
Review Search

This material: Chapter 1-2, 3.1-3.7, 4.1-4.2
Next Lecture Chapter 5.1-5.5 (Adversarial Search)

(Please read lecture topic material before and after each lecture on that topic)

• Search: complete architecture for intelligence?
– Search to solve the problem, “What to do?”

• Problem formulation:

– Handle infinite or uncertain worlds

• Search methods:
– Uninformed, Heuristic, Local

Complete architectures for intelligence?

• Search?
– Solve the problem of what to do.

• Learning?
– Learn what to do.

• Logic and inference?
– Reason about what to do.
– Encoded knowledge/”expert” systems?

• Know what to do.

• Modern view: It’s complex & multi-faceted.

Search?
Solve the problem of what to do.

• Formulate “What to do?” as a search problem.
– Solution to the problem tells agent what to do.

• If no solution in the current search space?
– Formulate and solve the problem of finding a search

space that does contain a solution.
– Solve original problem in the new search space.

• Many powerful extensions to these ideas.
– Constraint satisfaction; means-ends analysis; etc.

• Human problem-solving often looks like search.

4

Problem Formulation
A problem is defined by five items:

 initial state e.g., "at Arad“
 actions

– Actions(X) = set of actions available in State X
 transition model

– Result(S,A) = state resulting from doing action A in state S
 goal test, e.g., x = "at Bucharest”, Checkmate(x)
 path cost (additive, i.e., the sum of the step costs)

– c(x,a,y) = step cost of action a in state x to reach state y
– assumed to be ≥ 0

 A solution is a sequence of actions leading from the initial

state to a goal state

5

Vacuum world state space graph

• states? discrete: dirt and robot location
• initial state? any
• actions? Left, Right, Suck

– Transition Model or Successors as shown on graph

• goal test? no dirt at all locations
• path cost? 1 per action

6

Vacuum world belief states:
 Agent’s belief about what state it’s in

7

Implementation: states vs. nodes
• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree
• A node contains info such as:

– state, parent node, action, path cost g(x), depth, etc.

• The Expand function creates new nodes, filling in the various
fields using the Actions(S) and Result(S,A)functions
associated with the problem.

8

Tree search algorithms

• Basic idea:
– Exploration of state space by generating successors of

already-explored states (a.k.a.~expanding states).

– Every generated state is evaluated: is it a goal state?

9

Tree search example

10

Repeated states

• Failure to detect repeated states can turn a
linear problem into an exponential one!

• Test is often implemented as a hash table.

11

Solutions to Repeated States

• Graph search
– never generate a state generated before

• must keep track of all possible states (uses a lot of memory)
• e.g., 8-puzzle problem, we have 9! = 362,880 states
• approximation for DFS/DLS: only avoid states in its (limited) memory:

avoid looping paths.
• Graph search optimal for BFS and UCS, not for DFS.

S

B

C

S

B C

S C B S

State Space
Example of a Search Tree

optimal but memory inefficient

12

Search strategies
• A search strategy is defined by the order of node expansion

• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of

– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
– l: the depth limit (for Depth-limited complexity)
– C*: the cost of the optimal solution (for Uniform-cost complexity)
– ε: minimum step cost, a positive constant (for Uniform-cost complexity)

13

Uninformed search strategies
• Uninformed: You have no clue whether one non-

goal state is better than any other. Your search is
blind. You don’t know if your current exploration
is likely to be fruitful.

• Various blind strategies:
– Breadth-first search
– Uniform-cost search
– Depth-first search
– Iterative deepening search (generally preferred)
– Bidirectional search (preferred if applicable)

Blind Search Strategies (3.4)

• Depth-first: Add successors to front of queue
• Breadth-first: Add successors to back of queue
• Uniform-cost: Sort queue by path cost g(n)
• Depth-limited: Depth-first, cut off at limit l
• Iterated-deepening: Depth-limited, increasing l
• Bidirectional: Breadth-first from goal, too.

