
Local Search Algorithms

This lecture topic Chapter 4.1-4.2

Next lecture topic
Chapter 5

(Please read lecture topic material before and

after each lecture on that topic)

Outline

• Hill-climbing search
– Gradient Descent in continuous spaces

• Simulated annealing search
• Tabu search
• Local beam search
• Genetic algorithms
• “Random Restart Wrapper” for above methods
• Linear Programming

Local search algorithms

• In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-queens
• In such cases, we can use local search algorithms
• Keep a single "current" state, or a small set of states.

– Try to improve it or them.
• Very memory efficient (only keep one or a few states)

– You get to control how much memory you use

Example: n-queens

• Put n queens on an n × n board with no two
queens on the same row, column, or diagonal

Note that a state cannot be an incomplete configuration with m<n queens

Hill-climbing search

• "Like climbing Everest in thick fog with
amnesia"

•

Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly or

indirectly (h = 17 for the above state)

Each number indicates h if we move
a queen in its corresponding column

Hill-climbing search: 8-queens problem

 A local minimum with h = 1
(what can you do to get out of this local minima?)

Hill-climbing Difficulties

• Problem: depending on initial state, can get stuck in local maxima

Gradient Descent

• Assume we have some cost-function:
 and we want minimize over continuous variables X1,X2,..,Xn

1. Compute the gradient :

2. Take a small step downhill in the direction of the gradient:

3. Check if

4. If true then accept move, if not reject.

5. Repeat.

1(, ...,)nC x x

1(,...,)n
i
C x x i

x
∂

∀
∂

1' (,...,)i i i n
i

x x x C x x i
x

λ ∂
→ = − ∀

∂
1 1(, .., ' ,..,) (,.., , ..,)i n i nC x x x C x x x<

http://upload.wikimedia.org/wikipedia/commons/d/db/Gradient_ascent_(contour).png

Line Search

• In GD you need to choose a step-size.
• Line search picks a direction, v, (say the gradient direction) and
 searches along that direction for the optimal step:

• Repeated doubling can be used to effectively search for the optimal step:

• There are many methods to pick search direction v.
 Very good method is “conjugate gradients”.

η* = argmin C(xt +ηvt)

η →2η →4η →8η (until cost increases)

• Want to find the roots of f(x).

• To do that, we compute the tangent at Xn and compute where it crosses the x-axis.

• Optimization: find roots of

• Does not always converge & sometimes unstable.

• If it converges, it converges very fast

Basins of attraction for x5 − 1 = 0;
darker means more iterations to converge.

)(
)()(0)(1

1 n

n
nn

nn

n
n xf

xfxx
xx
xfxf

∇
−=⇒

−
−

=∇ +
+

∇f (xn)

[])(
)()(0)(1

1 n

n
nn

nn

n
n xf

xfxx
xx
xfxf

∇∇
∇

−=⇒
−

∇−
=∇∇ +

+

Newton’s Method

Simulated annealing search

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

•

Typical Annealing Schedule
Often a Decaying Exponential

Axis Values are Scaled to Fit Problem

Tem
perature

Typical Annealing Schedule
Often a Decaying Exponential

Axis Values are Scaled to Fit Problem

Tem
perature

Properties of simulated annealing
search

• One can prove: If T decreases slowly enough, then simulated
annealing search will find a global optimum with probability
approaching 1 (however, this may take VERY long)

– However, in any finite search space RANDOM GUESSING also will find a global
optimum with probability approaching 1 .

• Widely used in VLSI layout, airline scheduling, etc.

Tabu Search
• Almost any simple local search method, but with a memory.

• Recently visited states are added to a tabu-list and are temporarily
 excluded from being visited again.

• This way, the solver moves away from already explored regions and
 (in principle) avoids getting stuck in local minima.

• Tabu search can be added to most other local search methods to
 obtain a variant method that avoids recently visited states.

• Tabu-list is usually implemented as a hash table for rapid access.
 Can also add a FIFO queue to keep track of oldest node.

