
Constraint Satisfaction Problems (CSPs) 
 

Constraint Propagation and Local Search 

This lecture topic (two lectures) 
Chapter 6.1 – 6.4, except 6.3.3 

 
Next lecture topic (two lectures) 

Chapter 7.1 – 7.5 
 

(Please read lecture topic material before and after 
each lecture on that topic) 



Outline 

• Constraint Propagation for CSP 
 

• Forward Checking 
– Book-keeping can be tricky when backtracking 

 
• Node / Arc / Path Consistency, K-Consistency 

– AC-3 
 

• Global Constraints (any number of variables) 
– Special-purpose code often much more efficient 

 
• Local search for CSPs 

– Min-Conflicts heuristic 
 

• (Removed) Problem structure and decomposition 



You Will Be Expected to Know 

 
• Node consistency, arc consistency, path consistency (6.2) 

 
• Forward checking (6.3.2) 

 
• Local search for CSPs: min-conflict heuristic (6.4) 
 



Backtracking search (Figure 6.5) 

function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] 

  then 
   add {var=value} to assignment  
   result ← RECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 
 



Improving CSP efficiency 

• Previous improvements on uninformed search 
 → introduce heuristics 

 
• For CSPS, general-purpose methods can give large gains in 

speed, e.g., 
– Which variable should be assigned next? 
– In what order should its values be tried? 
– Can we detect inevitable failure early? 
– Can we take advantage of problem structure? 

 
Note: CSPs are somewhat generic in their formulation, and so the 

heuristics are more general compared to methods in Chapter 4 



Minimum remaining values (MRV) 

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 

• A.k.a. most constrained variable heuristic 
 

• Heuristic Rule: choose variable with the fewest legal moves 
– e.g., will immediately detect failure if X has no legal values 

 



Degree heuristic for the initial variable 

• Heuristic Rule: select variable that is involved in the largest number of 
constraints on other unassigned variables. 
 

• Degree heuristic can be useful as a tie breaker. 
 

• In what order should a variable’s values be tried? 



Least constraining value for value-ordering 

• Least constraining value heuristic 
 

• Heuristic Rule: given a variable choose the least constraining value 
–  leaves the maximum flexibility for subsequent variable assignments 

 
 



Forward checking 

• Can we detect inevitable failure early? 
– And avoid it later? 

 
• Forward checking idea: keep track of remaining legal values for 

unassigned variables. 
 

• Terminate search when any variable has no legal values. 



Forward checking 

• Assign {WA=red} 
 

• Effects on other variables connected by constraints to WA 
– NT can no longer be red 
– SA can no longer be red 



Forward checking 

• Assign {Q=green} 
 

• Effects on other variables connected by constraints with WA 
– NT can no longer be green 
– NSW can no longer be green 
– SA can no longer be green 

 
• MRV heuristic would automatically select NT or SA next  

 



Forward checking 

• If V is assigned blue 
 

• Effects on other variables connected by constraints with WA 
– NSW can no longer be blue 
– SA is empty 

 
• FC has detected that partial assignment is inconsistent with the constraints and 

backtracking can occur. 
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Example: 4-Queens Problem 

• X1 Level: 
– Deleted: 

• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 
 

• (Please note: As always in computer science, there are many 
different ways to implement anything.  The book-keeping 
method shown here was chosen because it is easy to present 
and understand visually.  It is not necessarily the most 
efficient way to implement the book-keeping in a computer.  
Your job as an algorithm designer is to think long and hard 
about your problem, then devise an efficient implementation.) 
 