15

Breadth-first search

• Expand shallowest unexpanded node
• Frontier (or fringe): nodes in queue to be explored
• Frontier is a first-in-first-out (FIFO) queue, i.e., new

successors go at end of the queue.
• Goal-Test when inserted.

Is A a goal state?

16

Properties of breadth-first search

• Complete? Yes it always reaches goal (if b is finite)
• Time? 1+b+b2+b3+… +bd + (bd+1-b)) = O(bd+1)
 (this is the number of nodes we generate)
• Space? O(bd+1) (keeps every node in memory,
 either in fringe or on a path to fringe).
• Optimal? Yes (if we guarantee that deeper solutions

are less optimal, e.g. step-cost=1).

• Space is the bigger problem (more than time)

17

Uniform-cost search

Breadth-first is only optimal if path cost is a non-decreasing function
of depth, i.e., f(d) ≥ f(d-1); e.g., constant step cost, as in the 8-
puzzle.

Can we guarantee optimality for any positive step cost?

Uniform-cost Search:
 Expand node with smallest path cost g(n).
• Frontier is a priority queue, i.e., new successors are

merged into the queue sorted by g(n).
– Remove successor states already on queue w/higher g(n).

• Goal-Test when node is popped off queue.

18

Uniform-cost search

Implementation: Frontier = queue ordered by path cost.
Equivalent to breadth-first if all step costs all equal.

Complete? Yes, if step cost ≥ ε
 (otherwise it can get stuck in infinite loops)

Time? # of nodes with path cost ≤ cost of optimal solution.

Space? # of nodes with path cost ≤ cost of optimal solution.

Optimal? Yes, for any step cost ≥ ε

19

Depth-first search

• Expand deepest unexpanded node
• Frontier = Last In First Out (LIFO) queue, i.e., new successors

go at the front of the queue.
• Goal-Test when inserted.

Is A a goal state?

20

Properties of depth-first search

• Complete? No: fails in infinite-depth spaces
 Can modify to avoid repeated states along path

• Time? O(bm) with m=maximum depth
• terrible if m is much larger than d

– but if solutions are dense, may be much faster than
 breadth-first

• Space? O(bm), i.e., linear space! (we only need to
 remember a single path + expanded unexplored nodes)

• Optimal? No (It may find a non-optimal goal first)

A

B C

21

Iterative deepening search

• To avoid the infinite depth problem of DFS, we can
 decide to only search until depth L, i.e. we don’t expand beyond depth L.
 Depth-Limited Search

• What if solution is deeper than L? Increase L iteratively.
 Iterative Deepening Search

• As we shall see: this inherits the memory advantage of Depth-First
 search, and is better in terms of time complexity than Breadth first search.

22

Properties of iterative deepening search

• Complete? Yes
• Time? O(bd)
• Space? O(bd)
• Optimal? Yes, if step cost = 1 or increasing

function of depth.

23

Bidirectional Search

• Idea
– simultaneously search forward from S and backwards from

G
– stop when both “meet in the middle”
– need to keep track of the intersection of 2 open sets of

nodes

• What does searching backwards from G mean
– need a way to specify the predecessors of G

• this can be difficult,
• e.g., predecessors of checkmate in chess?

– which to take if there are multiple goal states?
– where to start if there is only a goal test, no explicit list?

24

Summary of algorithms

Generally the preferred
uninformed search strategy

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deepening
DLS

Complete? Yes Yes No No Yes

Time O(bd) O(bC*/ε) O(bm) O(bl) O(bd)

Space O(bd) O(bC*/ε) O(bm) O(bl) O(bd)

Optimal? Yes Yes No No Yes

Best-first search

 Idea: use an evaluation function f(n) for each node
 f(n) provides an estimate for the total cost.
 Expand the node n with smallest f(n).
 g(n) = path cost so far to node n.
 h(n) = estimate of (optimal) cost to goal from node n.
 f(n) = g(n)+h(n).

