
Constraint Satisfaction Problems (CSPs) 
 

Introduction and Backtracking Search 

This lecture topic (two lectures) 
Chapter 6.1 – 6.4, except 6.3.3 

 
Next lecture topic (two lectures) 

Chapter 7.1 – 7.5 
 

(Please read lecture topic material before and after 
each lecture on that topic) 



Outline 

• What is a CSP? 
 

• Backtracking Search for CSP 
 

• Variable selection (ordering) 
– Minimum Remaining Values (MRV) heuristic 
– Degree Heuristic 

 
• Value selection (ordering) 

– Least Constraining Value (LCV) heuristic 



You Will Be Expected to Know 

• Basic definitions (section 6.1) 
 
• Backtracking search (6.3) 

 
• Variable ordering or selection (6.3.1) 

– minimum-remaining values 
– degree heuristic 

 
• Value ordering or selection (6.3.1) 

– least-constraining-value 
 
 



Constraint Satisfaction Problems 

• What is a CSP? 
– Finite set of variables X1, X2, …, Xn 
 
– Nonempty domain of possible values for each variable  

D1, D2, …, Dn 
 
– Finite set of constraints C1, C2, …, Cm 

• Each constraint Ci limits the values that variables can take,  
• e.g., X1 ≠ X2 

– Each constraint Ci is a pair <scope, relation> 
• Scope = Tuple of variables that participate in the constraint. 
• Relation = List of allowed combinations of variable values. 
 May be an explicit list of allowed combinations. 
 May be an abstract relation allowing membership testing and listing. 

 
 

• CSP benefits 
– Standard representation pattern 
– Generic goal and successor functions 
– Generic heuristics (no domain specific expertise). 

 



Sudoku as a Constraint Satisfaction Problem (CSP) 

• Variables: 81 variables 
– A1, A2, A3, …, I7, I8, I9 
– Letters index rows, top to bottom 
– Digits index columns, left to right 

 

• Domains: The nine positive digits 
– A1 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} 
– Etc. 

 

• Constraints: 27 Alldiff constraints 
– Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9) 
– Etc. 

A 
B 
C 
D 
E 
F 
G 
H 
I 

1  2   3  4   5  6   7  8   9 



Random Binary CSP 
(adapted from http://www.unitime.org/csp.php) 

• A random binary CSP is defined by a four-tuple (n, d, p1, p2) 
– n = the number of variables. 
– d = the domain size of each variable. 
– p1 = probability a constraint exists between two variables. 
– p2 = probability a pair of values in the domains of two variables 

connected by a constraint is incompatible. 
• Note that R&N lists compatible pairs of values instead. 
• Equivalent formulations; just take the set complement. 

• (n, d, p1, p2) are used to generate randomly the binary 
constraints among the variables. 

• The so called model B of Random CSP (n, d, n1, n2)  
– n1 = p1n(n-1)/2 pairs of variables are randomly and uniformly 

selected and binary constraints are posted between them. 
– For each constraint, n2 = p2d^2 randomly and uniformly selected 

pairs of values are picked as incompatible. 
• The random CSP as an optimization problem (minCSP). 

– Goal is to minimize the total sum of values for all variables. 



CSPs --- what is a solution? 

 
• A state is an assignment of values to some or all variables. 

– An assignment is complete when every variable has a value.  
– An assignment is partial when some variables have no values. 

 
• Consistent assignment 

– assignment does not violate the constraints 
 

• A solution to a CSP is a complete and consistent assignment. 
 

• Some CSPs require a solution that maximizes an objective function.  
 

• Examples of Applications:  
– Scheduling the time of observations on the Hubble Space Telescope 
– Airline schedules  
– Cryptography 
– Computer vision -> image interpretation 
– Scheduling your MS or PhD thesis exam  

 



CSP example: map coloring 

• Variables: WA, NT, Q, NSW, V, SA, T 
• Domains: Di={red,green,blue} 
• Constraints:adjacent regions must have different colors. 

