Propositional Logic:
Methods of Proof (Part II)

This lecture topic:
Propositional Logic (two lectures)
Chapter 7.1-7.4 (previous lecture, Part I)
Chapter 7.5 (this lecture, Part II)
(optional: 7.6-7.8)

Next lecture topic:
First-order logic (two lectures)
Chapter 8
(Please read lecture topic material before and after each lecture on that topic)
Outline

• Basic definitions
 – Inference, derive, sound, complete

• Application of inference rules
 – Resolution
 – Horn clauses
 – Forward & Backward chaining

• Model Checking
 – Complete backtracking search algorithms
 • E.g., DPLL algorithm
 – Incomplete local search algorithms
 • E.g., WalkSAT algorithm
You will be expected to know

- Basic definitions
- Conjunctive Normal Form (CNF)
 - Convert a Boolean formula to CNF
- Do a short resolution proof
- Do a short forward-chaining proof
- Do a short backward-chaining proof
- Model checking with backtracking search
- Model checking with local search
Inference in Formal Symbol Systems: Ontology, Representation, Inference

• **Formal Symbol Systems**
 – **Symbols** correspond to **things/ideas** in the world
 – **Pattern matching & rewrite** corresponds to **inference**

• **Ontology**: What exists in the world?
 – What must be represented?

• **Representation**: Syntax vs. Semantics
 – What’s Said vs. What’s Meant

• **Inference**: Schema vs. Mechanism
 – Proof Steps vs. Search Strategy
Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?

Reasoning

<table>
<thead>
<tr>
<th>Representation</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Formal Symbol System</td>
<td>Formal Pattern Matching</td>
</tr>
</tbody>
</table>

Syntax

What is said

Semantics

What it means

Schema

Rules of Inference

Execution

Search Strategy

Preceding lecture
This lecture
Review

- Definitions:
 - Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology)

- Syntactic Transformations:
 - E.g., $(A \Rightarrow B) \iff (\neg A \lor B)$

- Semantic Transformations:
 - E.g., $(KB \models \alpha) \equiv (\models (KB \Rightarrow \alpha))$

- Truth Tables
 - Negation, Conjunction, Disjunction, Implication, Equivalence (Biconditional)
 - Inference by Model Enumeration
If KB is true in the real world, then any sentence α entailed by KB is also true in the real world.
So --- how do we keep it from “Just making things up.”?

Is this inference correct?
How do you know?
How can you tell?

All cats have four legs.
I have four legs.
Therefore, I am a cat.

How can we **make correct** inferences?
How can we **avoid incorrect** inferences?

“Einstein Simplified: Cartoons on Science” by Sydney Harris, 1992, Rutgers University Press
So --- how do we keep it from "Just making things up."?

• All men are people;
 Half of all people are women;
 Therefore, half of all men are women.

• Penguins are black and white;
 Some old TV shows are black and white;
 Therefore, some penguins are old TV shows.

Is this inference correct?
How do you know?
How can you tell?
If KB is true in the real world,
then any sentence α derived from KB
by a sound inference procedure
is also true in the real world.
Logical inference

• The notion of entailment can be used for logic inference.
 – Model checking (see wumpus example):
 enumerate all possible models and check whether α is true.

• **Sound** (or *truth preserving*):
 The algorithm **only** derives entailed sentences.
 – Otherwise it just makes things up.

 i is sound iff whenever $KB \models_i \alpha$ it is also true that $KB \models \alpha$
 – E.g., model-checking is sound

• Complete:
 The algorithm can derive **every** entailed sentence.

 i is complete iff whenever $KB \models \alpha$ it is also true that $KB \models_i \alpha$
Proof methods

• Proof methods divide into (roughly) two kinds:

 Application of inference rules:
 Legitimate (sound) generation of new sentences from old.
 – Resolution
 – Forward & Backward chaining

Model checking
Searching through truth assignments.
 • Improved backtracking: Davis--Putnam-Logemann-Loveland (DPLL)
 • Heuristic search in model space: Walksat.
Conjunctive Normal Form

We’d like to prove: \(KB \models \alpha \)

Equivalent to: \(KB \land \neg \alpha \) unsatisfiable

We first rewrite \(KB \land \neg \alpha \) into **conjunction of disjunctions**

\[(A \lor \neg B) \land (B \lor \neg C \lor \neg D)\]

- Any KB can be converted into CNF.
- In fact, any KB can be converted into CNF-3 using clauses with at most 3 literals.
Example: Conversion to CNF

\(B_{1,1} \iff (P_{1,2} \lor P_{2,1})\)

1. Eliminate \(\iff\), replacing \(\alpha \iff \beta\) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)\).

 \((B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})\)

2. Eliminate \(\Rightarrow\), replacing \(\alpha \Rightarrow \beta\) with \(\neg \alpha \lor \beta\).

 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})\)

3. Move \(\neg\) inwards using de Morgan's rules and double-negation:

 \(\neg(\alpha \lor \beta) = \neg \alpha \land \neg \beta\)

