First-Order Logic I nference

Reading: Chapter 8, 9.1-9.2, 9.5.1-9.5.5
FOL Syntax and Semantics read: 8.1-8.2
FOL Knowledge Engineering read: 8.3-8.5
FOL Inference read: Chapter 9.1-9.2, 9.5.1-9.5.5
(Please read lecture topic material before and after each lecture on that topic)

Outline

- Reducing first-order inference to propositional inference
- Unification
- -Genreralized Modus Ponems- .
- Forward-chaining - -
- -Backward shaining -
- Resolution
- Other types of reasoning
- Induction, abduction, analogy
- Modal logics

You will be expected to know

- Concepts and vocabulary of unification, CNF, and resolution.
- Given two FOL terms containing variables
- Find the most general unifier if one exists.
- Else, explain why no unification is possible.
- See figure 9.1 and surrounding text in your textbook.
- Convert a FOL sentence into Conjunctive Normal Form (CNF).
- Resolve two FOL clauses in CNF to produce their resolvent, including unifying the variables as necessary.
- Produce a short resolution proof from FOL clauses in CNF.

Universal instantiation (UI)

- Notation: Subst(\{v/g\}, a) means the result of substituting ground term g for variable v in sentence a
- Every instantiation of a universally quantified sentence is entailed by it:

$$
\frac{\forall v a}{\operatorname{Subst}(\{v / g\}, a)}
$$

for any variable v and ground term g

- E.g., $\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$ yields:

```
King(John) ^ Greedy(John) => Evil(John), {x/John}
King(Richard) ^ Greedy(Richard) = Evil(Richard), {x/Richard}
King(Father(John)) ^ Greedy(Father(John)) = Evil(Father(John)),
                                    {x/Father(John)}
```


Existential instantiation (EI)

- For any sentence a, variable v, and constant symbol k (that does not appear elsewhere in the knowledge base):

$$
\frac{\exists v a}{\operatorname{Subst}(\{v / k\}, a)}
$$

- E.g., $\exists x \operatorname{Crown}(x) \wedge$ OnHead($x, J o h n)$ yields:

$$
\text { Crown }\left(\mathrm{C}_{1}\right) \wedge \text { OnHead }\left(\mathrm{C}_{1}, \mathrm{John}\right)
$$

where C_{1} is a new constant symbol, called a Skolem constant

- Existential and universal instantiation allows to "propositionalize" any FOL sentence or KB
- El produces one instantiation per EQ sentence
- Ul produces a whole set of instantiated sentences per UQ sentence

Reduction to propositional form

Suppose the KB contains the following:

```
\forallx King(x) ^Greedy(x) = Evil(x)
King(J ohn)
Greedy(John)
Brother(Richard,John)
```

- Instantiating the universal sentence in all possible ways, we have: (there are only two ground terms: John and Richard)

```
King(J ohn) ^ Greedy(John) => Evil(John)
King(Richard) ^ Greedy(Richard) }=>\mathrm{ Evil(Richard)
King(J ohn)
Greedy(John)
Brother(Richard,John)
```

- The new KB is propositionalized with "propositions":

```
King(J ohn), Greedy(J ohn), Evil(J ohn), King(Richard), etc.
```


Reduction continued

- Every FOL KB can be propositionalized so as to preserve entailment
- A ground sentence is entailed by new KB iff entailed by original KB
- Idea for doing inference in FOL:
- propositionalize KB and query
- apply resolution-based inference
- return result
- Problem: with function symbols, there are infinitely many ground terms,
- e.g., Father(Father(Father(John))), etc

Reduction continued

Theorem: Herbrand (1930). If a sentence a is entailed by a FOL
KB, it is entailed by a finite subset of the propositionalized KB

Idea: For $\mathrm{n}=0$ to ∞ do
create a propositional $K B$ by instantiating with depth n terms see if a is entailed by this KB

Problem: works if a is entailed, loops if a is not entailed. \rightarrow The problem of semi-decidable: algorithms exist to prove entailment, but no algorithm exists to to prove non-entailment for every non-entailed sentence.