• E.g. WA ≠ NT   



CSP example: map coloring 

• Solutions are assignments satisfying all constraints, e.g. 
  {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green} 



Graph coloring 

• More general problem than map coloring 
 

• Planar graph = graph in the 2d-plane with no edge crossings 
 

• Guthrie’s conjecture (1852) 
   Every planar graph can be colored with 4 colors or less 

 
– Proved (using a computer) in 1977 (Appel and Haken) 



Constraint graphs 

• Constraint graph: 
 

• nodes are variables 
 

• arcs are binary constraints 
 
 
 
 

 
• Graph can be used to simplify search 
            e.g. Tasmania is an independent subproblem 
 
   (will return to graph structure later) 



Varieties of CSPs 

• Discrete variables 
 
– Finite domains; size d ⇒O(dn) complete assignments. 

• E.g. Boolean CSPs: Boolean satisfiability (NP-complete). 
 

– Infinite domains (integers, strings, etc.) 
• E.g. job scheduling, variables are start/end days for each job 
• Need a constraint language e.g StartJob1 +5 ≤ StartJob3. 
• Infinitely many solutions 
• Linear constraints: solvable 
• Nonlinear: no general algorithm 
  

• Continuous variables 
– e.g. building an airline schedule or class schedule. 
– Linear constraints solvable in polynomial time by LP methods. 



Varieties of constraints 

• Unary constraints involve a single variable. 
– e.g. SA ≠ green 

 
• Binary constraints involve pairs of variables. 

– e.g. SA ≠ WA 
 

• Higher-order constraints involve 3 or more variables. 
– Professors A, B,and C cannot be on a committee together 
– Can always be represented by multiple binary constraints 

 
• Preference (soft constraints)  

– e.g. red is better than green often can be represented by a cost for 
each variable assignment   

– combination of optimization with CSPs 



CSPs Only Need Binary Constraints!! 

• Unary constraints: Just delete values from variable’s domain. 
• Higher order (3 variables or more): reduce to binary constraints. 
• Simple example: 

– Three example variables, X, Y, Z. 
– Domains Dx={1,2,3}, Dy={1,2,3}, Dz={1,2,3}. 
– Constraint C[X,Y,Z] = {X+Y=Z} = {(1,1,2), (1,2,3), (2,1,3)}. 
– Plus many other variables and constraints elsewhere in the CSP. 

 
– Create a new variable, W, taking values as triples (3-tuples). 
– Domain of W is Dw = {(1,1,2), (1,2,3), (2,1,3)}. 

• Dw is exactly the tuples that satisfy the higher order constraint. 
– Create three new constraints: 

• C[X,W] = { [1, (1,1,2)], [1, (1,2,3)], [2, (2,1,3)] }. 
• C[Y,W] = { [1, (1,1,2)], [2, (1,2,3)], [1, (2,1,3)] }. 
• C[Z,W] = { [2, (1,1,2)], [3, (1,2,3)], [3, (2,1,3)] }. 

– Other constraints elsewhere involving X, Y, or Z are unaffected. 
 
 



CSP Example: Cryptharithmetic puzzle 

 



CSP Example: Cryptharithmetic puzzle 

 



CSP Example: Cryptharithmetic puzzle 

 

A Solution: 
F=1, T=7, U=6, W=3, R=8, O=4, 
X1=0, X2=0, X3=1 
 
    7 3 4 
 + 7 3 4 
 1 4 6 8 



CSP Example: Cryptharithmetic puzzle 

• Try it yourself at home: 
 
 
 
 
 
 
 
 
 
 
 

• (A frequent request from college students to parents!) 

  S E N D 
+ M O R E 
M O N E Y 



CSP as a standard search problem 

• A CSP can easily be expressed as a standard search problem. 
 

• Incremental formulation 
 
– Initial State: the empty assignment {} 

 
– Actions: Assign a value to an unassigned variable provided that it 

does not violate a constraint 
 
– Goal test: the current assignment is complete  

 (by construction it is consistent) 
 

– Path cost: constant cost for every step (not really relevant) 
 

• Can also use complete-state formulation 
– Local search techniques (Chapter 4) tend to work well 



CSP as a standard search problem 

• Solution is found at depth n (if there are n variables). 
 