 Implementation:
 Order the nodes in frontier by increasing order of cost.

 Evaluation function is an estimate of node quality

⇒More accurate name for “best first” search would be
“seemingly best-first search”

⇒Search efficiency depends on heuristic quality

Heuristic function

 Heuristic:
 Definition: a commonsense rule (or set of rules) intended to

increase the probability of solving some problem
 “using rules of thumb to find answers”

 Heuristic function h(n)

 Estimate of (optimal) cost from n to goal
 Defined using only the state of node n
 h(n) = 0 if n is a goal node
 Example: straight line distance from n to Bucharest

 Note that this is not the true state-space distance
 It is an estimate – actual state-space distance can be higher

 Provides problem-specific knowledge to the search algorithm

Greedy best-first search

• h(n) = estimate of cost from n to goal
– e.g., h(n) = straight-line distance from n to

Bucharest

• Greedy best-first search expands the node
that appears to be closest to goal.
– f(n) = h(n)

Properties of greedy best-first
search

Complete?
Tree version can get stuck in loops.
Graph version is complete in finite spaces.

 Time? O(bm), but a good heuristic can give
dramatic improvement

 Space? O(bm) - keeps all nodes in memory
Optimal? No
 e.g., Arad Sibiu Rimnicu Vilcea Pitesti

Bucharest is shorter!

A* search

• Idea: avoid expanding paths that are already
expensive

• Evaluation function f(n) = g(n) + h(n)
• g(n) = cost so far to reach n
• h(n) = estimated cost from n to goal
• f(n) = estimated total cost of path through n to goal
• Greedy Best First search has f(n)=h(n)
• Uniform Cost search has f(n)=g(n)

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal

state from n.
• An admissible heuristic never overestimates the cost to

reach the goal, i.e., it is optimistic
• Example: hSLD(n) (never overestimates the actual road

distance)
• Theorem: If h(n) is admissible, A* using TREE-SEARCH is

optimal

Consistent heuristics
(consistent => admissible)

• A heuristic is consistent if for every node n, every successor n' of n
generated by any action a,

 h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n’) = g(n’) + h(n’) (by def.)
 = g(n) + c(n,a,n') + h(n’) (g(n’)=g(n)+c(n.a.n’))
 ≥ g(n) + h(n) = f(n) (consistency)
f(n’) ≥ f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem:
 If h(n) is consistent, A* using GRAPH-SEARCH is optimal

It’s the triangle
inequality !

keeps all checked nodes in
memory to avoid repeated states

Contours of A* Search

• A* expands nodes in order of increasing f value
• Gradually adds "f-contours" of nodes
• Contour i has all nodes with f=fi, where fi < fi+1

Properties of A*

• Complete? Yes (unless there are infinitely many
nodes with f ≤ f(G) , i.e. step-cost > ε)

• Time/Space? Exponential
 except if:
• Optimal? Yes (with: Tree-Search, admissible

heuristic; Graph-Search, consistent heuristic)
• Optimally Efficient: Yes (no optimal algorithm with same

heuristic is guaranteed to expand fewer nodes)

db
* *| () () | (log ())h n h n O h n− ≤

Simple Memory Bounded A*

• This is like A*, but when memory is full we delete the
worst node (largest f-value).

• Like RBFS, we remember the best descendent in the
branch we delete.

• If there is a tie (equal f-values) we delete the oldest
nodes first.

• simple-MBA* finds the optimal reachable solution given
the memory constraint.

