First-Order Logic
Knowledge Representation

Reading: Chapter 8, 9.1-9.2, 9.5.1-9.5.5

FOL Syntax and Semantics read: 8.1-8.2
FOL Knowledge Engineering read: 8.3-8.5
FOL Inference read: Chapter 9.1-9.2, 9.5.1-9.5.5

(Please read lecture topic material before and after each lecture on that topic)
Outline

• Review --- Syntactic Ambiguity

• Using FOL
 – Tell, Ask

• Example: Wumpus world

• Deducing Hidden Properties
 – Keeping track of change
 – Describing the results of Actions

• Set Theory in First-Order Logic

• Knowledge engineering in FOL

• The electronic circuits domain
You will be expected to know

• Seven steps of Knowledge Engineering (R&N section 8.4.1)

• Given a simple Knowledge Engineering problem, produce a simple FOL Knowledge Base that solves the problem
Review --- Syntactic Ambiguity

- FOPC provides many ways to represent the same thing.
- E.g., “Ball-5 is red.”
 - HasColor(Ball-5, Red)
 - Ball-5 and Red are objects related by HasColor.
 - Red(Ball-5)
 - Red is a unary predicate applied to the Ball-5 object.
 - HasProperty(Ball-5, Color, Red)
 - Ball-5, Color, and Red are objects related by HasProperty.
 - ColorOf(Ball-5) = Red
 - Ball-5 and Red are objects, and ColorOf() is a function.
 - HasColor(Ball-5(), Red())
 - Ball-5() and Red() are functions of zero arguments that both return an object, which objects are related by HasColor.
 - ...

- This can GREATLY confuse a pattern-matching reasoner.
 - Especially if multiple people collaborate to build the KB, and they all have different representational conventions.
Review --- Syntactic Ambiguity --- Partial Solution

• FOL can be TOO expressive, can offer TOO MANY choices

• Likely confusion, especially for teams of Knowledge Engineers

• Different team members can make different representation choices
 – E.g., represent “Ball43 is Red.” as:
 • a predicate (= verb)? E.g., “Red(Ball43)”?
 • an object (= noun)? E.g., “Red = Color(Ball43))”?
 • a property (= adjective)? E.g., “HasProperty(Ball43, Red)”?

• PARTIAL SOLUTION:
 – An upon-agreed ontology that settles these questions
 – Ontology = what exists in the world & how it is represented
 – The Knowledge Engineering teams agrees upon an ontology
 BEFORE they begin encoding knowledge
Using FOL

- We want to TELL things to the KB, e.g.
 \[
 \text{TELL(KB, } \forall x, King(x) \Rightarrow Person(x) \text{)}
 \]
 \[
 \text{TELL(KB, King(John))}
 \]

 These sentences are assertions

- We also want to ASK things to the KB,
 \[
 \text{ASK(KB, } \exists x, Person(x) \text{)}
 \]

 these are queries or goals

The KB should return the list of x’s for which Person(x) is true:
\[
\{x/John, x/Richard, \ldots\}
\]
Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base
Typical percept sentence:
Percept([Stench,Breeze,Glitter,None,None],5)

Actions:
Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb

To determine best action, construct query:
∀ a BestAction(a,5)

ASK solves this and returns \{a/Grab\}
- And TELL about the action.
Knowledge Base for Wumpus World

- **Perception**
 - $\forall s, b, g, x, y, t \ Percept([s, Breeze, g, x, y], t) \Rightarrow Breeze(t)$
 - $\forall s, b, x, y, t \ Percept([s, b, Glitter, x, y], t) \Rightarrow Glitter(t)$

- **Reflex action**
 - $\forall t \ Glitter(t) \Rightarrow BestAction(Grab, t)$

- **Reflex action with internal state**
 - $\forall t \ Glitter(t) \land \neg Holding(Gold, t) \Rightarrow BestAction(Grab, t)$

 Holding(Gold, t) can not be observed: keep track of change.
Deducing hidden properties

Environment definition:
\[\forall x,y,a,b \ Adjacent([x,y],[a,b]) \iff [a,b] \in \{[x+1,y], [x-1,y],[x,y+1],[x,y-1]\} \]

Properties of locations:
\[\forall s,t \ At(Agent,s,t) \land Breeze(t) \Rightarrow Breezy(s) \]

Squares are breezy near a pit:
- **Diagnostic** rule---infer cause from effect
 \[\forall s \ Breezy(s) \iff \exists r \ Adjacent(r,s) \land Pit(r) \]

- **Causal** rule---infer effect from cause (model based reasoning)
 \[\forall r \ Pit(r) \Rightarrow [\forall s \ Adjacent(r,s) \Rightarrow Breezy(s)] \]
Keeping track of change

Facts hold in situations, rather than eternally
E.g., \(Holding(\text{Gold}, \text{Now}) \) rather than just \(Holding(\text{Gold}) \)

Situation calculus is one way to represent change in FOL:
 Adds a situation argument to each non-eternal predicate
 E.g., \(\text{Now} \) in \(Holding(\text{Gold}, \text{Now}) \) denotes a situation

Situations are connected by the Result function
\(Result(a, s) \) is the situation that results from doing \(a \) in \(s \)
Describing actions I

“Effect” axiom—describe changes due to action
∀s \(AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s)) \)

“Frame” axiom—describe non-changes due to action
∀s \(HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s)) \)

Frame problem: find an elegant way to handle non-change
 (a) representation—avoid frame axioms
 (b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . . .
Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):

\[P \text{ true afterwards} \Leftrightarrow \text{[an action made } P \text{ true}} \]
\[\quad \lor \quad P \text{ true already and no action made } P \text{ false} \]

For holding the gold:

\[\forall a, s \quad Holding(Gold, Result(a, s)) \Leftrightarrow \]
\[\quad [(a = \text{Grab} \land \text{AtGold}(s)) \lor \]
\[\quad \text{(Holding(Gold, s) \land a \neq Release)}] \]
Can we define set theory using FOL?
 - individual sets, union, intersection, etc

Answer is yes.