 

• Consider using BFS 
– Branching factor b at the top level is nd  
– At next level is (n-1)d 
– …. 

 
 

• end up with n!dn leaves even though there are only dn complete 
assignments! 

 
 



Commutativity 

• CSPs are commutative. 
 
– The order of any given set of actions has no effect on the outcome. 

 
– Example: choose colors for Australian territories one at a time 

• [WA=red then NT=green] same as [NT=green then WA=red] 
 

 
• All CSP search algorithms can generate successors by 

considering assignments for only a single variable at each node 
in the search tree 
   ⇒ there are dn leaves 
 
(will need to figure out later which variable to assign a value to at 

each node) 



Backtracking search 

• Similar to Depth-first search, generating children one at a time. 
 

• Chooses values for one variable at a time and backtracks when a 
variable has no legal values left to assign. 
 

• Uninformed algorithm 
– No good general performance 



Backtracking search (Figure 6.5) 

function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] 

  then 
   add {var=value} to assignment  
   result ← RECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 



24 

Backtracking search 

• Expand deepest unexpanded node 
• Generate only one child at a time. 
• Goal-Test when inserted. 

– For CSP, Goal-test at bottom 
 

 
Future= green dotted circles 
Frontier=white nodes 
Expanded/active=gray nodes 
Forgotten/reclaimed= black nodes 
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Backtracking search (Figure 6.5) 

function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] 

  then 
   add {var=value} to assignment  
   result ← RECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 
 



Improving CSP efficiency 

• Previous improvements on uninformed search 
 → introduce heuristics 

 
• For CSPS, general-purpose methods can give large gains in 

speed, e.g., 
– Which variable should be assigned next? 
– In what order should its values be tried? 
– Can we detect inevitable failure early? 
– Can we take advantage of problem structure? 

 
Note: CSPs are somewhat generic in their formulation, and so the 

heuristics are more general compared to methods in Chapter 4 



Backtracking search (Figure 6.5) 

function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] 

then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 



Minimum remaining values (MRV) for next variable 

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 

• A.k.a. most constrained variable heuristic 
 

• Heuristic Rule: choose variable with the fewest legal moves 
– e.g., will immediately detect failure if X has no legal values 

 



Degree heuristic for next variable 

• Heuristic Rule: select variable that is involved in the largest number of 
constraints on other unassigned variables. 
 

• Degree heuristic can be useful as a tie breaker after MRV. 
 

• In what order should a variable’s values be tried? 



function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] 

then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

Backtracking search (Figure 6.5) 



Least constraining value (LCV) for next value 

• Least constraining value heuristic 
 

• Heuristic Rule: given a variable choose the least constraining value 
–  leaves the maximum flexibility for subsequent variable assignments 

 
 



Minimum remaining values (MRV) 
vs. Least constraining value (LCV) 

• Why do we want the MRV (minimum values, most constraining) 
for variable selection --- but the LCV (maximum values, least 
constraining) for value selection? 
 

• Isn’t there a contradiction here?  

• MRV for variable selection to reduces the branching factor. 
– Smaller branching factors lead to faster search. 
– Hopefully, when we get to variables with currently many values, 

constraint propagation (next lecture) will have removed some of 
their values and they’ll have small branching factors by then too. 

• LCV for value selection increases the chance of early success. 
– If we are going to fail at this node, then we have to examine every 

value anyway, and their order makes no difference at all. 
– If we are going to succeed, then the earlier we succeed the sooner 

we can stop searching, so we want to succeed early. 
– LCV rules out the fewest possible solutions below this node, so we 

have the most chances for early success. 



Summary 

• CSPs  
–  special kind of problem: states defined by values of a fixed set of variables, 

goal test defined by constraints on variable values 
 

• Backtracking=depth-first search with one variable assigned per node 
 

• Heuristics 
– Variable ordering and value selection heuristics help significantly 

 
• Variable ordering (selection) heuristics 

– Choose variable with Minimum Remaining Values (MRV) 
– Degree Heuristic --- break ties after applying MRV 

 
• Value ordering (selection) heuristic 

– Choose Least Constraining Value 
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