (or service) implementing the concept
of GSOs. This architectural style was selected for being currently supported in the AE
prototype, as well as in existing technologies such as notification servers and meeting
servers used in our experiments in the integrated implementation described later on in
the paper. Note that the GSO model can be also implemented in different architectural
styles (e.g. see [8]).

The GSO communication protocol is based on three basic primitives: Request,
Response, and Notification: A client interacts with a GSO by issuing a Request to that
object (for example, reading an attribute, adding a new member, reorganizing the
object hierarchy and so on). The object then replies with a Response to the requesting
client. Depending on the type of request, the object can also send out Notifications to
currently online clients as illustrated in Fig. 2 (b).

Fig. 2. Generic Shared Object behavior

Our contextual collaboration service manages a collection of GSOs and their
relationships, i.e. by containment and/or reference. This facilitates the aggregation of
GSOs into hierarchical structures, thus modeling complex collaborations such as the
previously mentioned activity threads in AE (see Fig. 1 C).

Each GSO provides a simple content model based on a set of properties. The
content model describes what kind of data an object shares and stores, for example,
chat transcripts, e-mails, file contents, streaming media and so on; e.g. each Shared
Object in AE is represented by a GSO. Jazz [1] and C&BSeen [11] are other examples
of applications that use GSOs in a less direct way. Note that a GSO does not provide
any means for semantically describing the content. Content is associated with a GSO
by adding arbitrary numbers of <name, value> pairs. The interpretation and use of the
<name, value> pairs is left to client applications, which provides flexibility to the
model. For example, the persistent chat object in AE, stores each chat message as an
arbitrary long String property.

Every GSO represents a “persistent conferencing session” between its members.
The distribution of content (synchronous or asynchronous) is performed through the
use of notifications. Any modification to the set of properties of a GSO is not only

GSO

persistent:
- structure

- content properties

Client A

(5) setProperty()

(7) content change
notification +
content data

(6) content change
notification

Client B

Client C

Members:
A, B, C

A

P

I

A

P

I

A

P

I

GSO

GSO

GSO

GSO

GSO

GSO

persistent:
- structure

- content properties

Client A

(5) setProperty()

(7) content change
notification +
content data

(6) content change
notification

Client B

Client C

Members:
A, B, C

A

P

I

A

P

I

A

P

I

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

(b) Content Semantics (a) Open Semantics

GSO

Client A
(1) openSO()

Client B

Client C

(3) openSO()

Members:
A, B, C

A

P

I

A

P

I

A

P

I

(4) openSONotify()

(2) openSONotify()

(4) openSONotify()

(2) openSONotify()

persistent:
- structure

- content properties

GSO

GSO

GSO

GSO

GSO

GSO

Client A
(1) openSO()

Client B

Client C

(3) openSO()

Members:
A, B, C

A

P

I

A

P

I

A

P

I

(4) openSONotify()

(2) openSONotify()

(4) openSONotify()

(2) openSONotify()

persistent:
- structure

- content properties

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

GSO

6 Silva Filho et al.

stored in the underlying data store, but also automatically sent as notifications to all
the other members of that GSO. Hence, our model provides a different paradigm for
real-time collaboration based on persistent state and state change notifications.

Each GSO also manages a list of members (e.g. A, B, and C in Fig. 2). The GSO
member list controls the access to its content and represents a distribution list for
sending notifications about the creation and modifications of a GSO. The member list
is dynamic, allowing the addition and removal of existing members at runtime. Since
the member list is also a property of the GSO, any modification to this list, triggers
notifications that are sent to all online GSO members.

Notifications of content change come in two different modalities controlled by the
use of open and close requests. Change notifications (without the actual content) are
sent to all online members of the object whose open status for that object is false.
Notifications with the actual content (or a delta change) are sent to all online members
whose open status for that object is true. This semantic is important to prevent
members that are not interested in certain objects from receiving unnecessary
information each time a change is made in the object.

Since all GSO content changes persist, GSO properties are still available when
clients disconnect and later reconnect to the service. This allows members of an object
to interact asynchronously. In summary, the described behavior of GSOs inherently
merges real-time conferencing with content management and asynchronous
collaboration modes.