Basics:
 - empty set = constant = \{ \}

 - unary predicate Set(), true for sets

 - binary predicates:
 \(x \in s \) (true if \(x \) is a member of the set \(s \))
 \(s_1 \subseteq s_2 \) (true if \(s_1 \) is a subset of \(s_2 \))

 - binary functions:
 intersection \(s_1 \cap s_2 \), union \(s_1 \cup s_2 \), adjoining \(\{x|s\} \)
A Possible Set of FOL Axioms for Set Theory

The only sets are the empty set and sets made by adjoining an element to a set
\[\forall s \ Set(s) \leftrightarrow (s = \{\}) \lor (\exists x, s_2 \ Set(s_2) \land s = \{x|s_2\}) \]

The empty set has no elements adjoined to it
\[\neg \exists x, s \ {x|s} = \{\} \]

Adjoining an element already in the set has no effect
\[\forall x, s \ x \in s \leftrightarrow s = \{x|s\} \]

The only elements of a set are those that were adjoined into it.
Expressed recursively:
\[\forall x, s \ x \in s \leftrightarrow [\exists y, s_2 \ (s = \{y|s_2\} \land (x = y \lor x \in s_2))] \]
A Possible Set of FOL Axioms for Set Theory

A set is a subset of another set iff all the first set’s members are members of the 2nd set
\(\forall s_1, s_2 \ s_1 \subseteq s_2 \iff (\forall x \ x \in s_1 \Rightarrow x \in s_2) \)

Two sets are equal iff each is a subset of the other
\(\forall s_1, s_2 \ (s_1 = s_2) \iff (s_1 \subseteq s_2 \land s_2 \subseteq s_1) \)

An object is in the intersection of 2 sets only if a member of both
\(\forall x, s_1, s_2 \ x \in (s_1 \cap s_2) \iff (x \in s_1 \land x \in s_2) \)

An object is in the union of 2 sets only if a member of either
\(\forall x, s_1, s_2 \ x \in (s_1 \cup s_2) \iff (x \in s_1 \lor x \in s_2) \)
The electronic circuits domain

One-bit full adder

Possible queries:
- does the circuit function properly?
- what gates are connected to the first input terminal?
- what would happen if one of the gates is broken?
and so on
The electronic circuits domain

1. Identify the task
 - Does the circuit actually add properly?

2. Assemble the relevant knowledge
 - Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 - Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
 - Alternatives:
 - Type(X_1) = XOR (function)
 - Type(X_1, XOR) (binary predicate)
 - XOR(X_1) (unary predicate)
The electronic circuits domain

4. Encode general knowledge of the domain
 - $\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2)$
 - $\forall t \text{ Signal}(t) = 1 \lor \text{Signal}(t) = 0$
 - $1 \neq 0$
 - $\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Connected}(t_2, t_1)$
 - $\forall g \text{ Type}(g) = \text{OR} \Rightarrow \text{Signal(Out}(1,g)) = 1 \iff \exists n \text{ Signal(In}(n,g)) = 1$
 - $\forall g \text{ Type}(g) = \text{AND} \Rightarrow \text{Signal(Out}(1,g)) = 0 \iff \exists n \text{ Signal(In}(n,g)) = 0$
 - $\forall g \text{ Type}(g) = \text{XOR} \Rightarrow \text{Signal(Out}(1,g)) = 1 \iff \text{Signal(In}(1,g)) \neq \text{Signal(In}(2,g))$
 - $\forall g \text{ Type}(g) = \text{NOT} \Rightarrow \text{Signal(Out}(1,g)) \neq \text{Signal(In}(1,g))$
5. Encode the specific problem instance

Type(X_1) = XOR Type(X_2) = XOR
Type(A_1) = AND Type(A_2) = AND
Type(O_1) = OR

Connected(Out(1,X_1),In(1,X_2)) Connected(In(1,C_1),In(1,X_1))
Connected(Out(1,X_1),In(2,A_2)) Connected(In(1,C_1),In(1,A_1))
Connected(Out(1,A_2),In(1,O_1)) Connected(In(2,C_1),In(2,X_1))
Connected(Out(1,A_1),In(2,O_1)) Connected(In(2,C_1),In(2,A_1))
Connected(Out(1,X_2),Out(1,C_1)) Connected(In(3,C_1),In(2,X_2))
Connected(Out(1,O_1),Out(2,C_1)) Connected(In(3,C_1),In(1,A_2))
The electronic circuits domain

6. Pose queries to the inference procedure
 What are the possible sets of values of all the terminals for the adder circuit?

\[\exists i_1, i_2, i_3, o_1, o_2 \text{ Signal}(\text{In}(1,C_1)) = i_1 \land \text{Signal}(\text{In}(2,C_1)) = i_2 \land \text{Signal}(\text{In}(3,C_1)) = i_3 \land \text{Signal}(\text{Out}(1,C_1)) = o_1 \land \text{Signal}(\text{Out}(2,C_1)) = o_2 \]

7. Debug the knowledge base
 May have omitted assertions like $1 \neq 0$
Review --- Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base
Summary

- First-order logic:
 - Much more expressive than propositional logic
 - Allows objects and relations as semantic primitives
 - Universal and existential quantifiers
 - Syntax: constants, functions, predicates, equality, quantifiers

- Knowledge engineering using FOL
 - Capturing domain knowledge in logical form

- Inference and reasoning in FOL
 - Next lecture

- Required Reading:
 - All of Chapter 8
 - Next lecture: Chapter 9