
Constraint Satisfaction Problems (CSPs)

Introduction and Backtracking Search

This lecture topic (two lectures)
Chapter 6.1 – 6.4, except 6.3.3

Next lecture topic (two lectures)

Chapter 7.1 – 7.5

(Please read lecture topic material before and after
each lecture on that topic)

Outline

• What is a CSP?

• Backtracking Search for CSP

• Variable selection (ordering)
– Minimum Remaining Values (MRV) heuristic
– Degree Heuristic

• Value selection (ordering)

– Least Constraining Value (LCV) heuristic

You Will Be Expected to Know

• Basic definitions (section 6.1)

• Backtracking search (6.3)

• Variable ordering or selection (6.3.1)

– minimum-remaining values
– degree heuristic

• Value ordering or selection (6.3.1)

– least-constraining-value

Constraint Satisfaction Problems

• What is a CSP?
– Finite set of variables X1, X2, …, Xn

– Nonempty domain of possible values for each variable

D1, D2, …, Dn

– Finite set of constraints C1, C2, …, Cm

• Each constraint Ci limits the values that variables can take,
• e.g., X1 ≠ X2

– Each constraint Ci is a pair <scope, relation>
• Scope = Tuple of variables that participate in the constraint.
• Relation = List of allowed combinations of variable values.
 May be an explicit list of allowed combinations.
 May be an abstract relation allowing membership testing and listing.

• CSP benefits
– Standard representation pattern
– Generic goal and successor functions
– Generic heuristics (no domain specific expertise).

Sudoku as a Constraint Satisfaction Problem (CSP)

• Variables: 81 variables
– A1, A2, A3, …, I7, I8, I9
– Letters index rows, top to bottom
– Digits index columns, left to right

• Domains: The nine positive digits
– A1 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}
– Etc.

• Constraints: 27 Alldiff constraints
– Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9)
– Etc.

A
B
C
D
E
F
G
H
I

1 2 3 4 5 6 7 8 9

Random Binary CSP
(adapted from http://www.unitime.org/csp.php)

• A random binary CSP is defined by a four-tuple (n, d, p1, p2)
– n = the number of variables.
– d = the domain size of each variable.
– p1 = probability a constraint exists between two variables.
– p2 = probability a pair of values in the domains of two variables

connected by a constraint is incompatible.
• Note that R&N lists compatible pairs of values instead.
• Equivalent formulations; just take the set complement.

• (n, d, p1, p2) are used to generate randomly the binary
constraints among the variables.

• The so called model B of Random CSP (n, d, n1, n2)
– n1 = p1n(n-1)/2 pairs of variables are randomly and uniformly

selected and binary constraints are posted between them.
– For each constraint, n2 = p2d^2 randomly and uniformly selected

pairs of values are picked as incompatible.
• The random CSP as an optimization problem (minCSP).

– Goal is to minimize the total sum of values for all variables.

CSPs --- what is a solution?

• A state is an assignment of values to some or all variables.

– An assignment is complete when every variable has a value.
– An assignment is partial when some variables have no values.

• Consistent assignment

– assignment does not violate the constraints

• A solution to a CSP is a complete and consistent assignment.

• Some CSPs require a solution that maximizes an objective function.

• Examples of Applications:
– Scheduling the time of observations on the Hubble Space Telescope
– Airline schedules
– Cryptography
– Computer vision -> image interpretation
– Scheduling your MS or PhD thesis exam 

CSP example: map coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di={red,green,blue}
• Constraints:adjacent regions must have different colors.

• E.g. WA ≠ NT

CSP example: map coloring

• Solutions are assignments satisfying all constraints, e.g.
 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

Graph coloring

• More general problem than map coloring

• Planar graph = graph in the 2d-plane with no edge crossings

• Guthrie’s conjecture (1852)
 Every planar graph can be colored with 4 colors or less

– Proved (using a computer) in 1977 (Appel and Haken)

Constraint graphs

• Constraint graph:

• nodes are variables

• arcs are binary constraints

• Graph can be used to simplify search
 e.g. Tasmania is an independent subproblem

 (will return to graph structure later)

Varieties of CSPs

• Discrete variables

– Finite domains; size d ⇒O(dn) complete assignments.

