# Probability and Uncertainty 

Warm-up and Review for Bayesian Networks and Machine Learning

## This lecture: Read Chapter 13

Next Lecture: Read Chapter 14.1-14.2

Please do all readings
both before and again after lecture.

## outine

- Representing uncertainty is useful in knowledge bases.
- Probability provides a framework for managing uncertainty
- Review of basic concepts in probability.
- Emphasis on conditional probability and conditional independence
- Using a full joint distribution and probability rules, we can derive any probability relationship in a probability space.
- Number of required probabilities can be reduced through independence and conditional independence relationships
- Probabilities allow us to make better decisions.
- Decision theory and expected utility.
- Rational agents cannot violate probability theory.


## You will be expected to know

- Basic probability notation/definitions:
- Probability model, unconditional/prior and conditional/posterior probabilities, factored representation (= variable/value pairs), random variable, (joint) probability distribution, probability density function (pdf), marginal probability, (conditional) independence, normalization, etc.
- Basic probability formulae:
- Probability axioms, product rule, Bayes' rule.
- How to use Bayes' rule:
- Naïve Bayes model (naïve Bayes classifier)


## The Problem: Uncertainty

- We cannot always know everything relevant to the problem before we select an action:
- Environments that are non-deterministic, partially observable
- Noisy sensors
- Some features may be too complex model
- For Example: Trying to decide when to leave for the airport to make a flight
- Will Iget me there on time?
- Uncertainties:
- Car failures (flat tire, engine failure)
- Road state, accidents, natural disasters
- Unreliable weather reports, traffic updates
- Predicting traffic along route
(non-deterministic)
(partially observable)
(noisy sensors)
(complex modeling)
- A purely logical agent does not allow for strong decision making in the face of such uncertainty.
- Purely logical agents are based on binary True/False statements, no maybe
- Forces us to make assumptions to find a solution --> weak solutions


## Hancilifesincertainty

- Default or non-monotonic logic:
- Based on assuming things are a certain way, unless evidence to the contrary.
- Assume my car does not have a flat tire
- Assume road ahead is clear, no accidents
- Issues: What assumptions are reasonable?

How to retract inferences when assumptions found false?

- Rules with fudge factors:
- Based on guesses or rules of thumb for relationships between events.
- A25 => 0.3 get there on time
- Rain => 0.99 grass wet
- Issues: No theoretical framework for combination
- Probability:
- Based on degrees of belief, given the available evidence
- Solidly rooted in statistics


## Probability

- $\mathrm{P}(\mathrm{a})$ is the probability of proposition " a "
- e.g., P(it will rain in London tomorrow)
- The proposition a is actually true or false in the real-world
- Probability Axioms:
$-0 \leq P(a) \leq 1$
- $\mathrm{P}(\mathrm{NOT}(\mathrm{a}))=1-\mathrm{P}(\mathrm{a}) \quad \Rightarrow \quad \Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{A})=1$
- $P($ true $)=1$
- $P($ false $)=0$
$-P(A$ OR B) $=P(A)+P(B)-P(A$ AND B)
- Any agent that holds degrees of beliefs that contradict these axioms will act irrationally in some cases
- Rational agents cannot violate probability theory.
- Acting otherwise results in irrational behavior.


## Probability

- Probabilities can be subjective:
- Agents develop probabilities based on their experiences:
- Two agents may have different internal probabilities of the same event occurring.
- Probabilities of propositions change with new evidence:
$-\mathrm{P}($ party tonight $)=0.15$
$-P($ party tonight $\mid$ Friday $)=0.60$


## Interpretations of Probability

- Relative Frequency:

What we were taught in school

- $\mathrm{P}(a)$ represents the frequency that event $a$ will happen in repeated trials.
- Requires event $a$ to have happened enough times for data to be collected.
- Degree of Belief: A more general view of probability
- $\mathrm{P}(a)$ represents an agent's degree of belief that event $a$ is true.
- Can predict probabilities of events that occur rarely or have not yet occurred.
- Does not require new or different rules, just a different interpretation.
- Examples:
- a = "life exists on another planet"
- What is $\mathrm{P}(\mathrm{a})$ ? We will all assign different probabilities
- $a=$ "Hilary Clinton will be the next US president"
- What is $\mathrm{P}(\mathrm{a})$ ?
- $a=$ "over $50 \%$ of the students in this class will get $A$ 's"
- What is $\mathrm{P}(\mathrm{a})$ ?


