Local Search Algorithms

This lecture topic Chapter 4.1-4.2

Next lecture topic Chapter 5

(Please read lecture topic material before and after each lecture on that topic)

Outline

- Hill-climbing search
 - Gradient Descent in continuous spaces
- Simulated annealing search
- Tabu search
- Local beam search
- Genetic algorithms
- <u>"Random Restart Wrapper" for above methods</u>
- Linear Programming

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens
- In such cases, we can use local search algorithms
- Keep a single "current" state, or a small set of states.
 Try to improve it or them.
- Very memory efficient (only keep one or a few states)
 You get to control how much memory you use

Example: *n*-queens

 Put n queens on an n × n board with no two queens on the same row, column, or diagonal



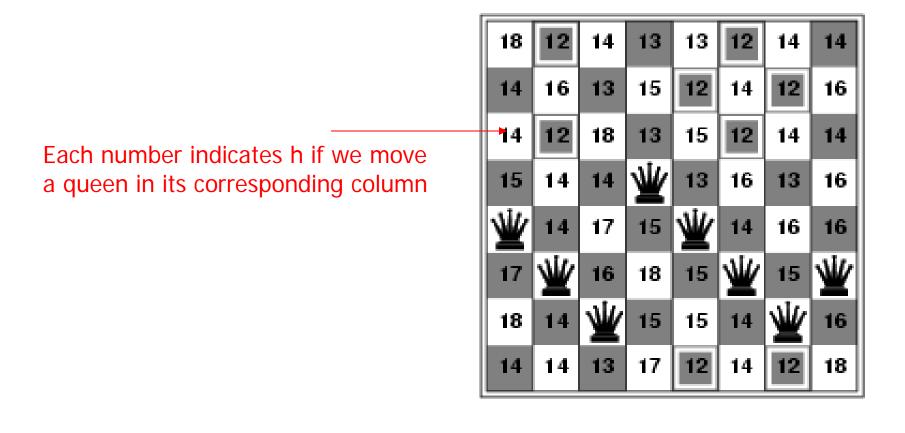
Note that a state cannot be an incomplete configuration with m<n queens

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

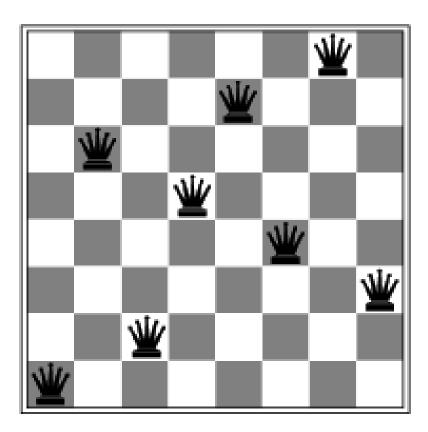
function HILL-CLIMBING(*problem*) returns a state that is a local maximum inputs: *problem*, a problem local variables: *current*, a node *neighbor*, a node *current* \leftarrow MAKE-NODE(INITIAL-STATE[*problem*]) loop do *neighbor* \leftarrow a highest-valued successor of *current* if VALUE[neighbor] \leq VALUE[current] then return STATE[*current*] *current* \leftarrow *neighbor*

Hill-climbing search: 8-queens problem



• *h* = number of pairs of queens that are attacking each other, either directly or indirectly (*h* = 17 for the above state)

Hill-climbing search: 8-queens problem

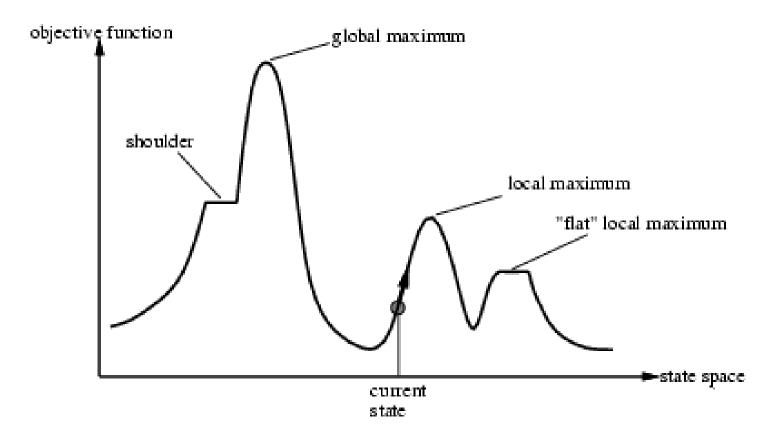


• A local minimum with h = 1

(what can you do to get out of this local minima?)