5 Implementation

In order to study and better understand the implications and trade-offs of combining
various interaction modes of collaboration in a common model, we have built two
implementations: (1) a server that implements the GSO collaboration model natively;
and (2) a server that uses existing collaboration technologies to deliver the same
functionality offered by our model.

5.1 Native Implementation

In our native implementation, the GSO concept is directly mapped to persistent
objects (using the OO programming paradigm). The implementation of the GSO
manages every aspect of the model, i.e. content management, membership, access
control, notifications, data transfer and persistency. The GSO service manages a
collection of GSOs and their aggregation into hierarchical structures (trees). Clients
access the GSO service through a client side API (see Fig. 2).

In the example of Fig. 2 (a), clients A, B, and C are all members of a GSO object.
Client A and B open the object for real-time interaction by submitting an openSO()
requests to the server (1, 3). The server GSO then sends open notifications to all its
members, by iterating over the member list and invoking the registered callback
interface methods (2, 4). The open state of the GSO is now changed to true for clients
A and B. Sending notifications to every member of the GSO keeps all connected

Understanding the Trade-offs of Blending Collab. Services in Support of Context. Collab. 7

clients in a consistent state (i.e. with the latest view of the GSOs they are members of).
Client C, for example, knows that A and B are currently working on the GSO content.
Based on this information, client C can decide to open the GSO object and start
receiving the actual new content as it gets changed. In Fig. 2 (b), client A changes the
content of the GSO by submitting a setProperty() request (5); client B receives a
content change notification including the content data (7). Client C is online but
receives only a content change notification without the data because its open state is
false (6). However, knowing that the content has changed, Client C could now read the
updated content of the object by submitting a getContent() request to the server.

The server is implemented in Java and communicates via Remote Method
Invocation (RMI) with its clients. Notifications are sent to clients through RMI also.
Upon logon, each client registers an RMI callback interface with the server. Since we
assume storage to be a constant throughout this paper, we did not implement a
particular storage mechanism in our prototypes.

5.2 Integrated Implementation

In our alternative integrated implementation, the initial native implementation was
modified to perform synchronous interaction through meeting servers and to deliver
events using a notification service. The integration of the two new backend
technologies was completely transparent to the end users. Clients interact through the
same GSO service API. In the backend, however, the implementation complexity
increased significantly. A more detailed description of the service integration and the
data flow can be found in [15].

For example, in order to integrate the meeting server with our model, we introduced
the concept of a server-side client (SSC) that acts as a connector between the
synchronous meeting and the persistent aspects of the model. A SSC is a special client
in a meeting session. A meeting is a session created between two or more
participants/clients that provides a non-persistent shared space where messages are
sent to all the meeting members. The SSC is responsible for storing session data in a
persistent repository by updating the respective GSO when content is changed. For
example, when a chat message is posted to a meeting session, the SSC for that session
stores the message in the GSO, which itself triggers a notification. This approach
provides a generic mechanism that can be used to transparently integrate any meeting
server.

Note that using meeting servers to support real-time collaboration entails setting up
a meeting session with the meeting server every time a client opens a shared object for
real-time interaction (see Fig. 2 (a)). Likewise the meeting session needs to be
disposed every time the client closes the GSO. For each session, a SSC also needs to
be created in the beginning and disposed in the end.

We integrated a notification server into the service to support assynchronous
change notifications. Whenever a GSO’s property or content is changed, a single
notification is produced. Differently from the previous native implementation, that
produced one notification per GSO member, a single message is now relayed to a
notification server that is responsible for distributing the notification to all the

8 Silva Filho et al.

members of the object. The subscription style used was topic-based: each client
subscribes/un-subscribes to a global GSO notification topic when logging on and off
the service. In this approach, the notification server acts as a broadcast channel; a bus
connecting all online clients. Notifications are subsequently filtered in the client side
API, i.e. the client API ignores notifications that are not addressed to that particular
client.

The integrated solution was also completely implemented in Java. We used
YANCEES [16] as the notification server because of its ability to be configured with a
simple topic-based core, and for having a simple API, similar to Elvin [2]. We used a
simple Java-based meeting server from the TeamSpace project [7]. We sought to keep
the two implementations as similar as possible in order to get meaningful results for a
comparison, e.g. both implementations share the same common GSO model and
externalize the same GSO API. However, given the number of different existing
publish/subscribe and real-time collaboration systems, our simulation results may vary
depending on the backend technologies used.