 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})\)

4. Apply distributive law (\(\land\) over \(\lor\)) and flatten:

 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})\)
Example: Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

5. KB is the conjunction of all of its sentences (all are true), so write each clause (disjunct) as a sentence in KB:

\[\ldots \]

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \]

\[(\neg P_{1,2} \lor B_{1,1}) \]

\[(\neg P_{2,1} \lor B_{1,1}) \]

\[\ldots \]

Often, Won’t Write “\lor” or “\land”
(we know they are there)

\[\ldots \rightarrow (\neg B_{1,1} \quad P_{1,2} \quad P_{2,1}) \]

\[\ldots \rightarrow (\neg P_{1,2} \quad B_{1,1}) \]

\[\ldots \rightarrow (\neg P_{2,1} \quad B_{1,1}) \]

(same)
Resolution

• Resolution: inference rule for CNF: sound and complete! *

\((A \lor B \lor C)\)
\((\neg A)\)
\[\therefore (B \lor C)\]

“If A or B or C is true, but not A, then B or C must be true.”

\((A \lor B \lor C)\)
\((\neg A \lor D \lor E)\)
\[\therefore (B \lor C \lor D \lor E)\]

“If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true.”

\((A \lor B)\)
\((\neg A \lor B)\)
\[\therefore (B \lor B) \equiv B\]

* Resolution is “refutation complete” in that it can prove the truth of any entailed sentence by refutation.
Review: Resolution as Efficient Implication

\[
\begin{align*}
\text{(OR } & \text{A B C D)} & \rightarrow \text{Same } \rightarrow & \text{(NOT (OR B C D)) } \Rightarrow \text{ A} \\
\text{(OR } & \neg \text{A E F G)} & \rightarrow \text{Same } \rightarrow & \text{A } \Rightarrow \text{ (OR E F G)} \\
\text{--} & & \text{--} \\
\text{(OR B C D E F G)} & & \text{(NOT (OR B C D)) } \Rightarrow \text{ (OR E F G)} \\
\text{--} & & \text{--} \\
\text{(OR B C D E F G)} & & \text{(OR B C D E F G)}
\end{align*}
\]
Only Resolve **ONE** Literal Pair!

Pick any **one** literal pair that you like.
(If more than one pair, result will be TRUE.)

No!

(OR \(A\) \(B\) \(C\) \(D\))
(OR \(\neg A\) \(\neg B\) \(F\) \(G\))

(OR \(C\) \(D\) \(F\) \(G\))

No!

Yes!

(OR \(A\) \(B\) \(C\) \(D\))
(OR \(\neg A\) \(\neg B\) \(F\) \(G\))

(OR \(B\) \(\neg B\) \(C\) \(D\) \(F\) \(G\))

Yes!

(But useless; simplifies to TRUE.)
Resolution Algorithm

- The resolution algorithm tries to prove: $KB \models \alpha$ equivalent to $KB \land \neg \alpha$ unsatisfiable

- Generate all new sentences from KB and the (negated) query.
- One of two things can happen:

1. We find $P \land \neg P$ which is unsatisfiable. I.e. we can entail the query.

2. We find no contradiction: there is a model that satisfies the sentence $KB \land \neg \alpha$ (non-trivial) and hence we cannot entail the query.
Resolution example

- $KB = (B_{1,1} \leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
- $\alpha = \neg P_{1,2}$
Exposes useful constraints

• “You can’t learn what you can’t represent.” --- G. Sussman

• **In logic:** *If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.*

 Prove that the unicorn is both magical and horned.

 Problem 7.2, page 280. (Adapted from Barwise and Etchemendy, 1993.)

• **A good representation makes this problem easy:**

 $$(\neg Y \lor \neg R) \land (Y \lor R) \land (Y \lor M) \land (R \lor H) \land (\neg M \lor H) \land (\neg H \lor G)$$
Exposes useful constraints

Use these propositional variables (“immortal” = “not mortal”):

\[Y = \text{unicorn is mythical} \quad R = \text{unicorn is mortal} \]
\[M = \text{unicorn is a mammal} \quad H = \text{unicorn is horned} \]
\[G = \text{unicorn is magical} \]

If the unicorn is mythical, then it is immortal
\[Y \Rightarrow \neg R \]
If it is not mythical, then it is a mortal mammal
\[\neg Y \Rightarrow (R \land M) \]
If the unicorn is either immortal or a mammal, then it is horned
\[(\neg R \lor M) \Rightarrow H \]

The unicorn is magical if it is horned.
\[H \Rightarrow G \]

Prove that the unicorn is both magical and horned.
Goal: \((G \land H) \)

Convert KB to CNF and add the negated goal:
\[
\begin{align*}
\text{KB} &= \neg Y \lor \neg R \lor Y \lor R \lor Y \lor M \lor R \lor H \lor \neg M \lor H \lor \neg H \lor G \\
\text{Negated Goal} &= (\neg G \lor \neg H)
\end{align*}
\]
Exposes useful constraints

- A good representation makes this problem easy:
 (Note that we no longer need ∨ or ∧ because we know where they are.)

\[(\neg Y \neg R) (Y R) (Y M) (R H) (\neg M H) (\neg H G) (\neg G \neg H)\]
Horn Clauses

- Resolution can be exponential in space and time.