Hill-climbing Difficulties

• Problem: depending on initial state, can get stuck in local maxima

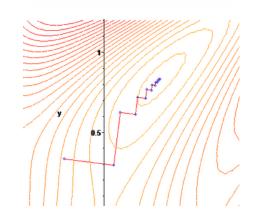


Gradient Descent

- Assume we have some cost-function: $C(x_1,...,x_n)$ and we want minimize over continuous variables X1,X2,...,Xn
- 1. Compute the gradient : $\frac{\partial}{\partial x_i} C(x_1,...,x_n) \quad \forall i$
- 2. Take a small step downhill in the direction of the gradient:

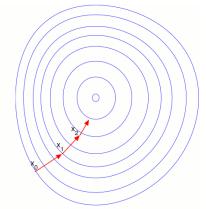
3. Check if
$$C(x_1,...,x'_i,...,x_n) < C(x_1,...,x_i,...,x_n)$$

- 4. If true then accept move, if not reject.
- 5. Repeat.



 $\forall i$

 $\mathbf{x}_i \rightarrow \mathbf{x}'_i = \mathbf{x}_i - \lambda \frac{\partial}{\partial \mathbf{x}_i} \mathcal{C}(\mathbf{x}_1, \dots, \mathbf{x}_n)$



Line Search

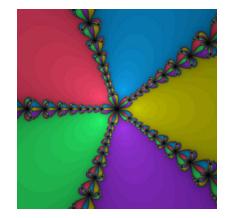
- In GD you need to choose a step-size.
- Line search picks a direction, v, (say the gradient direction) and searches along that direction for the optimal step:

$$\eta^* = \operatorname{argmin} C(x_t + \eta v_t)$$

• Repeated doubling can be used to effectively search for the optimal step:

$$\eta \rightarrow 2\eta \rightarrow 4\eta \rightarrow 8\eta$$
 (until cost increases)

• There are many methods to pick search direction v. Very good method is "conjugate gradients".



Newton's Method

• Want to find the roots of f(x).

Basins of attraction for x5 - 1 = 0; darker means more iterations to converge.

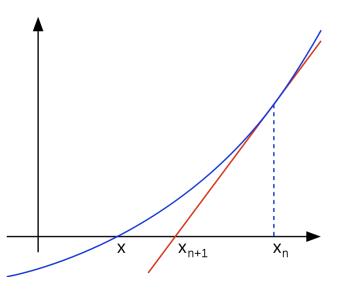
• To do that, we compute the tangent at Xn and compute where it crosses the x-axis.

$$\nabla f(x_n) = \frac{0 - f(x_n)}{x_{n+1} - x_n} \Longrightarrow x_{n+1} = x_n - \frac{f(x_n)}{\nabla f(x_n)}$$

• Optimization: find roots of $\nabla f(x_n)$

$$\nabla \nabla f(x_n) = \frac{0 - \nabla f(x_n)}{x_{n+1} - x_n} \Longrightarrow x_{n+1} = x_n - \frac{\nabla f(x_n)}{\left[\nabla \nabla f(x_n)\right]}$$

- Does not always converge & sometimes unstable.
- If it converges, it converges very fast

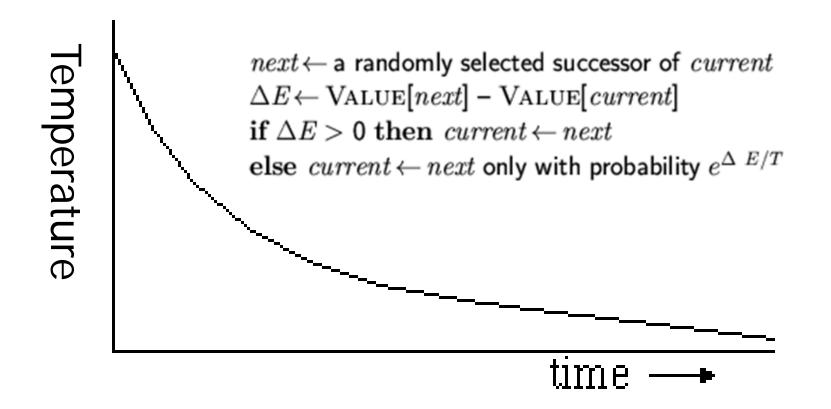


Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

Typical Annealing Schedule Often a Decaying Exponential Axis Values are Scaled to Fit Problem

Typical Annealing Schedule Often a Decaying Exponential Axis Values are Scaled to Fit Problem

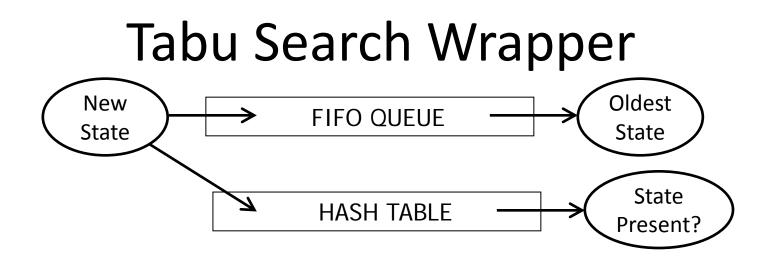


Properties of simulated annealing search

- One can prove: If *T* decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1 (however, this may take VERY long)
 - However, in any finite search space RANDOM GUESSING also will find a global optimum with probability approaching 1.
- Widely used in VLSI layout, airline scheduling, etc.