6 Experimental Results

The model described in Section 4 unifies characteristics of publish/subscribe systems,
synchronous collaboration servers, and content management in a uniform and flexible
way. As such, it facilitates the development of collaborative applications that have
contextual collaboration characteristics. This blending of synchronous and
asynchronous collaboration, however, requires the compromising of different
requirements from these two interaction modalities. For example, traditional
synchronous communication infrastructures, such as meeting servers, are usually
designed to support the collaboration of small groups, under more strict timing and
bandwidth conditions such as audio or video. Notification servers, on the other hand,
generally are employed in applications with less strict timing and real-time constraints,
focusing on awareness and messaging, where the number of clients is potentially large
and the data traffic is relatively small. When those two different interaction modes are
combined in a single collaboration model, different trade-offs involving scalability,
responsiveness, robustness, and implementation complexity have to be considered. We
conducted a series of experiments to understand these trade-offs and answer the
following questions: How well do the two different implementations of the model
handle the blending of synchronous an asynchronous collaboration? What is the
impact of different data rates and data sizes depending on the type of media
interaction? How is the response of the infrastructure to different combinations of
those factors?

6.1 Experimental Setup

Since we wanted to understand the behavior of the model under regular use conditions
and have strict control of the number of clients connected, we developed an automated
client simulator that interacts with our service implementation using different patterns.

Understanding the Trade-offs of Blending Collab. Services in Support of Context. Collab. 9

Those patterns simulate the use of different collaborative tools with their traffic
conditions, number of users and data size. The simulator client exercises the server
APIs performing regular actions such as: create new object, set properties, open, close,
add member and so forth. For the purpose of our tests, we defined four different
patterns approximating the traffic conditions of chat, file sharing, message exchange,
and streaming media. The streaming media pattern was defined to analyze the server
behavior under heavier load, testing its scalability limits. Note that these patterns are
only approximations of actual interaction patterns. Table 1 describes the different
patterns with their data characteristics and probabilities.

The main differences between the four media traffic patterns are in the size of the
data, the number of messages exchanged by each member, and the frequency (defined
by the interval between messages). For example, a typical chat session in our
simulator client corresponds to an interaction with a GSO with two members on
average exchanging an average of 10 messages each member. Each message has an
average length of 40 characters. Each chat GSO also has an average of seven
properties that are modified with 16 characters on average. Chat messages are
exchanged at every 15 seconds on average. During this interaction, periods of
inactivity may also occur with an average duration of 15 seconds.

Table 1: Media pattern programming used in our experiments

Data Content change
probabilities

Media
Pattern

no
Mem
bers Size

(chars)
no msg interval Set Add Del

Streaming 5 64K 100 50 ms 0.5 0.5 0.0
Chat 2 40 10 15 sec 0.0 1.0 0.0
File Sharing 4 100K 10 5 min 0.7 0.1 0.2
Message
Exchange

8 1K 1 1 sec 1.0 0.0 0.0

In our GSO model, a property can be set (overwritten or created), added (appended
to the end of the current content), or deleted. Table 1 also shows the probabilities for
these content change actions. In the chat pattern, for example, all chat content changes
are of type “Add” because chat transcripts are typically not randomly modified, but
they grow over time as new messages are exchanged.

For each pattern, we reproduce the actions of a typical work day of 8 hours. We
programmed our automatic client to perform those actions in a simulation time of 4
minutes. This setup is similar to [8] and allow us to stress test the infrastructures using
a reduced number of clients. During one simulated workday, the following actions are
performed by the client: A total of 15 shared objects are created on average with five
objects being root objects (representing a new activity thread). Each client listens to an
average number of 10 objects. 15 open and 15 closed objects on average are modified
that day. The interaction patterns also differ with respect to the time span that each
client is working either online or offline.

All experiments were carried out on three client machines (IBM T30, 1.6GHz,
512MB) and one server machine (IBM MPro, 3 GHz, 1.5 GB). The client machines
and the server were connected on an isolated 100Mbps Ethernet local network to
eliminate interference with other network traffic. Client machines were equally loaded

10 Silva Filho et al.

with a set of client simulators in steps of one, i.e. the first test starts with 3 clients (one
in each client machine), then 6 clients (two per client machine) and so forth. Please
note the number of simulator client processes running on a single client machine
impacts the overall simulation results. Based on tests, we decided to limit the number
of automated clients to eight per client machine in order to minimize this effect.