- If we can reduce all clauses to “Horn clauses” resolution is linear in space and time.

A clause with at most 1 positive literal.

Example:

\(A \lor \neg B \lor \neg C \)

- Every Horn clause can be rewritten as an implication with a conjunction of positive literals in the premises and a single positive literal as a conclusion.

Example:

\(B \land C \Rightarrow A \)

- 1 positive literal: definite clause
- 0 positive literals: integrity constraint:
 - e.g. \((\neg A \lor \neg B) \equiv (A \land B \Rightarrow False)\)
- 0 negative literals: fact
- Forward Chaining and Backward chaining are sound and complete with Horn clauses and run linear in space and time.
Forward chaining (FC)

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.

- This proves that $KB \Rightarrow Q$ is true in all possible worlds (i.e. trivial), and hence it proves entailment.

- Forward chaining is sound and complete for Horn KB
Forward chaining example

“OR” Gate

“AND” gate
Forward chaining example
Backward chaining (BC)

Idea: work backwards from the query \(q \)
- check if \(q \) is known already, or
- prove by BC all premises of some rule concluding \(q \)
- Hence BC maintains a stack of sub-goals that need to be proved to get to \(q \).

Avoid loops: check if new sub-goal is already on the goal stack

Avoid repeated work: check if new sub-goal
1. has already been proved true, or
2. has already failed
Backward chaining example
Backward chaining example
Backward chaining example
Backward chaining example

we need P to prove L and L to prove P.
Backward chaining example

As soon as you can move forward, do so.
Backward chaining example
Forward vs. backward chaining

- FC is **data-driven**, automatic, unconscious processing,
 - e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- BC is **goal-driven**, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be **much less** than linear in size of KB
Model Checking

Two families of efficient algorithms:

• Complete backtracking search algorithms:
 – E.g., DPLL algorithm

• Incomplete local search algorithms
 – E.g., WalkSAT algorithm
The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable. This is just backtracking search for a CSP.

Improvements:

1. Early termination
 A clause is true if any literal is true.
 A sentence is false if any clause is false.

2. Pure symbol heuristic
 Pure symbol: always appears with the same "sign" in all clauses.
 e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure, C is impure.
 Make a pure symbol literal true. (if there is a model for S, then making a pure symbol true is also a model).

3. Unit clause heuristic
 Unit clause: only one literal in the clause
 The only literal in a unit clause must be true.

Note: literals can become a pure symbol or a unit clause when other literals obtain truth values. e.g.

\[(A ∨ \text{True}) ∧ (¬A ∨ B)\]

\[A = \text{pure}\]
The \textit{WalkSAT} algorithm

- Incomplete, local search algorithm

- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses

- Balance between greediness and randomness

\begin{center}
\textbf{Walksat Procedure}
\end{center}

\begin{itemize}
 \item Start with random initial assignment.
 \item Pick a random unsatisfied clause.
 \item Select and flip a variable from that clause:
 \begin{itemize}
 \item With probability p, pick a random variable.
 \item With probability $1-p$, pick greedily a variable that minimizes the number of unsatisfied clauses
 \end{itemize}
 \item Repeat to predefined maximum number of flips; \textbf{if no solution found, restart.}
\end{itemize}
Hard satisfiability problems

• Consider *random* 3-CNF sentences. e.g.,

\[(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)\]

\[
m = \text{number of clauses (5)}
\]

\[
n = \text{number of symbols (5)}
\]

– Hard problems seem to cluster near \(m/n = 4.3\) (critical point)
Hard satisfiability problems
Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n = 50$
Common Sense Reasoning
Example, adapted from Lenat

You are told: John drove to the grocery store and bought a pound of noodles, a pound of ground beef, and two pounds of tomatoes.

- Is John 3 years old?
- Is John a child?
- What will John do with the purchases?
- Did John have any money?
- Does John have less money after going to the store?
- Did John buy at least two tomatoes?
- Were the tomatoes made in the supermarket?
- Did John buy any meat?
- Is John a vegetarian?
- Will the tomatoes fit in John’s car?

- Can Propositional Logic support these inferences?
Summary

• Logical agents apply inference to a knowledge base to derive new information and make decisions.

• Basic concepts of logic:
 – syntax: formal structure of sentences
 – semantics: truth of sentences wrt models
 – entailment: necessary truth of one sentence given another
 – inference: deriving sentences from other sentences
 – soundness: derivations produce only entailed sentences
 – completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic. Forward and backward chaining are linear-time, complete for Horn clauses.

• Propositional logic lacks expressive power.