Other Problems with Propositionalization

- Propositionalization generates lots of irrelevant sentences
- So inference may be very inefficient
- e.g., from:

```
\forallx King(x) ^ Greedy(x) = Evil(x)
King(J ohn)
\forally Greedy(y)
Brother(Richard, John)
```

- it seems obvious that Evil(J ohn) is entailed, but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant
- With $\mathrm{p} k$-ary predicates and n constants, there are $\mathrm{p} \cdot \mathrm{n}^{\mathrm{k}}$ instantiations
- Lets see if we can do inference directly with FOL sentences

Unification

- Recall: $\operatorname{Subst}(\theta, p)=$ result of substituting θ into sentence p
- Unify algorithm: takes 2 sentences p and q and returns a unifier if one exists

$$
\operatorname{Unify}(p, q)=\theta \quad \text { where } \operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)
$$

- Example:

$$
\begin{aligned}
& p=\text { Knows(J ohn, } x) \\
& q=\text { Knows(J ohn, Jane) }
\end{aligned}
$$

$\operatorname{Unify}(p, q)=\{x / J$ ane $\}$

Unification examples

- \quad simple example: query $=$ Knows(John,x), i.e., who does John know?

p	q	θ
Knows(John, x)	Knows(John, Jane)	\{x/J ane\}
Knows(J ohn, x)	Knows(y, OJ)	\{ $\mathrm{x} / \mathrm{OJ}, \mathrm{y} / \mathrm{J}$ ohn\}
Knows(John,x)	Knows(y, Mother(y))	\{y/John, $\mathrm{x} / \mathrm{Mother}(\mathrm{John}$) $\}$
Knows(John,x)	Knows(x, OJ)	\{fail\}

- Last unification fails: only because x can't take values John and OJ at the same time
- But we know that if John knows X, and everyone (x) knows OJ, we should be able to infer that John knows OJ
- Problem is due to use of same variable x in both sentences
- Simple solution: Standardizing apart eliminates overlap of variables, e.g., Knows(z,OJ)

Unification

- To unify Knows(John, x) and Knows(y,z),

$$
\theta=\{y / J \text { ohn, } x / z\} \text { or } \theta=\{y / J \text { ohn, } x / J \text { ohn, } z / J \text { ohn }\}
$$

- The first unifier is more general than the second.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.

$$
M G U=\{y / J o h n, x / z\}
$$

- General algorithm in Figure 9.1 in the text

Hard matching example

> Diff(wa,nt) ^Diff(wa,sa) $\wedge \operatorname{Diff(nt,q)\wedge } \begin{aligned} & \text { Diff(nt,sa) } \wedge \operatorname{Diff(q,nsw)\wedge \operatorname {Diff(q}(q,sa)\wedge } \\ & \text { Diff(nsw,v) } \wedge \operatorname{Diff(nsw,sa)~\wedge \operatorname {Diff(v,sa)~}} \Rightarrow \Rightarrow \\ & \text { Colorable() }\end{aligned}$ $\begin{array}{ll}\text { Diff(Red,Blue) } & \text { Diff (Red,Green) } \\ \text { Diff(Green,Red) } & \text { Diff(Green,Blue) } \\ \text { Diff(Blue,Red) } & \text { Diff(Blue,Green) }\end{array}$

- To unify the grounded propositions with premises of the implication you need to solve a CSP!
- Colorable() is inferred iff the CSP has a solution
- CSPs include 3SAT as a special case, hence matching is NP-hard

Recall our example...

```
\(\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)\)
King(John)
\(\forall y\) Greedy(y)
Brother(Richard,John)
```

And we would like to infer Evil(J ohn) without propositionalization

Generalized Modus Ponens (GMP)

$$
p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)
$$

$\operatorname{Subst}(\theta, q)$
where we can unify $p_{i}{ }^{\prime}$ and p_{i} for all i

Example:
$p_{1}{ }^{\prime}$ is King(John) p_{1} is $\operatorname{King}(x)$
$p_{2}{ }^{\prime}$ is $\operatorname{Greedy}(y) \quad p_{2}$ is $\operatorname{Greed} y(x)$
θ is $\{x / J$ ohn, $y / J o h n\} \quad q$ is Evil(x)
$\operatorname{Subst}(\theta, q)$ is Evil(John)

- Implicit assumption that all variables universally quantified

Completeness and Soundness of GMP

- GMP is sound
- Only derives sentences that are logically entailed
- See proof in text on p. 326 ($3^{\text {rd }}$ ed.; p. 276, $2^{\text {nd }}$ ed.)
- GMP is complete for a KB consisting of definite clauses
- Complete: derives all sentences that are entailed
- OR...answers every query whose answers are entailed by such a KB
- Definite clause: disjunction of literals of which exactly 1 is positive, e.g., King(x) AND Greedy(x) -> Evil(x) NOT(King(x)) OR NOT(Greedy(x)) OR Evil(x)