6.2 Results: Native Implementation

In order to understand the overall service behavior to the different media patterns, we
plotted the total average execution times for each one of the four patterns against the
number of clients interacting with the system. In this experiment, each client process
executes a typical work day, using a single interaction pattern which includes open and
closing objects, logging in and out, offline times and content changes.

Fig. 3 shows that the system has a linear response to the increase in the number of
clients, for low-frequency traffic patterns such as chat, message exchange, and file
sharing. The graph also shows that the size of the data, as in the case of file sharing,
does not impact performance as much as the frequency of the messages. The main
characteristic of streaming media is its high frequency of relatively large data
messages. As can be seen in Fig. 3, our reference implementation does not scale as
well for this pattern (it grows in a non-linear fashion). This can be explained by the
fact that we send out content change notifications (with or without the actual content)
to every member of the GSO. Given the high data frequency of streaming media, the
server load increases quickly, since each data message triggers a series of content
change notifications, typically one for each member of the objects involved.

3.5

3.7

3.9

4.1

4.3

4.5

4.7

4.9

5.1

5.3

0 3 6 9 12 15 18 21 24

Number of clients

A
ve

ra
g
e

to
ta

l e
xe

cu
tio

n
 ti

m
e

(m
in

u
te

s)

chat

f ile sharing

message

streaming

Poly. (streaming)

Fig. 3. Average total simulation execution times of the native implementation under different

activity patterns for a typical workday

In another experiment, under the same experimental conditions, we sought to
understand the responsiveness of our implementation. The responsiveness of a
collaborative system is defined by its response and notification times. The response
time describes how fast the system reacts to user input, i.e. how fast actions are
reflected in the user interface of the clients executing the action and receiving
responses. The notification time describes how fast a collaborative system updates
remote clients. In a collaborative setting, it is desirable to keep this number as low as
possible in order to keep all clients in sync with each other minimizing lag. Response

Understanding the Trade-offs of Blending Collab. Services in Support of Context. Collab. 11

time in our model is determined by the execution time of the client API calls. Fig. 4
shows the average method execution times for setting the content property of a GSO
performed by the setContent() API call.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Number of clients

av
er

ag
e

ex
ec

u
tio

n
 d

el
ay

 (m
s)

chat

file sharing

message

streaming

Linear (file sharing)

Linear (message)

Poly. (streaming)

Linear (chat)

Fig. 4. Average execution time of the setContent() call in the native implementation with

different media patterns

Fig. 4, shows that the execution times for the setContent() API call are relatively
low (in the order of milliseconds). They grow linearly with the number of clients for
all interaction patterns, except for the streaming media pattern. For a small number of
clients, and consequently a small number of method calls on the server, the streaming
media pattern is comparable to the other patterns but, as the number of method calls
increases with the number of clients, the response time of the system to this pattern
grows quadratically. Note that the message pattern initially has a relatively high
execution time compared to streaming media. The reason is the higher number of
members in that pattern (eight on average). This demonstrates the low impact of
notifications (without data) relative to the frequency of interaction with the system.

In the same experiment, we also measured notification times: the period of time
from calling a method in the client API to the delivery of its notification to the other
members of a GSO.

0

1

2

3

4

5

6

7

8

9

3 6 9 12 15 18 21 24

Number of clients

m
s

Execution time

Notif ication time

Linear (Notif ication time)

Linear (Execution time)

Fig. 5. Average execution vs. notification time for creating new GSOs in the native

implementation

Fig. 5 shows the average execution vs. notification times for creating new GSOs. In
this experiment, the notification times are slightly lower than execution times. At an
almost constant difference of about 1 ms (in the trend lines), each local user
interaction is made visible to remote clients at about the same time. Except for

12 Silva Filho et al.

streaming media setContent() calls, the response times of the native implementation
are relatively high (i.e. below 10ms) and the notification delays are extremely low.

