
Analyzing a Socio-Technical Visualization Tool Using
Usability Inspection Methods

Erik Trainer1 Stephen Quirk1 Cleidson de Souza2 David Redmiles1
1Donald Bren School of Information and

Computer Sciences
University of California, Irvine

Irvine, CA, USA – 92667
[etrainer, squirk, redmiles]@ics.uci.edu

2Faculdade de Computação
Universidade Federal do Pará

Belém, PA, Brazil – 66075
cdesouza@ufpa.br

Abstract

Ariadne is a novel visualization tool that allows end
users to explore the socio-technical relationships in
software development projects. Essentially the
visualization is a variant of a social network graph. It
is based on the observation that dependencies between
software components create dependencies between the
developers implementing those components. This
relationship emerged in our own and other
researchers' field studies of software projects. Large
software development projects require management of
dependencies by managers and developers to ensure
the smooth coordination of work. We sought to
evaluate our visualization to assess its utility. Although
we had some informal trials with potential end users,
we sought a deeper analysis before further refinement
of the tool and evaluation on a larger scale. Usability
inspection methods provided one potential avenue.
Moreover, such inspection methods yield a kind of
rationale not directly derived from human subjects
evaluations. We report on the application of these
inspection methods and discuss the implications of
their results in the context of usability evaluations for
visual interfaces.

1. Introduction

It has been long recognized that breakdowns in
communication and coordination efforts constitute a
major problem in collaborative software development
[6]. One of the reasons for these problems is the large
number of dependencies among activities in the
software development process and the dependencies
among different software artifacts.

Parnas was one of the first researchers to recognize
the relationship between software dependencies and
coordination: he suggested that by reducing

dependencies among software development artifacts, it
is possible to reduce developers’ dependencies on one
another, creating a managerial advantage [13].
Nowadays, this is a well-known argument among
researchers and practitioners.

Conversely, but also supporting this relationship
between dependencies and coordination, Conway [5]
postulated that the structure of a software system
would reflect the communication needs of the people
performing the work. That is, technical dependencies
between components create a need for communication
and coordination between developers, and similarly,
dependencies between the development tasks are
reflected in the product dependencies.

Ariadne’s visualization was created with the aim of
reducing the acknowledged gap between software
dependencies and coordination by exploring socio-
technical relationships to support software developers’
activities. It combines source-code dependencies from
static-call graphs and authorship from Configuration
Management repositories to create a sociogram [17]
that describes dependencies between developers
through the code they write. This node-and-edge graph
is calculated using a matrix multiplication method [3,
7].

During early development of the tool, we
performed two key field studies, each 2-3 months in
duration, that provided us insight into several types of
communication and coordination problems in
distributed software development projects. Of these
issues, we derived several representative scenarios that
revealed the types of dependency relationships
managers and developers need to understand in order
to coordinate their work [7]. Next, we designed an
initial prototype and revised it after some early use and
feedback from others.

In order to keep the visualization linked to human
needs, we applied several usability inspection methods
and cognitive theories to evaluate it against typical

usage tasks we observed earlier. This paper reports on
our inspections and discusses the results in the context
of evaluation of visual interfaces.

The rest of this paper is structured as follows. Next,
we present Ariadne’s visualization. We follow up in
sections 3 and 4 with the results of our evaluation and
discuss the utility of inspection methods in early
design. We conclude in section 5.

2. Visualization

Ariadne lays out dependency information in a table-
based fashion, placing the most numerous data items
along the longest screen dimension. Called code units
occupy the x-axis and authors occupy the y-axis, with
both ordered alphabetically by default. The
visualization lays out code units organized by package,
much how a programmer or manager might expect to
see them in a development editor. To see
dependencies within these packages (Figure 1), users
can Ctrl+click on a package. Similarly they can click
on classes to see method dependencies.

Figure 1. Closeup of socio-technical

dependencies in the “main” package of open-
source Java project “Tyrant.”

Ariadne draws connections from a dependent

author to the code unit they are dependent upon and
back to the author responsible for that code unit, and
repeats for each set of socio-technical dependency
information in the project. The color of each line (or
dependency) denotes the directionality of the
dependency and shares its color with the originating
(dependent) author. An unfiltered overview (Figure 2)
of the dependency information makes it possible to
recognize patterns in the way developers call other

developers’ code, prominent code modules, and
prominent authors even for a specific area of the code.

Figure 2. Developersʼ socio-technical

relationships in the open-source Java project
“Tyrant,” revealing frequent use of modules

by user “Chrisgri” (developer in red).

Filtering the overview by artifact reveals

connections only from authors using that artifact.
Managers and developers can focus on artifacts at
different granularities that may be undergoing many
changes in order to determine developers' progress, as
indicated by our field studies [7]. Focusing on an
artifact may allow managers and developers to locate
other developers affecting or affected by changes to
that artifact.