• One more efficient equivalent possible alternative (of many): 
– Deleted: 

• { (X2:1,2) (X3:1,3) (X4:1,4) } 
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Example: 4-Queens Problem 

• X1 Level: 
– Deleted: 

• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 
 

• X2 Level: 
– Deleted: 

• { (X3,2) (X3,4) (X4,3) } 
 

 
• (Please note: Of course, we could have failed as soon as we deleted 

{ (X3,2) (X3,4) }. There was no need to continue to delete (X4,3), 
because we already had established that the domain of X3 was null, 
and so we already knew that this branch was futile and we were 
going to fail anyway. The book-keeping method shown here was 
chosen because it is easy to present and understand visually.  It is 
not necessarily the most efficient way to implement the book-keeping 
in a computer.  Your job as an algorithm designer is to think long and 
hard about your problem, then devise an efficient implementation.) 
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Example: 4-Queens Problem 

• X1 Level: 
– Deleted: 

• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 
 

• X2 Level: 
– FAIL at X2=3. 
– Restore: 

• { (X3,2) (X3,4) (X4,3) } 
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• X1 Level: 
– Deleted: 

• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 
 

• X2 Level: 
– Deleted: 

• { (X3,4) (X4,2) } 
 

• X3 Level: 
– Fail at X3=2. 
– Restore: 

• { (X4,3) } 
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Example: 4-Queens Problem 

• X1 Level: 
– Deleted: 

• { (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) } 
 

• X2 Level: 
– Fail at X2=4. 
– Restore: 

• { (X3,4) (X4,2) } 
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Example: 4-Queens Problem 

• X1 Level: 
– Fail at X1=1. 
– Restore: 
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• X1 Level: 
– Deleted: 

• { (X2,1) (X2,2) (X2,3) (X3,2) (X3,4) (X4,2) } 
 



Example: 4-Queens Problem 

1 

3 

2 

4 

X3 X2 X4 X1 

X1 
{1,2,3,4} 

X3 
{1,  ,3,  } 

X4 
{1,  ,3,4} 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
X = value led to failure 

X 



Example: 4-Queens Problem 

1 

3 

2 

4 

X3 X2 X4 X1 

X1 
{1,2,3,4} 

X3 
{1,  ,3,  } 

X4 
{1,  ,3,4} 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
X = value led to failure 

X 



Example: 4-Queens Problem 

1 

3 

2 

4 

X3 X2 X4 X1 

X1 
{1,2,3,4} 

X3 
{1,  ,3,  } 

X4 
{1,  ,3,4} 

X2 
{  ,  ,  ,4} 

Red = value is assigned to variable 
X = value led to failure 

X 
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• X1 Level: 
– Deleted: 

• { (X2,1) (X2,2) (X2,3) (X3,2) (X3,4) (X4,2) } 
 

• X2 Level: 
– Deleted: 

• { (X3,3) (X4,4) } 
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Example: 4-Queens Problem 

• X1 Level: 
– Deleted: 

• { (X2,1) (X2,2) (X2,3) (X3,2) (X3,4) (X4,2) } 
 

• X2 Level: 
– Deleted: 

• { (X3,3) (X4,4) } 
 

• X3 Level: 
– Deleted: 

• { (X4,1) } 
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Comparison of CSP algorithms on different problems 

Median number of consistency checks over 5 runs to solve problem 
 
Parentheses -> no solution found 
 
USA: 4 coloring 
n-queens: n = 2 to 50 
Zebra: see exercise 5.13 



Constraint propagation 

• Solving CSPs with combination of heuristics plus forward checking is 
more efficient than either approach alone 
 

• FC checking does not detect all failures. 
– E.g., NT and SA cannot be blue 

 



Constraint propagation 

• Techniques like CP and FC are in effect eliminating parts of the 
search space 
– Somewhat complementary to search 

 
• Constraint propagation goes further than FC by repeatedly 

enforcing constraints locally 
– Needs to be faster than actually searching to be effective 

 
 

• Arc-consistency (AC) is a systematic procedure for constraint 
propagation 
 



Arc consistency 

• An Arc X → Y is consistent if 
  for every value x of X there is some value y consistent with x 
     (note that this is a directed property) 
   
 
• Consider state of search after WA and Q are assigned: 

 
    SA → NSW is consistent if 
  SA=blue and NSW=red 



Arc consistency 

• X → Y is consistent if 
  for every value x of X there is some value y consistent with x 
 
• NSW → SA is consistent if 
  NSW=red and SA=blue 
  NSW=blue and SA=??? 
 