• E.g. Boolean CSPs: Boolean satisfiability (NP-complete).

– Infinite domains (integers, strings, etc.)
• E.g. job scheduling, variables are start/end days for each job
• Need a constraint language e.g StartJob1 +5 ≤ StartJob3.
• Infinitely many solutions
• Linear constraints: solvable
• Nonlinear: no general algorithm

• Continuous variables
– e.g. building an airline schedule or class schedule.
– Linear constraints solvable in polynomial time by LP methods.

Varieties of constraints

• Unary constraints involve a single variable.
– e.g. SA ≠ green

• Binary constraints involve pairs of variables.

– e.g. SA ≠ WA

• Higher-order constraints involve 3 or more variables.
– Professors A, B,and C cannot be on a committee together
– Can always be represented by multiple binary constraints

• Preference (soft constraints)

– e.g. red is better than green often can be represented by a cost for
each variable assignment

– combination of optimization with CSPs

CSPs Only Need Binary Constraints!!

• Unary constraints: Just delete values from variable’s domain.
• Higher order (3 variables or more): reduce to binary constraints.
• Simple example:

– Three example variables, X, Y, Z.
– Domains Dx={1,2,3}, Dy={1,2,3}, Dz={1,2,3}.
– Constraint C[X,Y,Z] = {X+Y=Z} = {(1,1,2), (1,2,3), (2,1,3)}.
– Plus many other variables and constraints elsewhere in the CSP.

– Create a new variable, W, taking values as triples (3-tuples).
– Domain of W is Dw = {(1,1,2), (1,2,3), (2,1,3)}.

• Dw is exactly the tuples that satisfy the higher order constraint.
– Create three new constraints:

• C[X,W] = { [1, (1,1,2)], [1, (1,2,3)], [2, (2,1,3)] }.
• C[Y,W] = { [1, (1,1,2)], [2, (1,2,3)], [1, (2,1,3)] }.
• C[Z,W] = { [2, (1,1,2)], [3, (1,2,3)], [3, (2,1,3)] }.

– Other constraints elsewhere involving X, Y, or Z are unaffected.

CSP Example: Cryptharithmetic puzzle

CSP Example: Cryptharithmetic puzzle

CSP Example: Cryptharithmetic puzzle

A Solution:
F=1, T=7, U=6, W=3, R=8, O=4,
X1=0, X2=0, X3=1

 7 3 4
 + 7 3 4
 1 4 6 8

CSP Example: Cryptharithmetic puzzle

• Try it yourself at home:

• (A frequent request from college students to parents!)

 S E N D
+ M O R E
M O N E Y

CSP as a standard search problem

• A CSP can easily be expressed as a standard search problem.

• Incremental formulation

– Initial State: the empty assignment {}

– Actions: Assign a value to an unassigned variable provided that it

does not violate a constraint

– Goal test: the current assignment is complete

 (by construction it is consistent)

– Path cost: constant cost for every step (not really relevant)

• Can also use complete-state formulation
– Local search techniques (Chapter 4) tend to work well

CSP as a standard search problem

• Solution is found at depth n (if there are n variables).

• Consider using BFS
– Branching factor b at the top level is nd
– At next level is (n-1)d
– ….

• end up with n!dn leaves even though there are only dn complete
assignments!

Commutativity

• CSPs are commutative.

– The order of any given set of actions has no effect on the outcome.

– Example: choose colors for Australian territories one at a time

• [WA=red then NT=green] same as [NT=green then WA=red]

• All CSP search algorithms can generate successors by

considering assignments for only a single variable at each node
in the search tree
 ⇒ there are dn leaves

(will need to figure out later which variable to assign a value to at

each node)

Backtracking search

• Similar to Depth-first search, generating children one at a time.