Using an additive approach, users can compare the
calls on code units made by one author with those
made by another author. The user can click on authors'
names to reveal only their dependency information.
Ariadne's visualization technique preserves the ease of
identifying connections between authors found in
simple social network graphs of developers. Looking at
only the y-axis, users can readily determine the
inbound and outbound connections between a project's
developers. The presence of a color corresponding to
an author's name indicates an outbound dependency,
while the presence of other authors' colors indicates an
inbound socio-technical dependency from those other
authors. While Ariadne's visualization makes a
significant departure from a more traditional graph-
based approach, it does not eliminate the advantages of
that method of data display.

3. Application of usability inspection
methods

In order to assess the presentation, usability, and
ease of learning of Ariadne’s visualization, we
evaluated it using Tufte’s general principles [15, 16],
the Heuristic Evaluation [11], the Cognitive
Walkthrough [18], and the Cognitive Dimensions of

Notations [8]. We performed each inspection method
with a team comprised of four colleagues. For the most
part, they had no experience using the new
visualization. This unfamiliarity helped us to identify
problematic design assumptions about users’
expectations and perceptions using the tool.

The combination of inspection methods allowed us
to tease out the most important problems with the
visualization. For example, the Cognitive
Walkthrough, Tufte’s principles, and the Cognitive
Dimensions analyses pointed out problems with color
choice. Possible solutions include using general color
design guidelines [5] and selecting colors to support
colorblind users [14]. The Heuristic Evaluation and
Cognitive Dimensions revealed the potential need to
allow users to undo certain filtering actions in order to
trace back their steps, as well as the option to view
different configurations of developers (into teams, for
example) and system components. All three methods
suggested the need to improve feedback, whether to
indicate that specific dependencies have not been
created, to display the calling code for a given
dependency, or to show progress bars when the
visualization undergoes a screen refresh.

Each usability inspection has its particular focus, so
it is not surprising that the problems we found were
problems the methods were intended to reveal. The
Cognitive Walkthrough and Cognitive Dimensions
focus on actions with the visualization that are
mentally demanding. Accordingly, they revealed
problems like keeping track of different colors and
filters applied across use of the visualization. The
Heuristic Evaluation, serving as a broad checklist of
good usability principles, reinforced these findings and
helped to identify improvements to be made in the
future (e.g. help and documentation and correction of
visual inconsistencies in filtered views).

4. Discussion and Related Work

The four analyses have allowed us to identify
problems in the early stage of the development of our
prototype of Ariadne before trials with human subjects.
Eventually, we will run new trials with human
subjects, though, generally speaking, human subject
evaluations yield only performance data and not
rationale that may affect design, especially in the early
stages of design.

Some experimenters obtain rationale through Think
Aloud methods. Nielsen and colleagues provide a
recent, detailed discussion of applying this method and
extensions to limit certain biases [12]. The rationale
obtained in Think Aloud protocols is expensive in
terms of obtaining subjects and performing the

subsequent extensive analysis. The complexity and
cost make it less appealing for early design.

New evaluation techniques for information
visualization have recently emerged due to the
limitations of current approaches to evaluation [1, 2,
14]. Some claim that evaluations targeted at visual
interfaces test the wrong users [1, 14]. Unconventional
interface components negatively impact user
performance [1].

Testing the usability of visual tools with inspection
methods is critical because assessment in real settings
is a very rare possibility. At best, real employees can
be brought in for laboratory experiments, and that is
something we might do after further refinement of
Ariadne. While we were not able to test the tools with
real users, we were able to test it against tasks
representative of real activities [7].

Ariadne's visual interface is not traditional. Typical
user interface components like buttons and menus are
not the primary focus. As such, in early design of the
visualization, it is important to know whether users can
overcome biases caused by the familiarity of traditional
interface components [1]. The multiple inspection
methods we applied here indicate that they can.

Visualization-specific heuristics can uncover issues
that traditional usability heuristics may not [19]. The
standard usability heuristics applied here were good
enough to validate high-level perception-specific
problems such as the use of color and detail shown in
the interface. As we continue to refine Ariande with
advanced information visualization-specific
capabilities such as zooming and history views, we
will look closer toward information visualization-
specific heuristics such as those proposed by Ardito
and colleagues [2]. Evaluation techniques that take into
account the exploratory nature of users' tasks [14] will
be useful in later stages of refinement of the tool.

5. Conclusions and future work

This paper described Ariadne, a visual software tool
that translates technical dependencies in source-code to
social dependencies between developers implementing
that code. Ariadne has been motivated by our own
empirical studies of software development projects and
others’. The visualization is a revision of our original
prototype [7].

We chose to evaluate the visual interface with
usability inspection methods. To a degree, this
approach is somewhat novel as these methods are
normally applied to user interface components and not
so often to workspace or information interface
components. While every user interface might be
called an information interface, our work provides a

concrete example of amplifying the scope of usage of
these methods to socio-technical information
visualizations.

