
Local Search Algorithms 
 

This lecture topic Chapter 4.1-4.2 
 

Next lecture topic 
Chapter 5 

 
(Please read lecture topic material before and 

after each lecture on that topic) 
 



Outline 

• Hill-climbing search 
– Gradient Descent in continuous spaces 

• Simulated annealing search 
• Tabu search 
• Local beam search 
• Genetic algorithms 
• “Random Restart Wrapper” for above methods 
• Linear Programming 



Local search algorithms 

• In many optimization problems, the path to the goal is 
irrelevant; the goal state itself is the solution 

 
• State space = set of "complete" configurations 
• Find configuration satisfying constraints, e.g., n-queens 
• In such cases, we can use local search algorithms 
• Keep a single "current" state, or a small set of states. 

– Try to improve it or them. 
• Very memory efficient (only keep one or a few states) 

– You get to control how much memory you use 



Example: n-queens 

• Put n queens on an n × n board with no two 
queens on the same row, column, or diagonal 

Note that a state cannot be an incomplete configuration with m<n queens 



Hill-climbing search 

• "Like climbing Everest in thick fog with 
amnesia" 

•  
 



Hill-climbing search: 8-queens problem 

 
• h = number of pairs of queens that are attacking each other, either directly or 

indirectly (h = 17 for the above state) 
 

Each number indicates h if we move 
a queen in its corresponding column 



Hill-climbing search: 8-queens problem 

 

 A local minimum with h = 1 
(what can you do to get out of this local minima?) 



Hill-climbing Difficulties 

• Problem: depending on initial state, can get stuck in local maxima 
 



Gradient Descent 

• Assume we have some cost-function:  
 and we want minimize over continuous variables X1,X2,..,Xn 
 

 
1. Compute the gradient : 
 
2. Take a small step downhill in the direction of the gradient: 
 
 
3. Check if 
 
4. If true then accept move, if not reject.  
 
5. Repeat. 
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Line Search 

• In GD you need to choose a step-size. 
• Line search picks a direction, v, (say the gradient direction) and  
  searches along that direction for the optimal step: 
 
 
 
 
• Repeated doubling can be used to effectively search for the optimal step: 
 
 
 

• There are many methods to pick search direction v.  
  Very good method is “conjugate gradients”. 
   

 

η* = argmin C(xt +ηvt )

 

η →2η →4η →8η   (until cost increases)  



• Want to find the roots of f(x). 
 

• To do that, we compute the tangent at Xn and compute where it crosses the x-axis. 
  
 
 
 

• Optimization: find roots of  
 
 
 
 

• Does not always converge & sometimes unstable. 
 

• If it converges, it converges very fast 
 
 

Basins of attraction for x5 − 1 = 0;  
darker means more iterations to converge. 
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Newton’s Method 



Simulated annealing search 

• Idea: escape local maxima by allowing some "bad" 
moves but gradually decrease their frequency 

•  
 



Typical Annealing Schedule 
Often a Decaying Exponential 

Axis Values are Scaled to Fit Problem 

Tem
perature 



Typical Annealing Schedule 
Often a Decaying Exponential 

Axis Values are Scaled to Fit Problem 

Tem
perature 



Properties of simulated annealing 
search 

• One can prove: If T decreases slowly enough, then simulated 
annealing search will find a global optimum with probability 
approaching 1 (however, this may take VERY long) 

– However, in any finite search space RANDOM GUESSING also will find a global 
optimum with probability approaching 1 . 

 
• Widely used in VLSI layout, airline scheduling, etc. 



Tabu Search 
• Almost any simple local search method, but with a memory. 
 

• Recently visited states are added to a tabu-list and are temporarily 
  excluded from being visited again. 
 
• This way, the solver moves away from already explored regions and 
   (in principle) avoids getting stuck in local minima.  
 
• Tabu search can be added to most other local search methods to 
  obtain a variant method that avoids recently visited states. 
 
• Tabu-list is usually implemented as a hash table for rapid access. 
  Can also add a FIFO queue to keep track of oldest node. 
 
• Unit time cost per step for tabu test and tabu-list maintenance.  



Tabu Search Wrapper 

• UNTIL ( tired of doing it ) DO { 
– Set Neighbor to makeNeighbor( CurrentState ); 
– IF ( Neighbor is in hash table ) THEN ( discard Neighbor ) 
 ELSE { push Neighbor onto fifo, pop OldestState; 
  remove OldestState from hash, insert Neighbor; 
  set CurrentState to Neighbor; 
  run Local Search on CurrentState; } } 

 FIFO QUEUE 
Oldest 
State 

New 
State 

 HASH TABLE 
State 

Present? 



Local beam search 
• Keep track of k states rather than just one. 

 
• Start with k randomly generated states. 

 
• At each iteration, all the successors of all k states are generated. 

 
• If any one is a goal state, stop; else select the k best successors from the 

complete list and repeat. 
 
• Concentrates search effort in areas believed to be fruitful. 

– May lose diversity as search progresses, resulting in wasted effort. 



Genetic algorithms 
• A successor state is generated by combining two parent states 

 
• Start with k randomly generated states (population) 

 
• A state is represented as a string over a finite alphabet (often a string of 0s 

and 1s) 
 

• Evaluation function (fitness function). Higher values for better states. 
 

• Produce the next generation of states by selection, crossover, and 
mutation 



 
 
 
 
 

• Fitness function: number of non-attacking pairs of queens (min = 0, max = 
8 × 7/2 = 28) 

• P(child) = 24/(24+23+20+11) = 31% 
• P(child) = 23/(24+23+20+11) = 29% etc 

fitness:   
#non-attacking queens 

probability of being  
regenerated 
in next generation 



“Random Restart Wrapper” 

• These are stochastic local search methods 
– Different solution likely for each trial and initial state. 

 

• UNTIL (you are tired of doing it) DO { 
 Result <- (Local search from random initial state); 
  IF (Result better than BestResultFoundSoFar) 

 THEN (Set BestResultFoundSoFar to Result); 
} 

RETURN BestResultFoundSoFar; 



Linear Programming 
Efficient Optimal Solution 

For a Restricted Class of Problems 
Problems of the sort:  

b=Bx a;Ax :subject to
 maximize

≤
xcT

• Very efficient “off-the-shelves” solvers are 
   available for LRs. 
 
• They can solve large problems with thousands 
   of variables. 
 



Linear Programming Constraints 

• Maximize: z = c1 x1 + c2 x2 +…+ cn xn 

• Primary constraints: x1≥0, x2≥0, …, xn≥0 
• Additional constraints: 
• ai1 x1 + ai2 x2 + … + ain xn ≤ ai, (ai ≥ 0) 
• aj1 x1 + aj2 x2 + … + ajn xn ≥ aj ≥ 0 
• bk1 x1 + bk2 x2 + … + bkn xn = bk ≥ 0 

 



Outline 

• Hill-climbing search 
– Gradient Descent in continuous spaces 

• Simulated annealing search 
• Tabu search 
• Local beam search 
• Genetic algorithms 
• “Random Restart Wrapper” for above methods 
• Linear Programming 



Summary 

• Local search maintains a complete solution 
– Seeks to find a consistent solution (also complete) 

• Path search maintains a consistent solution 
– Seeks to find a complete solution (also consistent) 

• Goal of both: complete and consistent solution 
– Strategy: maintain one condition, seek other 

• Local search often works well on large problems 
– Abandons optimality 
– Always has some answer available (best found so far) 
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