I nference appoaches in FOL

- Farward-chaining
- Uses GMP to add new atomic sentences
- Useful for systems that make inferences as information streams in
- Requires KB to beinform of first-order definite clauses
- Backward-chaining
- Works backwards from a query to try to ronstruct a proof
- Can suffer from repeated states and incompleterness
- Useful for query-driven inference
- Resolution-based inference (FOL)
- Refutation-complete for general KB
- Can be used to confirm or refute a sentence p (but not to generate all entailed sentences)
- Requires FOL KB to be reduced to CNF
- Uses generalized version of propositional inference rule
- Note that all of these methods are generalizations of their propositional equivalents

Knowledge Base in FOL

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

Knowledge Base in FOL

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
-

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge$ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile $(z) \Rightarrow \operatorname{Criminal}(x)$
Nono ... has some missiles, i.e., $\exists x$ Owns(Nono,x) \wedge Missile(x):
Owns(Nono, M_{1}) and Missile $\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West
Missile(x) ^Owns(Nono, x) \Rightarrow Sells(West, x, Nono)
Missiles are weapons:
Missile(x) \Rightarrow Weapon (x)
An enemy of America counts as "hostile":
Enemy(x,America) \Rightarrow Hostile(x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Forward chaining proof

Missile(M1)
Owns(Nono,MI)
Enemy(Nono,America)

Forward chaining proof

Forward chaining proof

Properties of forward chaining

- Sound and complete for first-order definite clauses
- Datalog $=$ first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations
- May not terminate in general if a is not entailed
- Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration k-1
\Rightarrow match each rule whose premise contains a newly added positive literal

Backward chaining example

Criminal(West)

Backward chaining example

Properties of backward chaining

- Depth-first recursive proof search:
- Space is linear in size of proof.
- Incomplete due to infinite loops
- \Rightarrow fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
- \Rightarrow fix using caching of previous results (memoization)
- Widely used for logic programming
- PROLOG:
backward chaining with Horn clauses + bells \& whistles.

Resolution in FOL

- Full first-order version:

$$
\wp_{1} \vee \cdots \vee c_{k}, \quad m_{1} \vee \cdots \vee m_{n}
$$

$\operatorname{Subst}\left(\theta, \wp_{1} \vee \cdots \vee \mathfrak{i}_{\mathrm{i}-1} \vee \mathfrak{i}_{\mathrm{i}+1} \vee \cdots \vee \oint_{k} \vee m_{1} \vee \cdots \vee m_{\mathrm{j}-1} \vee m_{\mathrm{j}+1} \vee \cdots \vee m_{\mathrm{n}}\right)$
where Unify $\left(\varsigma_{i}, \neg m_{\mathrm{j}}\right)=\theta$.

- The two clauses are assumed to be standardized apart so that they share no variables.
- For example,

$$
\begin{gathered}
\neg \text { Rich }(x) \vee \operatorname{Unhappy(x),} \quad \text { Rich(Ken) } \\
\text { Unhappy(Ken) }
\end{gathered}
$$

with $\theta=\{x /$ Ken $\}$

- Apply resolution steps to $\mathrm{CNF}(\mathrm{KB} \wedge \neg a)$; complete for FOL

Converting FOL sentences to CNF

Original sentence:
Everyone who loves all animals is loved by someone: $\forall x[\forall y \operatorname{Animal}(\mathrm{y}) \Rightarrow \operatorname{Loves}(\mathrm{x}, \mathrm{y})] \Rightarrow[\exists \mathrm{y} \operatorname{Loves}(\mathrm{y}, \mathrm{x})]$

1. Eliminate biconditionals and implications
```
\forallx[\neg\forally \negAnimal( ( ) \vee Loves(x,y)] \vee[\existsy Loves( }\textrm{y},\textrm{x})
```

2. Move \neg inwards:

$$
\begin{aligned}
& \text { Recall: } \neg \forall x p \equiv \exists \mathrm{x} \neg \mathrm{p}, \neg \exists \mathrm{x} p \equiv \forall \mathrm{x} \neg \mathrm{p} \\
& \forall \mathrm{x}[\exists \mathrm{y} \neg(\neg \operatorname{Animal}(\mathrm{y}) \vee \operatorname{Loves}(\mathrm{x}, \mathrm{y}))] \vee[\exists \mathrm{y} \operatorname{Loves}(\mathrm{y}, \mathrm{x})] \\
& \forall \mathrm{x}[\exists \mathrm{y} \neg \neg \operatorname{Animal}(\mathrm{y}) \wedge \neg \operatorname{Loves}(\mathrm{x}, \mathrm{y})] \vee[\exists \mathrm{y} \operatorname{Loves}(\mathrm{y}, \mathrm{x})] \\
& \forall \mathrm{x}[\exists \mathrm{y} \operatorname{Animal}(\mathrm{y}) \wedge \neg \operatorname{Loves}(\mathrm{x}, \mathrm{y})] \vee[\exists \mathrm{y} \operatorname{Loves}(\mathrm{y}, \mathrm{x})]
\end{aligned}
$$

Conversion to CNF contd.