As a general conclusion, our experiments show that the performance of the model is
a function of the data frequency of the interaction pattern (number of data
messages/second), and the number of members of a GSO. For general traffic (low
frequency and low bandwidth) the model scales very well having good responsiveness.
However, for streaming media traffic, with a relatively medium number of members,
and an average volume of information, the system delays increase quadratically.

6.3 Results: Integrated Implementation

Existing real-time collaboration servers are optimized for online meetings with a
smaller number of participants but relatively high data volume, e.g. audio, video.
Given the results in the previous section, it seems reasonable to apply real-time
meeting servers to support frequent and high volume property changes in a GSO. We
hypothesized that the implementation of the synchronous aspects of our model with a
meeting server would increase the overall system performance.

Notifications are another aspect of our model that we believed to be well
understood today. Publish/subscribe systems provide general-purpose event
notification services. Notification servers receive anonymous notifications and route
them to interested parties. This routing is orchestrated by subscriptions. These systems
are typically optimized for a very large number of subscribers and small to medium
data volumes for each subscriber. We hypothesized that GSO events such as create /
delete GSO, add/remove member, or infrequent property changes (e.g. changing the
presence status of a member on an object) would be well supported by a
publish/subscribe system.

Hence, we expected that our integrated implementation of the model using meeting
and notification servers, would result in better scalability of both the notification
process (asynchronous mode in our model), and the synchronous collaboration
through content exchange (the synchronous mode of our model). An expected price to
be paid, however, would be the extra cost of integration and the increased complexity
of the architecture. In order to verify this hypothesis, we repeated the same set of tests
with the integrated service implementation.

Fig. 6 (a) compares the cost of the set/add content calls in both implementations for
the streaming media pattern. As expected, the integrated implementation scales better,
in a more linear fashion, than our original native implementation. In other words,
using a dedicated meeting server seems to pay off for this type of traffic.

The chat and the file sharing media patterns did not expose any significant
differences in the integrated implementation with regards to the cost of the
setContent() call. The message exchange pattern, however, yielded some interesting
results. Fig. 6 (b) shows that the use of our meeting server was more costly, in terms of
performance, than the native implementation for this pattern. Both implementations
though seem to expose linear behavior as indicated by the trend lines. One of the
major differences between the message exchange pattern and the other patterns is the
number of members per GSO (eight on average for the message pattern). While our

Understanding the Trade-offs of Blending Collab. Services in Support of Context. Collab. 13

meeting server seems to handle high bandwidth, high frequency traffic well,
performance seems to degrade with an increased number of meeting participants.

0

2

4

6

8

10

12

14

16

3 6 9 12 15 18 21 24
Number of clients

A
ve

ra
g

e
ex

ec
u

ti
o

n
 t

im
e

(m
s)

Integrated

Native

Linear (Integrated)

Expon. (Native)

(a) Streaming media pattern

0

2

4

6

8

10

12

14

16

3 6 9 12 15 18 21 24

Number of clients

A
ve

ra
g

e
ex

ec
u

ti
o

n
 t

im
e

(m
s)

Integrated

Native

Linear (Native)

Linear (Integrated)

(b) message exchange pattern

Fig. 6. Comparison of the average execution times for setContent() calls

Since the use of a meeting server introduces additional complexity (see Section
5.2), we expected that the price for better scalability during the synchronous
interaction phase of a GSO would come with additional delays in the start up of the
shared meeting that handles it. The data in Fig. 7 compares the cost for opening GSOs
in both implementations. The data confirms that the open call, where a new meeting
session is started, has become one of the most costly calls in the integrated
implementation. However, it still scales in a linear fashion indicated by the trend line.

0

10

20

30

40

50

60

3 6 9 12 15 18 21 24

Number of clients

E
xe

cu
ti

o
n

 t
im

e
(m

s)

Integrated

Native

Linear (Integrated)

Linear (Native)

Fig. 7. Comparison of the average execution times for openSO() calls

When comparing the average execution times of other GSO API calls for both
implementations, we noticed that the registerMember() and loginMember() calls also
impose high delays in the integrated implementation. The reason for these delays is
our notification server. Creating subscriptions when registering members and when
logging in comes at an additional expense. Note that subscriptions in our native
implementation were implicit through the member list.