• Time can still be exponential.
A Solution is not reachable
if a single path from root to goal
does not fit into memory

SMA* pseudocode (not in 2nd edition 2 of book)
function SMA*(problem) returns a solution sequence
 inputs: problem, a problem
 static: Queue, a queue of nodes ordered by f-cost

 Queue MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
 loop do
 if Queue is empty then return failure
 n deepest least-f-cost node in Queue
 if GOAL-TEST(n) then return success
 s NEXT-SUCCESSOR(n)
 if s is not a goal and is at maximum depth then
 f(s) ∞
 else
 f(s) MAX(f(n),g(s)+h(s))
 if all of n’s successors have been generated then
 update n’s f-cost and those of its ancestors if necessary
 if SUCCESSORS(n) all in memory then remove n from Queue
 if memory is full then
 delete shallowest, highest-f-cost node in Queue
 remove it from its parent’s successor list
 insert its parent on Queue if necessary
 insert s in Queue
 end

Simple Memory-bounded A* (SMA*)

24+0=24

A

B G

C D

E F

H

J

I

K

0+12=12

10+5=15

20+5=25

30+5=35

20+0=20

30+0=30

8+5=13

16+2=18

24+0=24 24+5=29

10 8

10 10

10 10

8 16

8 8

g+h = f

(Example with 3-node memory)
Progress of SMA*. Each node is labeled with its current f-cost.
Values in parentheses show the value of the best forgotten descendant.

Algorithm can tell you when best solution found within memory constraint is optimal or not.

☐ = goal
Search space

maximal depth is 3, since
memory limit is 3. This
branch is now useless.

best forgotten node

A
12

A

B

12

15

A

B G

13

15 13 H

13

∞

A

G

18

13[15]

A

G
24[∞]

I

15[15]

24

A

B G

15

15 24
∞

A

B

C

15[24]

15

25

A

B

D

8

20

20[24]

20[∞]

best estimated solution
so far for that node

Conclusions

• The Memory Bounded A* Search is the best of
the search algorithms we have seen so far. It
uses all its memory to avoid double work and
uses smart heuristics to first descend into
promising branches of the search-tree.

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)
• then h2 dominates h1
• h2 is better for search: it is guaranteed to expand
 less or equal nr of nodes.

• Typical search costs (average number of nodes

expanded):

• d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

• d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

Relaxed problems

• A problem with fewer restrictions on the actions is
called a relaxed problem

• The cost of an optimal solution to a relaxed problem
is an admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile
can move anywhere, then h1(n) gives the shortest
solution

• If the rules are relaxed so that a tile can move to any
adjacent square, then h2(n) gives the shortest
solution

Effective branching factor

• Effective branching factor b*
– Is the branching factor that a uniform tree of depth d would have in order to

contain N+1 nodes.

– Measure is fairly constant for sufficiently hard problems.

• Can thus provide a good guide to the heuristic’s
overall usefulness.

N +1=1+ b*+(b*)2 + ...+ (b*)d

Effectiveness of different heuristics

• Results averaged over random instances of
the 8-puzzle

Inventing heuristics via “relaxed
problems”

 A problem with fewer restrictions on the actions is called a relaxed
problem

 The cost of an optimal solution to a relaxed problem is an admissible
heuristic for the original problem

 If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

 If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

 Can be a useful way to generate heuristics
 E.g., ABSOLVER (Prieditis, 1993) discovered the first useful heuristic for the

Rubik’s cube puzzle

More on heuristics

• h(n) = max{ h1(n), h2(n),……hk(n) }
– Assume all h functions are admissible
– Always choose the least optimistic heuristic (most accurate) at each node

– Could also learn a convex combination of features

• Weighted sum of h(n)’s, where weights sum to 1
• Weights learned via repeated puzzle-solving

• Could try to learn a heuristic function based on “features”
– E.g., x1(n) = number of misplaced tiles
– E.g., x2(n) = number of goal-adjacent-pairs that are currently adjacent
– h(n) = w1 x1(n) + w2 x2(n)

• Weights could be learned again via repeated puzzle-solving
• Try to identify which features are predictive of path cost

Local search algorithms

• In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-queens
• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it.
• Very memory efficient (only remember current state)

Hill-climbing search

• "Like climbing Everest in thick fog with
amnesia"

•

Hill-climbing Difficulties

• Problem: depending on initial state, can get stuck in local maxima

Gradient Descent

• Assume we have some cost-function:
 and we want minimize over continuous variables X1,X2,..,Xn