Arc consistency 

• Can enforce arc-consistency: 
  Arc can be made consistent by removing blue from NSW 

 
• Continue to propagate constraints…. 

– Check V → NSW 
– Not consistent for V = red  
– Remove red from V 



Arc consistency 

  

 
• Continue to propagate constraints…. 

 
• SA → NT is not consistent 

– and cannot be made consistent 
 

• Arc consistency detects failure earlier than FC 
 



Arc consistency checking 

• Can be run as a preprocessor or after each assignment   
– Or as preprocessing before search starts 

 
• AC must be run repeatedly until no inconsistency remains 

 
• Trade-off 

– Requires some overhead to do, but generally more effective than 
direct search 

– In effect it can eliminate large (inconsistent) parts of the state 
space more effectively than search can 
 

• Need a systematic method for arc-checking  
– If X loses a value, neighbors of X need to be rechecked: 

      i.e. incoming arcs can become inconsistent again  
      (outgoing arcs will stay consistent). 

 
 

 
 
 



Arc consistency algorithm (AC-3) 

function AC-3(csp) returns false if inconsistency found, else true, may reduce csp domains 
 inputs: csp, a binary CSP with variables {X1, X2, …, Xn}  
 local variables: queue, a queue of arcs, initially all the arcs in csp 
  /*  initial queue must contain both (Xi, Xj) and (Xj, Xi)  */ 
 while queue is not empty do 
  (Xi, Xj) ← REMOVE-FIRST(queue) 
  if REMOVE-INCONSISTENT-VALUES(Xi, Xj)  then 
   if size of Di = 0 then return false 
   for each Xk in NEIGHBORS[Xi] − {Xj} do 
    add (Xk, Xi) to queue if not already there 
 return true 
 
function REMOVE-INCONSISTENT-VALUES(Xi, Xj) returns true iff we delete a 
   value from the domain of Xi 
 removed ←  false 
 for each x in DOMAIN[Xi] do 
  if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraints 
   between Xi and Xj 
  then delete x from DOMAIN[Xi]; removed ←  true 
 return removed 
 
(from Mackworth, 1977) 



Complexity of AC-3 

• A binary CSP has at most n2 arcs 
 

• Each arc can be inserted in the queue d times (worst case) 
– (X, Y): only d values of X to delete 

 
• Consistency of an arc can be checked in O(d2) time  

 
• Complexity is O(n2 d3) 

 
• Although substantially more expensive than Forward Checking, 

Arc Consistency is usually worthwhile. 
 

 



K-consistency 

• Arc consistency does not detect all inconsistencies: 
– Partial assignment {WA=red, NSW=red} is inconsistent. 

 
• Stronger forms of propagation can be defined using the notion of k-

consistency. 
 

•  A CSP is k-consistent if for any set of k-1 variables and for any 
consistent assignment to those variables, a consistent value can 
always be assigned to any kth variable. 
– E.g. 1-consistency = node-consistency 
– E.g. 2-consistency = arc-consistency 
– E.g. 3-consistency = path-consistency 

 
• Strongly k-consistent:  

– k-consistent for all values  {k, k-1, …2, 1} 
 

 
 
 
 
 



Trade-offs 

• Running stronger consistency checks… 
– Takes more time 
– But will reduce branching factor and detect more inconsistent 

partial assignments 
 

– No “free lunch”   
• In worst case n-consistency takes exponential time 

 
• Generally helpful to enforce 2-Consistency (Arc Consistency) 

 
• Sometimes helpful to enforce 3-Consistency 

 
• Higher levels may take more time to enforce than they save. 

 
 



Further improvements  

• Checking special constraints 
– Checking Alldif(…) constraint  

• E.g. {WA=red, NSW=red} 
– Checking Atmost(…) constraint 

• Bounds propagation for larger value domains 
 

• Intelligent backtracking 
– Standard form is chronological backtracking i.e. try different value for 

preceding variable. 
– More intelligent, backtrack to conflict set. 

• Set of variables that caused the failure or set of previously assigned 
variables that are connected to X by constraints. 