While we expected that subscription management would come at an extra cost, we
were surprised to see that the notification server introduced high delays in delivering
notifications. Fig. 8 compares execution times for creating GSOs against the
notification time. The integrated implementation has low response times but does not
scale well with regards to notifications. On average, under a load of 24 clients, remote

14 Silva Filho et al.

clients are updated only 0.5 second after the GSO was created locally. The notification
times seem to grow exponentially according to the trend line.

0

100

200

300

400

500

600

3 6 9 12 15 18 21 24

Number of clients

m
s

Execution time

Notification time

Expon. (Notif ication time)

Fig. 8: Average response vs. notification times for creating new GSOs in the integrated

implementation

One could argue that the use of the notification server as a shared bus is one of the
reasons for the notification server behavior observed in Fig. 8. In another alternative
implementation, we tested server-side filtering of events, i.e. the configuration of the
notification server with more accurate subscriptions that filter out events that are not
of interest of the client. This approach, however, required constant update of the
subscriptions (each client manages one or more subscriptions filtering out events that
do not belong to the objects they are members of). Subscriptions need to be updated
when new objects are created, members log on/off, or members are removed/added to
objects. Given the high subscription costs impacting the registerMember() and login()
operations, this solution did not scale well. These membership and object life-cycle
dynamics resulted in similar or worse delays than the ones observed in Fig. 8.

7 Lessons Learned

Interference of conflicting requirements. The support of synchronous and
asynchronous interaction in a common and simple model is not a trivial task. While
the native implementation of the GSO model supported well the majority of traffic
patters, it did not scale well for high frequency, high-bandwidth data as in our stream
media pattern. The use of meeting servers can improve the performance of
synchronous message exchange under those circumstances. However, the notification
server in our integrated implementation became a bottleneck, impacting the scalability
of the entire model. This demonstrates how a combination of different services can
interfere with one another, limiting the performance of the overall infrastructure.

Integration complexity. Our initial hypothesis, that the integration of existing
services to support contextual collaboration, would combine the strengths of both
services, showed not to be completely true. It had shortcomings in the form of extra
complexity. Even though an integrated solution, that uses specialized services, can
perform better than a more simple implementation, the integration of those off-the-
shelf components usually demands special attention to matters such as timing,
synchronization, and adequacy to the model. It also makes the implementation of the

Understanding the Trade-offs of Blending Collab. Services in Support of Context. Collab. 15

system more prone to errors and additional setup delays, such as startup times, as
observed in our experiments, during member log-in and opening objects.

Mismatch of programming models. Another issue elucidated in our experiments
was a mismatch of the programming models of the different components used. For
example, the extension of the meeting server to support persistency was not trivial; our
solution was to use a server-side client acting as meeting recorder. Another example
was the inadequacy of the notification server in handling frequent subscription
changes. In our experiments, we tested the integrated GSO implementation with two
subscription models: server-side filtering and client-side filtering. Client-side filtering
was the approach that better scaled in our implementation. Both approaches, however,
had their own trade-offs and limitations: client-side filtering moves part of the
processing to the client side, but requires the delivery of extra notifications through the
network. Server-side filtering limits the amount of traffic to the clients and relieves
them from discarding unnecessary notifications. However, the latter approach results
in an extra burden to the notification server, that needs to deal with constantly
changing subscriptions in order to accommodate changes in the GSO membership.

Impact of distribution. An advantage of using separate components such as a
meeting server and a notification server is the ability to distribute processing
throughout different hosts in a network. In additional tests, we distributed the
notification and meeting servers across different machines in the network. We found
that, with more than 30 clients, the distributed configuration begins to perform better
than the centralized approach. This shows that with a significant number of clients, the
distribution of main system components is a good approach for scalability.

8 Conclusion

In this paper we studied two implementations of a new collaboration model that
seamlessly integrates different collaboration modalities into a single interaction model.
Our model facilitates the development of contextual collaboration applications such as
Activity Explorer. Our experiments show the trade-offs of developing contextual
collaboration systems based on existing collaboration services such as meeting and
notification server. The simultaneous support for synchronous and asynchronous
interaction in a single model tends to work well in a native implementation for the
average case, where neither the synchronous nor the asynchronous aspects of the
model are put to exceeding stress. The low complexity of a native implementation
together with high responsiveness might satisfy the requirements of the majority of
contextual collaboration applications today. The integration of meeting servers
restricted to only media traffic can significantly improve the scalability of the
implementation. The use of generic notification servers to support the model,
however, was problematic because mapping GSO behavior onto publish/subscribe
semantics caused additional overhead.