In conclusion, the inspection findings will lead us
to improve the design of Ariadne before additional
testing with human subjects. Moreover, the findings
were sufficient to confirm the usefulness of these
inspection methods in analyzing visual information
interfaces and not just more traditional, menu-driven
interfaces. Finally, inspection methods yield design
explanations, answering questions about how and why
an interface can be used to achieve its intended
objectives.

6. Acknowledgments

This research is supported by the U.S. National
Science Foundation under grants 0534775 and
0205724, and by an IBM Eclipse Technology
Exchange grant. The authors gratefully acknowledge
comments and encouragement from their colleague
Steve Abrams and members of their department’s
“Continuous Coordination” group.

7. References

[1] K. Andrews, “Evaluating Information Visualisations”, In
Proceedings of the 2006 AVI Workshop on Beyond Time and
Errors: Novel Evaluation Methods for Information
Visualization, ACM, New York, NY, 2006, pp.1-5.

[2] C. Ardito, P. Buono, M.F. Costabile, and R. Lanzilotti,
“Systematic Inspection of Information Visualization
Systems”, In Proceedings of the 2006 AVI Workshop on
Beyond Time and Errors: Novel Evaluation Methods for
Information Visualization, ACM, New York, NY, 2006, pp.
1-4.
[3] M. Cataldo, P.A. Wagstrom, J.D. Herbsleb, and K.
Carley, “Identification of Coordination Requirements:
Implications for the Design of Collaboration and Awareness
Tools”, In Proceedings of the 2006 20th Anniversary
Conference on Computer Supported Cooperative Work,
ACM, New York, NY, 2006, pp. 353-362.

[4] W. Chisholm, et al., “W3C Web Content and
Accessibility Guidelines 1.0”, 1999. Available:
http://www.w3.org/TR/WCAG10/

[5] M.E. Conway, “How Do Committees Invent?”,
Datamation, Thompson, 1968, 14 (4), pp. 28-31.

[6] B, Curtis, H. Krasner, and N. Iscoe, “A Field Study of the
Software Design Process for Large Systems”,
Communications of the ACM, ACM, New York, NY, 1988,
31 (11), pp. 1268-1287.

[7] C.R.B. de Souza, S. Quirk, E. Trainer, and D.F.
Redmiles, “Supporting Collaborative Software Development
through the Visualization of Socio-Technical Dependencies”,
In Proceedings of the 2007 International ACM Conference

on Supporting Group Work, ACM, New York, NY, 2007, pp.
147-156.

[8] T. Green, “Cognitive Dimensions of Notations”, People
and Computers V Proceedings of HCI'89, Cambridge
University Press, New York, NY, 1990, pp. 443-460.

[9] J.D. Herbsleb and R.E. Grinter, “Architectures,
Coordination, and Distance: Conway's Law and Beyond”,
IEEE Software, IEEE Computer Society, Los Alamitos, CA,
1999, pp. 63-70.

[10] L. Jefferson and R. Harvey, “Accommodating Color
Blind Computer Users”, In Proceedings of the 8th
international ACM SIGACCESS Conference on Computers
and Accessibility, ACM, New York, NY, 2006, pp. 40-47.

[11] J.K. Nielsen, “Heuristic Evaluation”, In Usability
Inspection Methods, Wiley, New York, NY, 1994.

[12] J. Nielsen, T. Clemmensen, and C. Yssing, “Getting
Access to What Goes on in People's Heads?: Reflections on
the Think-Aloud Technique”, In Proceedings of the Second
Nordic Conference on Human-Computer Interaction, ACM,
New York, NY, 2002, pp. 101-110.
[13] D. L. Parnas, “On the Criteria to be Used in
Decomposing Systems into Modules”, Communications of
the ACM, ACM, New York, NY, 1972, 15 (12), pp. 1053-
1058.

[14] C. Plaisant, “The Challenge of Information
Visualization Evaluation”, In Proceedings of the Working
Conference on Advanced Visual Interfaces, ACM, New
York, NY, 2004, pp. 109-116.]

[15] Tufte, E., Beautiful Evidence, Graphics Press, Cheshire,
CT, 2006.

[16] Tufte, E., Envisioning Information, Graphics Press,
Cheshire, CT, 1990.

[17] Wasserman, S. and K. Faust, Social Network Analysis:
Methods and Applications, Cambridge University Press,
Cambridge, UK, 1994.

[18] C.W. Wharton, J. Reiman, C. Lewis, and P. Polson,
“The Cognitive Walkthrough Method: A Practitioner's
Guide”, In Usability Inspection Methods, Wiley, New York,
NY, 1994.

[19] T. Zuk, L. Schlesier, P. Neumann, M.S. Hancock, and S.
Carpendale, “Heuristics for Information Visualization
Evaluation”, In Proceedings of the 2006 AVI Workshop on
Beyond Time and Errors: Novel Evaluation Methods for
Information Visualization, ACM, New York, NY, 2006, pp.
1-6.

