
Uninformed (also called blind)
search algorithms)

This Lecture
Chapter 3.1-3.4

Next Lecture

Chapter 3.5-3.7

(Please read lecture topic material before and after each lecture on that topic)

Outline

 Overview of uninformed search methods

 Search strategy evaluation
 Complete? Time? Space? Optimal?
 Max branching (b), Solution depth (d), Max depth (m)

 Search Strategy Components and Considerations
 Queue? Goal Test when? Tree search vs. Graph search?

 Various blind strategies:
 Breadth-first search
 Uniform-cost search
 Depth-first search
 Iterative deepening search (generally preferred)
 Bidirectional search (preferred if applicable)

3

Uninformed search strategies

 Uninformed (blind):
 You have no clue whether one non-goal state is better

than any other. Your search is blind. You don’t know if
your current exploration is likely to be fruitful.

 Various blind strategies:
 Breadth-first search
 Uniform-cost search
 Depth-first search
 Iterative deepening search (generally preferred)
 Bidirectional search (preferred if applicable)

4

Search strategy evaluation

 A search strategy is defined by the order of node expansion

 Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory
 optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms of

 b: maximum branching factor of the search tree
 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)

5

Uninformed search strategies

 Queue for Frontier:
 FIFO? LIFO? Priority?

 Goal-Test:
 When inserted into Frontier? When removed?

 Tree Search or Graph Search:
 Forget Explored nodes? Remember them?

Queue for Frontier

 FIFO (First In, First Out)
 Results in Breadth-First Search

 LIFO (Last In, First Out)
 Results in Depth-First Search

 Priority Queue sorted by path cost so far
 Results in Uniform Cost Search

 Iterative Deepening Search uses Depth-First
 Bidirectional Search can use either Breadth-First or

Uniform Cost Search

6

When to do Goal-Test?
When generated? When popped?

 Do Goal-Test when node is popped from queue
 IF you care about finding the optimal path
 AND your search space may have both short

expensive and long cheap paths to a goal.
 Guard against a short expensive goal.
 E.g., Uniform Cost search with variable step costs.

 Otherwise, do Goal-Test when is node inserted.
 E.g., Breadth-first Search, Depth-first Search, or Uniform

Cost search when cost is a non-decreasing function of depth
only (which is equivalent to Breadth-first Search).

 REASON ABOUT your search space & problem.
 How could I possibly find a non-optimal goal?

8

Repeated states

 Failure to detect repeated states can turn a linear
problem into an exponential one!

 Test is often implemented as a hash table.

9

Solutions to Repeated States

Graph search
 Never explore a state explored before

 Must keep track of all possible states (a lot of memory)
 E.g., 8-puzzle problem, we have 9! = 362,880 states

 Memory-efficient approximation for DFS/DLS
 Avoid states on path to root: avoid looping paths.

 Graph search optimality/completeness
 Same as Tree search; just a space-time trade-off

S

B

C

S

B C

S C B S

State Space
Example of a Search Tree

faster but memory inefficient

10

Breadth-first search

 Expand shallowest unexpanded node
 Frontier (or fringe): nodes in queue to be explored
 Frontier is a first-in-first-out (FIFO) queue, i.e.,

new successors go at end of the queue.
 Goal-Test when inserted.

Initial state = A
Is A a goal state?

Put A at end of queue.
frontier = [A]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

 Expand shallowest unexpanded node
 Frontier is a FIFO queue, i.e., new

successors go at end

11

Breadth-first search

Expand A to B, C.
Is B or C a goal state?

Put B, C at end of queue.
frontier = [B,C]

12

Breadth-first search

 Expand shallowest unexpanded node
 Frontier is a FIFO queue, i.e., new

successors go at end

Expand B to D, E
Is D or E a goal state?

Put D, E at end of queue
frontier=[C,D,E]

13

Breadth-first search

 Expand shallowest unexpanded node
 Frontier is a FIFO queue, i.e., new

successors go at end

Expand C to F, G.
Is F or G a goal state?