Acknowledgements. We would like to thank John Patterson, the Pesto team in Haifa,
and the Activity Explorer product and research teams for their inspiring discussions.

16 Silva Filho et al.

References

1. Cheng, L.-T., Hupfer, S., Ross, S. and Patterson, J., Jazzing up Eclipse with collaborative
tools. in OOPSLA'03 workshop on eclipse technology eXchange, (Anaheim, CA, 2003), 45-
49.

2. Fitzpatrick, G., Mansfield, T., Arnold, D., Phelps, T., Segall, B. and Kaplan, S.,
Instrumenting and Augmenting the Workaday World with a Generic Notification Service
called Elvin. in (ECSCW '99), (Copenhagen, Denmark, 1999), Kluwer, 431-451.

3. Freeman, E., Hupfer, S. and Arnold, K. JavaSpaces Principles, Patterns, and Practice.
Book News, Inc, 1999.

4. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Publishing Company, 1995.

5. Gelernter, D. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems (TOPLAS, 7 (1).

6. Geyer, W. and Cheng, L., Facilitating Emerging Collaboration through Light-weight
Information Sharing. in conference supplement CSCW'02, (New Orleans, LA, 2002).

7. Geyer, W., Richter, H., Fuchs, L., Frauenhofer, T., Daijavad, S. and Poltrock, S., A Team
Collaboration Space Supporting Capture and Access of Virtual Meetings. in ACM 2001
International Conference on Supporting Group Work, (Boulder, CO, USA, 2001), ACM.

8. Geyer, W., Vogel, J., Cheng, L. and Muller, M., Supporting Activity-Centric Collaboration
through Peer-to-Peer Shared Objects. in ACM GROUP, (Sanibel Island, FL, 2003), 115-
124.

9. Kantor, M. and Redmiles, D., Creating an Infrastructure for Ubiquitous Awareness. in
Eighth IFIP TC 13 Conference on Human-Computer Interaction (INTERACT 2001),
(Tokyo, Japan, 2001), 431-438.

10. Mahowald, R. From ICE Age To Contextual Collaboration, IDC, retrieved at
http://www.cio.com/analyst/062901_idc.html, June 29, 2006.

11. Moody, P. and Feinberg, J., C+B Seen Project. in
http://domino.research.ibm.com/cambridge/research.nsf/pages/projects.html.

12. Patterson, J.F., Day, M. and Kucan, J., Notification servers for synchronous groupware. in
ACM conference on Computer supported cooperative work (CSCW'96), (Boston,
Massachusetts, 1996), 122-129.

13. Preguiça, N., Martins, J.L., Domingos, H. and Duarte, S., Integrating Synchronous and
Asynchronous Interactions in Groupware Applications. in 11th International Workshop,
CRIWG 2005, (Porto de Galinhas, Brazil, 2005).

14. SearchDomino.com. Contextual Collaboration,
http://searchdomino.techtarget.com/sDefinition/0,,sid4_gci934929,00.html, June 26, 2006.

15. Silva Filho, R.S., Geyer, W., Brownholtz, B., Guy, I., Redmiles, D.F. and Millen, D.R.
Architectural Trade-Offs for Collaboration Services Supporting Contextual Collaboration -
RC23756, IBM T. J. Watson - Cambridge, Cambridge, MA, 2005.

16. Silva Filho, R.S. and Redmiles, D., Striving for Versatility in Publish/Subscribe
Infrastructures. in 5th International Workshop on Software Engineering and Middleware
(SEM'2005), (Lisbon, Portugal., 2005), ACM Press, 17 - 24.

17. Souza, C.R.B.d., Basaveswara, S.D. and Redmiles, D.F., Using Event Notification Servers
to Support Application Awareness. in IASTED International Conference on Software
Engineering and Applications, (Cambridge, MA, 2002), 691-697.

18. Wyckoff, P. TSpaces. IBM Systems Journal, 37 (3).