• Chooses values for one variable at a time and backtracks when a
variable has no legal values left to assign.

• Uninformed algorithm
– No good general performance

Backtracking search (Figure 6.5)

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp]

 then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

24

Backtracking search

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

25

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

26

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

27

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

28

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

29

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

30

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

31

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

32

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

33

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

34

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

35

Backtracking search

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

Backtracking search (Figure 6.5)

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp]

 then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Improving CSP efficiency

• Previous improvements on uninformed search
 → introduce heuristics

• For CSPS, general-purpose methods can give large gains in

speed, e.g.,
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?
– Can we take advantage of problem structure?

Note: CSPs are somewhat generic in their formulation, and so the

heuristics are more general compared to methods in Chapter 4

Backtracking search (Figure 6.5)

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp]

then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Minimum remaining values (MRV) for next variable

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

• A.k.a. most constrained variable heuristic

• Heuristic Rule: choose variable with the fewest legal moves
– e.g., will immediately detect failure if X has no legal values

Degree heuristic for next variable

• Heuristic Rule: select variable that is involved in the largest number of
constraints on other unassigned variables.

• Degree heuristic can be useful as a tie breaker after MRV.

• In what order should a variable’s values be tried?

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp]

then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking search (Figure 6.5)

Least constraining value (LCV) for next value

• Least constraining value heuristic

• Heuristic Rule: given a variable choose the least constraining value
– leaves the maximum flexibility for subsequent variable assignments

Minimum remaining values (MRV)
vs. Least constraining value (LCV)

• Why do we want the MRV (minimum values, most constraining)
for variable selection --- but the LCV (maximum values, least
constraining) for value selection?

• Isn’t there a contradiction here?

• MRV for variable selection to reduces the branching factor.
– Smaller branching factors lead to faster search.
– Hopefully, when we get to variables with currently many values,

constraint propagation (next lecture) will have removed some of
their values and they’ll have small branching factors by then too.

• LCV for value selection increases the chance of early success.
– If we are going to fail at this node, then we have to examine every

value anyway, and their order makes no difference at all.
– If we are going to succeed, then the earlier we succeed the sooner

we can stop searching, so we want to succeed early.
– LCV rules out the fewest possible solutions below this node, so we

have the most chances for early success.

Summary

• CSPs
– special kind of problem: states defined by values of a fixed set of variables,

goal test defined by constraints on variable values

• Backtracking=depth-first search with one variable assigned per node

• Heuristics
– Variable ordering and value selection heuristics help significantly

• Variable ordering (selection) heuristics

– Choose variable with Minimum Remaining Values (MRV)
– Degree Heuristic --- break ties after applying MRV

• Value ordering (selection) heuristic

– Choose Least Constraining Value

	Constraint Satisfaction Problems (CSPs)��Introduction and Backtracking Search
	Outline
	You Will Be Expected to Know
	Constraint Satisfaction Problems
	Sudoku as a Constraint Satisfaction Problem (CSP)
	Random Binary CSP�(adapted from http://www.unitime.org/csp.php)
	CSPs --- what is a solution?
	CSP example: map coloring
	CSP example: map coloring
	Graph coloring
	Constraint graphs
	Varieties of CSPs
	Varieties of constraints
	CSPs Only Need Binary Constraints!!
	CSP Example: Cryptharithmetic puzzle
	CSP Example: Cryptharithmetic puzzle
	CSP Example: Cryptharithmetic puzzle
	CSP Example: Cryptharithmetic puzzle
	CSP as a standard search problem
	CSP as a standard search problem
	Commutativity
	Backtracking search
	Backtracking search (Figure 6.5)
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search (Figure 6.5)
	Improving CSP efficiency
	Backtracking search (Figure 6.5)
	Minimum remaining values (MRV) for next variable
	Degree heuristic for next variable
	Backtracking search (Figure 6.5)
	Least constraining value (LCV) for next value
	Minimum remaining values (MRV)�vs. Least constraining value (LCV)
	Summary