Put F, G at end of queue.
frontier = [D,E,F,G]

14

Breadth-first search

 Expand shallowest unexpanded node
 Frontier is a FIFO queue, i.e., new

successors go at end

Expand D to no children.
Forget D.

frontier = [E,F,G]

15

Breadth-first search

 Expand shallowest unexpanded node
 Frontier is a FIFO queue, i.e., new

successors go at end

Expand E to no children.
Forget B,E.

frontier = [F,G]

16

Example
BFS

17

Properties of breadth-first search

 Complete? Yes, it always reaches a goal (if b is finite)
 Time? 1+b+b2+b3+… + bd = O(bd)
 (this is the number of nodes we generate)
 Space? O(bd) (keeps every node in memory,
 either in fringe or on a path to fringe).
 Optimal? No, for general cost functions.
 Yes, if cost is a non-decreasing function only of depth.

 With f(d) ≥ f(d-1), e.g., step-cost = constant:
 All optimal goal nodes occur on the same level
 Optimal goal nodes are always shallower than non-optimal goals
 An optimal goal will be found before any non-optimal goal

 Space is the bigger problem (more than time)

18

Uniform-cost search

Breadth-first is only optimal if path cost is a non-decreasing
function of depth, i.e., f(d) ≥ f(d-1); e.g., constant step cost,
as in the 8-puzzle.

Can we guarantee optimality for variable positive step costs ≥ε?
 (Why ≥ε? To avoid infinite paths w/ step costs 1, ½, ¼, …)

Uniform-cost Search:
 Expand node with smallest path cost g(n).
 Frontier is a priority queue, i.e., new successors are merged

into the queue sorted by g(n).
 Can remove successors already on queue w/higher g(n).

 Saves memory, costs time; another space-time trade-off.

 Goal-Test when node is popped off queue.

19

Uniform-cost search

Uniform-cost Search:
 Expand node with smallest path cost g(n).

Proof of Completeness:

Given that every step will cost more than 0,
and assuming a finite branching factor, there
is a finite number of expansions required before
the total path cost is equal to the path cost of the
goal state. Hence, we will reach it.

Proof of optimality given completeness:

Assume UCS is not optimal.
Then there must be an (optimal) goal state with
path cost smaller than the found (suboptimal) goal
state (invoking completeness).
However, this is impossible because UCS would
have expanded that node first by definition.
Contradiction.

20

Uniform-cost search

Implementation: Frontier = queue ordered by path cost.
Equivalent to breadth-first if all step costs all equal.

Complete? Yes, if b is finite and step cost ≥ ε > 0.
 (otherwise it can get stuck in infinite loops)

Time? # of nodes with path cost ≤ cost of optimal solution.
 O(b1+C*/ε) ≈ O(bd+1)
Space? # of nodes with path cost ≤ cost of optimal solution.
 O(b1+C*/ε) ≈ O(bd+1)
Optimal? Yes, for any step cost ≥ ε > 0.

21

S B

A D

E

C

F

G

1 20

2

3

4 8

6 1
1

The graph above shows the step-costs for different paths going from the start (S) to
the goal (G).

Use uniform cost search to find the optimal path to the goal.

Exercise for at home

22

Depth-first search

 Expand deepest unexpanded node
 Frontier = Last In First Out (LIFO) queue, i.e., new

successors go at the front of the queue.
 Goal-Test when inserted.

Initial state = A
Is A a goal state?

Put A at front of queue.
frontier = [A]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

23

Depth-first search

 Expand deepest unexpanded node
 Frontier = LIFO queue, i.e., put successors at front

Expand A to B, C.
Is B or C a goal state?

Put B, C at front of queue.
frontier = [B,C]

Note: Can save a space factor of b by generating successors one at a time.
See backtracking search in your book, p. 87 and Chapter 6.

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

24

Depth-first search

 Expand deepest unexpanded node
 Frontier = LIFO queue, i.e., put successors at front

Expand B to D, E.
Is D or E a goal state?

Put D, E at front of queue.
frontier = [D,E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

25

Depth-first search

 Expand deepest unexpanded node
 Frontier = LIFO queue, i.e., put successors at front

Expand D to H, I.
Is H or I a goal state?

Put H, I at front of queue.
frontier = [H,I,E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

26

Depth-first search

 Expand deepest unexpanded node
 Frontier = LIFO queue, i.e., put successors at front

Expand H to no children.
Forget H.

frontier = [I,E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

27

Depth-first search

 Expand deepest unexpanded node
 Frontier = LIFO queue, i.e., put successors at front

Expand I to no children.
Forget D, I.

frontier = [E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

28

Depth-first search

 Expand deepest unexpanded node
 Frontier = LIFO queue, i.e., put successors at front

Expand E to J, K.
Is J or K a goal state?