3. Standardize variables:
each quantifier should use a different one
$\forall x[\exists y$ Animal $(\mathrm{y}) \wedge \neg \operatorname{Loves}(\mathrm{x}, \mathrm{y})] \vee[\exists \mathrm{z}$ Loves $(\mathrm{z}, \mathrm{x})]$
4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
(reason: animal y could be a different animal for each x.)

Conversion to CNF contd.

5. Drop universal quantifiers:
[Animal(F(x)) $\wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
(all remaining variables assumed to be universally quantified)
6. Distribute \vee over \wedge :
$[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

Original sentence is now in CNF form - can apply same ideas to all sentences in KB to convert into CNF

Also need to include negated query
Then use resolution to attempt to derive the empty clause which show that the query is entailed by the KB

Recall: Example Knowledge Base in FOL

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge$ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile $(z) \Rightarrow$ Criminal (x)
Nono ... has some missiles, i.e., $\exists x$ Owns(Nono, x) \wedge Missile(x): Owns(Nono, M_{1}) and Missile $\left(\mathrm{M}_{1}\right)$
... all of its missiles were sold to it by Colonel West Missile(x) ^Owns(Nono, x) \Rightarrow Sells(West, x, Nono)

Missiles are weapons:
Missile $(x) \Rightarrow$ Weapon(x)
An enemy of America counts as "hostile":
Enemy(x,America) \Rightarrow Hostile(x)
Convert to CNF
West, who is American ...
American(West)
Q: Criminal(West)?
The country Nono, an enemy of America ...
Enemy(Nono,America)

Resolution proof

Second Example

KB:

Everyone who loves all animals is loved by someone Anyone who kills animals is loved by no-one Jack loves all animals
Either Curiosity or Jack killed the cat, who is named Tuna

Query: Did Curiousity kill the cat?

I nference Procedure:

Express sentences in FOL
Convert to CNF form and negated query

Resolution-based I nference

Confusing because the sentences Have not been standardized apart...

Other Types of Reasoning (all unsound, often useful)

- Inductive Reasoning (Induction)
- Reason from a set of examples to the general principle.
- Fact: You`ve liked all movies starring Meryl Streep.

Inference: You'll like her next movie.

- Basis for most learning and scientific reasoning.
- Abductive Reasoning (Abduction)
- Reason from facts to the conclusion that best explains them.
- Fact: A large amount of black smoke is coming from a home. Abduction1: The house is on fire. Abduction2: Bad cook.
- Basis for most debugging and medical diagnosis.
- Analogical Reasoning (Analogy)
- Reason from known (source) to unknown (target).
- Fact: Water flow in a hose; pressure, constrictions.

Inference: Electricity flow in a circuit; voltage, resistance.

- Basis for much teaching.

Modal Logic Examples

- \square represents Necessary
- Analogous to "For All"
- \diamond represents Possible
- Analogous to "There Exists"
- $\square \Leftrightarrow \neg \diamond_{\neg}$
- $\diamond \Leftrightarrow \neg \square \neg \quad$ (Analogous to DeMorgan's Law for Quantifiers)
- "It is possible that it will rain today."
\diamond RainToday
"It is not necessary that it will not rain today." $\neg \square \neg$ RainToday
- Modal Logic of Knowledge and Belief.
- \square represents "x knows that ..."
- \diamond represents "for all x knows, it may be true that ..."
- Equivalently, " x does not know that it is not true that ..."
- For reasoning about what other agents know and believe.
- Temporal Modal Logic
- Modal operators [F] and [P] represent "henceforth" and "hitherto".
- For reasoning about what will be and what has been.

Summary

- Inference in FOL
- Simple approach: reduce all sentences to PL and apply propositional inference techniques
- Generally inefficient
- FOL inference techniques
- Unification
- Generalized Modus Ponens
- Forward-chaining
- Backward-chaining
- Resolution-based inference
- Refutation-complete