Tabu Search

- Almost any simple local search method, but with a memory.
- Recently visited states are added to a tabu-list and are temporarily excluded from being visited again.
- This way, the solver moves away from already explored regions and (in principle) avoids getting stuck in local minima.
- Tabu search can be added to most other local search methods to obtain a variant method that avoids recently visited states.
- Tabu-list is usually implemented as a hash table for rapid access. Can also add a FIFO queue to keep track of oldest node.
- Unit time cost per step for tabu test and tabu-list maintenance.



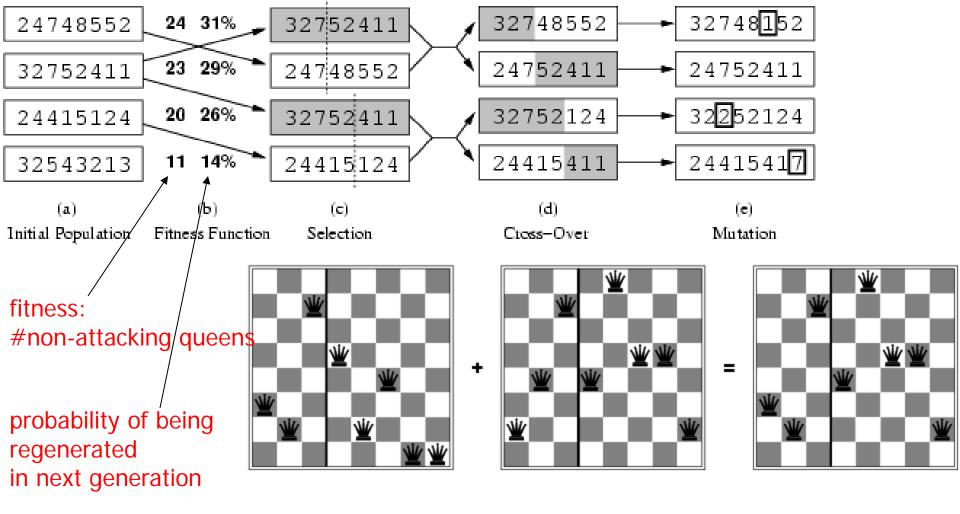
- UNTIL (tired of doing it) DO {
 - Set Neighbor to makeNeighbor(CurrentState);
 - IF (Neighbor is in hash table) THEN (discard Neighbor)
 ELSE { push Neighbor onto fifo, pop OldestState; remove OldestState from hash, insert Neighbor; set CurrentState to Neighbor; run Local Search on CurrentState; } }

Local beam search

- Keep track of *k* states rather than just one.
- Start with *k* randomly generated states.
- At each iteration, all the successors of all *k* states are generated.
- If any one is a goal state, stop; else select the *k* best successors from the complete list and repeat.
- Concentrates search effort in areas believed to be fruitful.
 - May lose diversity as search progresses, resulting in wasted effort.

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with *k* randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation



- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- P(child) = 24/(24+23+20+11) = 31%
- P(child) = 23/(24+23+20+11) = 29% etc

"Random Restart Wrapper"

These are stochastic local search methods
 Different solution likely for each trial and initial state.

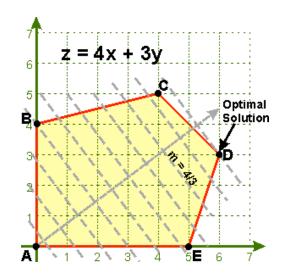
UNTIL (you are tired of doing it) DO {
 Result <- (Local search from random initial state);
 IF (Result better than BestResultFoundSoFar)
 THEN (Set BestResultFoundSoFar to Result);
 }
 RETURN BestResultFoundSoFar;</pre>

<u>Linear Programming</u> Efficient Optimal Solution For a Restricted Class of Problems

Problems of the sort:

maximize $c^T x$ subject to : Ax \leq a; Bx = b

- Very efficient "off-the-shelves" solvers are available for LRs.
- They can solve large problems with thousands of variables.



Linear Programming Constraints

- Maximize: $z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$
- Primary constraints: $x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$
- Additional constraints:
- $a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n \le a_i, (a_i \ge 0)$
- $a_{j1} x_1 + a_{j2} x_2 + \dots + a_{jn} x_n \ge a_j \ge 0$
- $b_{k1} x_1 + b_{k2} x_2 + \dots + b_{kn} x_n = b_k \ge 0$

Outline

- Hill-climbing search
 - Gradient Descent in continuous spaces
- Simulated annealing search
- Tabu search
- Local beam search
- Genetic algorithms
- <u>"Random Restart Wrapper" for above methods</u>
- Linear Programming

Summary

- Local search maintains a complete solution
 Seeks to find a consistent solution (also complete)
- Path search maintains a consistent solution
 Seeks to find a complete solution (also consistent)
- Goal of both: complete and consistent solution
 Strategy: maintain one condition, seek other
- Local search often works well on large problems
 - Abandons optimality
 - Always has some answer available (best found so far)