Put J, K at front of queue.
frontier = [J,K,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

29

Depth-first search

 Expand deepest unexpanded node
 Frontier = LIFO queue, i.e., put successors at front

Expand I to no children.
Forget D, I.

frontier = [E,C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

30

Depth-first search

 Expand deepest unexpanded node
 Frontier = LIFO queue, i.e., put successors at front

Expand K to no children.
Forget B, E, K.

frontier = [C]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

31

Depth-first search

 Expand deepest unexpanded node
 Frontier = LIFO queue, i.e., put successors at front

Expand C to F, G.
Is F or G a goal state?

Put F, G at front of queue.
frontier = [F,G]

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

32

Properties of depth-first search

 Complete? No: fails in loops/infinite-depth spaces
 Can modify to avoid loops/repeated states along path

 check if current nodes occurred before on path to root

 Can use graph search (remember all nodes ever seen)
 problem with graph search: space is exponential, not linear

 Still fails in infinite-depth spaces (may miss goal entirely)

 Time? O(bm) with m =maximum depth of space
 Terrible if m is much larger than d
 If solutions are dense, may be much faster than BFS

 Space? O(bm), i.e., linear space!
 Remember a single path + expanded unexplored nodes

 Optimal? No: It may find a non-optimal goal first

A

B C

33

Iterative deepening search

• To avoid the infinite depth problem of DFS,
 only search until depth L,
 i.e., we don’t expand nodes beyond depth L.
 Depth-Limited Search

• What if solution is deeper than L? Increase L iteratively.
 Iterative Deepening Search

• This inherits the memory advantage of Depth-first search

• Better in terms of space complexity than Breadth-first search.

34

Iterative deepening search L=0

35

Iterative deepening search L=1

36

Iterative deepening search L=2

37

Iterative Deepening Search L=3

38

Iterative deepening search

 Number of nodes generated in a depth-limited search to
depth d with branching factor b:

 NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

 Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

 NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

 = O(bd)

 For b = 10, d = 5,

 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

)(dbO

39

Properties of iterative deepening search

 Complete? Yes

 Time? O(bd)

 Space? O(bd)

 Optimal? No, for general cost functions.
 Yes, if cost is a non-decreasing function only of depth.

40

Bidirectional Search

 Idea
 simultaneously search forward from S and backwards

from G
 stop when both “meet in the middle”
 need to keep track of the intersection of 2 open sets of

nodes

 What does searching backwards from G mean
 need a way to specify the predecessors of G

 this can be difficult,
 e.g., predecessors of checkmate in chess?

 which to take if there are multiple goal states?
 where to start if there is only a goal test, no explicit list?

41

Bi-Directional Search
Complexity: time and space complexity are: /2()dO b

42

Summary of algorithms

Generally the preferred
uninformed search strategy

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deepening
DLS

Bidirectional
(if
applicable)

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d]

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d]

There are a number of footnotes, caveats, and assumptions.
See Fig. 3.21, p. 91.
[a] complete if b is finite
[b] complete if step costs ≥ ε > 0
[c] optimal if step costs are all identical
 (also if path cost non-decreasing function of depth only)
[d] if both directions use breadth-first search
 (also if both directions use uniform-cost search with step costs ≥ ε > 0)

Note that d ≤ 1+C*/ε

43

Summary

 Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

 Variety of uninformed search strategies

 Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

http://www.cs.rmit.edu.au/AI-Search/Product/
http://aima.cs.berkeley.edu/demos.html (for more demos)

http://www.cs.rmit.edu.au/AI-Search/Product/
http://www.cs.rmit.edu.au/AI-Search/Product/
http://www.cs.rmit.edu.au/AI-Search/Product/
http://aima.cs.berkeley.edu/demos.html

	Uninformed (also called blind) search algorithms)
	Outline
	Uninformed search strategies
	Search strategy evaluation
	Uninformed search strategies
	Queue for Frontier
	When to do Goal-Test?�When generated? When popped?
	Repeated states
	Solutions to Repeated States
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Slide Number 16
	Properties of breadth-first search
	Uniform-cost search
	Uniform-cost search
	Uniform-cost search
	Slide Number 21
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Properties of depth-first search
	Iterative deepening search
	Iterative deepening search L=0
	Iterative deepening search L=1
	Iterative deepening search L=2
	Iterative Deepening Search L=3
	Iterative deepening search
	Properties of iterative deepening search
	Bidirectional Search
	Bi-Directional Search
	Summary of algorithms
	Summary