• Backjumping moves back to most recent element of the conflict set. 
• Forward checking can be used to determine conflict set. 



Local search for CSPs 

• Use complete-state representation 
– Initial state = all variables assigned values 
– Successor states = change 1 (or more) values 

 
• For CSPs 

– allow states with unsatisfied constraints (unlike backtracking) 
– operators reassign variable values 
– hill-climbing with n-queens is an example 

 
• Variable selection: randomly select any conflicted variable 

 
• Value selection: min-conflicts heuristic 

– Select new value that results in a minimum number of conflicts with the 
other variables 



Local search for CSP 

function MIN-CONFLICTS(csp, max_steps) return solution or failure 
 inputs: csp, a constraint satisfaction problem 
  max_steps, the number of steps allowed before giving up  
 
 current ←   an initial complete assignment for csp 
 for i = 1 to max_steps do 
  if current is a solution for csp then return current 
  var ←  a randomly chosen, conflicted variable from VARIABLES[csp] 
  value  ←  the value v for var that minimize CONFLICTS(var,v,current,csp) 
  set var = value in current 
 return failure 

 



Min-conflicts example 1 

Use of min-conflicts heuristic in hill-climbing. 

h=5 h=3 h=1 



Min-conflicts example 2 

• A two-step solution for an 8-queens problem using min-conflicts heuristic 
 

• At each stage a queen is chosen for reassignment in its column 
 

• The algorithm moves the queen to the min-conflict square breaking ties 
randomly. 



Comparison of CSP algorithms on different problems 

Median number of consistency checks over 5 runs to solve problem 
 
Parentheses -> no solution found 
 
USA: 4 coloring 
n-queens: n = 2 to 50 
Zebra: see exercise 6.7 (3rd ed.); exercise 5.13 (2nd ed.) 



Advantages of local search 

 
• Local search can be particularly useful in an online setting 

– Airline schedule example 
• E.g., mechanical problems require than 1 plane is taken out of service 
• Can locally search for another “close” solution in state-space 
• Much better (and faster) in practice than finding an entirely new 

schedule 
 
 

• The runtime of min-conflicts is roughly independent of problem size. 
– Can solve the millions-queen problem in roughly 50 steps. 

 
– Why? 

• n-queens is easy for local search because of the relatively high 
density of solutions in state-space 
 
 

 





Hard satisfiability problems 



Hard satisfiability problems 

• Median runtime for 100 satisfiable random 
3-CNF sentences, n = 50 



Sudoku — Backtracking Search + Forward Checking 

• R = [number of cells]/[number of filled cells] 
• Success Rate = P(random puzzle is solvable) 
• [number of cells] = 81 
• [number of filled cells] = variable 
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R = [number of cells]/[number of filled cells] 

R = [number of cells]/[number of filled cells] 



Graph structure and problem complexity 

• Solving disconnected subproblems 
– Suppose each subproblem has c variables out of a total of n. 

 
– Worst case solution cost is O(n/c dc), i.e. linear in n 

• Instead of O(d n), exponential in n 
 

• E.g. n= 80, c= 20, d=2 
– 280 = 4 billion years at 1 million nodes/sec. 
– 4 * 220= .4 second at 1 million nodes/sec 



Tree-structured CSPs 

• Theorem:  
– if a constraint graph has no loops then the CSP can be solved 

in O(nd 2) time 
– linear in the number of variables! 

 
• Compare difference with general CSP, where worst case is O(d n) 



Summary 

• CSPs  
–  special kind of problem: states defined by values of a fixed set of variables, 

goal test defined by constraints on variable values 
 

• Backtracking=depth-first search with one variable assigned per node 
 

• Heuristics 
– Variable ordering and value selection heuristics help significantly 

 
• Constraint propagation does additional work to constrain values and 

detect inconsistencies 
– Works effectively when combined with heuristics 

 
• Iterative min-conflicts is often effective in practice. 

 
• Graph structure of CSPs determines problem complexity 

– e.g., tree structured CSPs can be solved in linear time. 
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