• Unit time cost per step for tabu test and tabu-list maintenance.

Tabu Search Wrapper

• UNTIL (tired of doing it) DO {
– Set Neighbor to makeNeighbor(CurrentState);
– IF (Neighbor is in hash table) THEN (discard Neighbor)
 ELSE { push Neighbor onto fifo, pop OldestState;
 remove OldestState from hash, insert Neighbor;
 set CurrentState to Neighbor;
 run Local Search on CurrentState; } }

 FIFO QUEUE
Oldest
State

New
State

 HASH TABLE
State

Present?

Local beam search
• Keep track of k states rather than just one.

• Start with k randomly generated states.

• At each iteration, all the successors of all k states are generated.

• If any one is a goal state, stop; else select the k best successors from the

complete list and repeat.

• Concentrates search effort in areas believed to be fruitful.

– May lose diversity as search progresses, resulting in wasted effort.

Genetic algorithms
• A successor state is generated by combining two parent states

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet (often a string of 0s

and 1s)

• Evaluation function (fitness function). Higher values for better states.

• Produce the next generation of states by selection, crossover, and
mutation

• Fitness function: number of non-attacking pairs of queens (min = 0, max =
8 × 7/2 = 28)

• P(child) = 24/(24+23+20+11) = 31%
• P(child) = 23/(24+23+20+11) = 29% etc

fitness:
#non-attacking queens

probability of being
regenerated
in next generation

“Random Restart Wrapper”

• These are stochastic local search methods
– Different solution likely for each trial and initial state.

• UNTIL (you are tired of doing it) DO {
 Result <- (Local search from random initial state);
 IF (Result better than BestResultFoundSoFar)

 THEN (Set BestResultFoundSoFar to Result);
}

RETURN BestResultFoundSoFar;

Linear Programming
Efficient Optimal Solution

For a Restricted Class of Problems
Problems of the sort:

b=Bx a;Ax :subject to
 maximize

≤
xcT

• Very efficient “off-the-shelves” solvers are
 available for LRs.

• They can solve large problems with thousands
 of variables.

Linear Programming Constraints

• Maximize: z = c1 x1 + c2 x2 +…+ cn xn

• Primary constraints: x1≥0, x2≥0, …, xn≥0
• Additional constraints:
• ai1 x1 + ai2 x2 + … + ain xn ≤ ai, (ai ≥ 0)
• aj1 x1 + aj2 x2 + … + ajn xn ≥ aj ≥ 0
• bk1 x1 + bk2 x2 + … + bkn xn = bk ≥ 0

Outline

• Hill-climbing search
– Gradient Descent in continuous spaces

• Simulated annealing search
• Tabu search
• Local beam search
• Genetic algorithms
• “Random Restart Wrapper” for above methods
• Linear Programming

Summary

• Local search maintains a complete solution
– Seeks to find a consistent solution (also complete)

• Path search maintains a consistent solution
– Seeks to find a complete solution (also consistent)

• Goal of both: complete and consistent solution
– Strategy: maintain one condition, seek other

• Local search often works well on large problems
– Abandons optimality
– Always has some answer available (best found so far)

	Local Search Algorithms�
	Outline
	Local search algorithms
	Example: n-queens
	Hill-climbing search
	Hill-climbing search: 8-queens problem
	Hill-climbing search: 8-queens problem
	Hill-climbing Difficulties
	Gradient Descent
	Line Search
	Basins of attraction for x5 − 1 = 0; �darker means more iterations to converge.
	Simulated annealing search
	Typical Annealing Schedule�Often a Decaying Exponential�Axis Values are Scaled to Fit Problem
	Typical Annealing Schedule�Often a Decaying Exponential�Axis Values are Scaled to Fit Problem
	Properties of simulated annealing search
	Tabu Search
	Tabu Search Wrapper
	Local beam search
	Genetic algorithms
	Slide Number 20
	“Random Restart Wrapper”
	Linear Programming�Efficient Optimal Solution�For a Restricted Class of Problems
	Linear Programming Constraints
	Outline
	Summary