1. Compute the gradient :

2. Take a small step downhill in the direction of the gradient:

3. Check if

4. If true then accept move, if not reject.

5. Repeat.

1(, ...,)nC x x

1(,...,)n
i
C x x i

x
∂

∀
∂

1' (,...,)i i i n
i

x x x C x x i
x

λ ∂
→ = − ∀

∂
1 1(, .., ' ,..,) (,.., , ..,)i n i nC x x x C x x x<

http://upload.wikimedia.org/wikipedia/commons/d/db/Gradient_ascent_(contour).png

Simulated annealing search

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

•

Properties of simulated annealing
search

• One can prove: If T decreases slowly enough, then simulated
annealing search will find a global optimum with probability
approaching 1 (however, this may take VERY long)

– However, in any finite search space RANDOM GUESSING also will find a global
optimum with probability approaching 1 .

• Widely used in VLSI layout, airline scheduling, etc.

Tabu Search

• A simple local search but with a memory.

• Recently visited states are added to a tabu-list and are temporarily
 excluded from being visited again.

• This way, the solver moves away from already explored regions and
 (in principle) avoids getting stuck in local minima.

Local beam search
• Keep track of k states rather than just one.

• Start with k randomly generated states.

• At each iteration, all the successors of all k states are generated.

• If any one is a goal state, stop; else select the k best successors from the

complete list and repeat.

• Concentrates search effort in areas believed to be fruitful.

– May lose diversity as search progresses, resulting in wasted effort.

Genetic algorithms
• A successor state is generated by combining two parent states

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet (often a string of 0s

and 1s)

• Evaluation function (fitness function). Higher values for better states.

• Produce the next generation of states by selection, crossover, and
mutation

• Fitness function: number of non-attacking pairs of queens (min = 0, max =
8

 7/2 = 28)

• P(child) = 24/(24+23+20+11) = 31%
• P(child) = 23/(24+23+20+11) = 29% etc

fitness:
#non-attacking queens

probability of being
regenerated
in next generation

Linear Programming

Problems of the sort:

maximize cT x
subject to : Ax ≤ b; Bx = c

• Very efficient “off-the-shelves” solvers are
 available for LRs.

• They can solve large problems with thousands
 of variables.

	Review Search��This material: Chapter 1-2, 3.1-3.7, 4.1-4.2�Next Lecture Chapter 5.1-5.5 (Adversarial Search)�(Please read lecture topic material before and after each lecture on that topic)
	Complete architectures for intelligence?
	Search?�Solve the problem of what to do.
	Problem Formulation
	Vacuum world state space graph
	Slide Number 6
	Implementation: states vs. nodes
	Tree search algorithms
	Tree search example
	Repeated states
	Solutions to Repeated States
	Search strategies
	Uninformed search strategies
	Blind Search Strategies (3.4)
	Breadth-first search
	Properties of breadth-first search
	Uniform-cost search
	Uniform-cost search
	Depth-first search
	Properties of depth-first search
	Iterative deepening search
	Properties of iterative deepening search
	Bidirectional Search
	Summary of algorithms
	Best-first search
	Heuristic function
	Greedy best-first search
	Properties of greedy best-first search
	A* search
	Admissible heuristics
	Consistent heuristics�(consistent => admissible)
	Contours of A* Search
	Properties of A*
	Simple Memory Bounded A*
	SMA* pseudocode (not in 2nd edition 2 of book)
	Simple Memory-bounded A* (SMA*)
	Conclusions
	Dominance
	Relaxed problems
	Effective branching factor
	Effectiveness of different heuristics
	Inventing heuristics via “relaxed problems”
	More on heuristics
	Local search algorithms
	Hill-climbing search
	Hill-climbing Difficulties
	Gradient Descent
	Simulated annealing search
	Properties of simulated annealing search
	Tabu Search
	Local beam search
	Genetic algorithms
	Slide Number 54
	Linear Programming