## conceptsofprobaility

- Unconditional Probability (AKA marginal or prior probability):
- P(a), the probability of "a" being true
- Does not depend on anything else to be true (unconditional)
- Represents the probability prior to further information that may adjust it (prior)
- Conditional Probability (AKA posterior probability):
- $\mathbf{P}(a \mid b)$, the probability of " $a$ " being true, given that " $b$ " is true
- Relies on " $b$ " = true (conditional)
- Represents the prior probability adjusted based upon new information "b" (posterior)
- Can be generalized to more than 2 random variables:
- e.g. P(a|b, c, d)
- Joint Probability:
- $P(a, b)=P(a \wedge b)$, the probability of "a" and " $b$ " both being true
- Can be generalized to more than 2 random variables:
- e.g. P(a, b, c, d)


## Random Variables

- Random Variable:
- Basic element of probability assertions
- Similar to CSP variable, but values reflect probabilities not constraints.
- Variable: A
- Domain: $\left\{a_{1}, a_{2}, a_{3}\right\}<--$ events / outcomes
- Types of Random Variables:
- Boolean random variables $=$ \{ true, false \}
- e.g., Cavity (= do I have a cavity?)
- Discrete random variables = One value from a set of values
- e.g., Weather is one of <sunny, rainy, cloudy ,snow>
- Continuous random variables = A value from within constraints
- e.g., Current temperature is bounded by $\left(10^{\circ}, 200^{\circ}\right)$
- Domain values must be exhaustive and mutually exclusive:
- One of the values must always be the case (Exhaustive)
- Two of the values cannot both be the case (Mutually Exclusive)


## Random Variables

- For Example: Flipping a coin
- Variable $=$ R, the result of the coin flip
- Domain = \{heads, tails, edge $\}$
- $P(R=$ heads $)=0.4999$
- $P(R=$ tails $)=0.4999$
- $P(R=$ edge $)=0.0002$

- Shorthand is often used for simplicity:
- Upper-case letters for variables, lower-case letters for values.
- e.g. $\quad P(a) \quad \equiv P(A=a)$
$P(a \mid b) \quad \equiv P(A=a \mid B=b)$

$$
\mathrm{P}(\mathrm{a}, \mathrm{~b}) \quad \equiv \mathrm{P}(\mathrm{~A}=\mathrm{a}, \mathrm{~B}=\mathrm{b})
$$

- Two kinds of probability propositions:
- Elementary propositions are an assignment of a value to a random variable:
- e.g., Weather = sunny; Cavity = false (abbreviated as $\rightarrow$ cavity)
- Complex propositions are formed from elementary propositions and standard logical connectives:
- e.g., Cavity = false $V$ Weather = sunny


## Probability Space $P(A)+P(7 A)=1$

## Entire Sample Space: $P(S)=1$



Area $=$ Probability of Event

# AND Probability $P(A, B)=P(A \wedge B)=P(A)+P(B)-P(A \vee B)$ 

Entire Sample Space: $\mathrm{P}(\mathrm{S})=1$


Area $=$ Probability of Event

# OR Probability <br> $$
P(A \vee B)=P(A)+P(B)-P(A, B)
$$ 

Entire Sample Space: $P(S)=1$


Area $=$ Probability of Event

## Conditional Probability $P(A \mid B)=P(A, B) / P(B)$

Entire Sample Space: $\mathrm{P}(\mathrm{S})=1$


Area $=$ Probability of Event

## Product Rule <br> $$
P(A, B)=P(A \mid B) P(B)
$$

Entire Sample Space: $P(S)=1$


Area $=$ Probability of Event

## Using the Product Rule

- Applies to any number of variables:
$-P(a, b, c)=P(a, b \mid c) P(c)=P(a \mid b, c) P(b, c)$
$-P(a, b, c \mid d, e)=P(a \mid b, c, d, e) P(b, c)$
- Factoring: (AKA Chain Rule for probabilities)
- By the product rule, we can always write:

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots . z) P(b, c, \ldots z)
$$

- Repeatedly applying this idea, we can write:

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots . z) P(b \mid c, . . z) P(c \mid . . z) . . P(z)
$$

- This holds for any ordering of the variables


# Sum Rule $\mathrm{P}(\mathrm{A})=\Sigma_{\mathrm{B}, \mathrm{C}} \mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ 

Entire Sample Space: $\mathrm{P}(\mathrm{S})=1$


Area $=$ Probability of Event

## Using the Sum Rule

- We can marginalize variables out of any joint distribution by simply summing over that variable:
$-P(b)=\Sigma_{a} \Sigma_{c} \Sigma_{d} P(a, b, c, d)$
- $\mathrm{P}(\mathrm{a}, \mathrm{d})=\Sigma_{\mathrm{b}} \Sigma_{\mathrm{c}} \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$
- For Example: Determine probability of catching a fish today
- Given a set of probabilities P(CatchFishToday, Day, Lake)
- Where:
- CatchFishToday = \{true,false\}
- Day = \{mon, tues, wed, thurs, fri, sat, sun\}
- Lake = \{buel lake, ralph lake, crystal lake\}
- Need to find P(CatchFish = True):
- $P($ CatchFishToday $=$ true $)=\sum_{\text {Day }} \Sigma_{\text {Fish }} \Sigma_{\text {Lake }} P($ CatchFishToday $=$ true, Day, Lake $)$


# Bayes' Rule $P(B \mid A)=P(A \mid B) P(B) / P(A)$ 

Entire Sample Space: $P(S)=1$


Area $=$ Probability of Event

## Derivation of Bayes' Rule

- Start from Product Rule:

$$
-P(a, b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

- Isolate Equality on Right Side:
$-P(a \mid b) P(b)=P(b \mid a) P(a)$
- Divide through by $P(b):$

$$
-P(a \mid b)=P(b \mid a) P(a) / P(b) \quad<- \text { Bayes' Rule }
$$

## Using Bayes' Rule

- For Example: Determine probability of meningitis given a stiff neck
- Given:
- P(stiff neck | meningitis) $=0.5$
- $P$ (meningitis) $=1 / 50,000$
- $P($ stiff neck $)=1 / 20$
- Need to find $P$ (meningitis $\mid$ stiff neck):

$$
\text { - } \begin{aligned}
P(m / s) & =P(s / m) P(m) / P(s) \\
& =[0.5 * 1 / 50,000] /[1 / 20]=1 / 5,000
\end{aligned}
$$

[Bayes' Rule]

- 10 times more likely to have meningitis given a stiff neck
- Applies to any number of variables:
- Any probability $P(X \mid Y)$ can be rewritten as $P(Y \mid X) P(X) / P(Y)$, even if $X$ and $Y$ are lists of variables.
$-P(a \mid b, c)=P(b, c \mid a) P(a) / P(b, c)$
$-P(a, b \mid c, d)=P(c, d \mid a, b) P(a, b) / P(c, d)$


## Summary of Probability Rules

- Product Rule:
$-P(a, b)=P(a \mid b) P(b)=P(b \mid a) P(a)$
- Probability of "a" and "b" occurring is the same as probability of "a" occurring given " $b$ " is true, times the probability of " b " occurring.
- e.g., $\quad P($ rain, cloudy $)=P($ rain | cloudy) * $P($ cloudy $)$
- Sum Rule: (AKA Law of Total Probability)
$-\mathbf{P}(\mathrm{a})=\Sigma_{\mathrm{b}} \mathbf{P}(\mathrm{a}, \mathrm{b})=\Sigma_{\mathrm{b}} \mathbf{P}(\mathrm{a} \mid \mathrm{b}) \mathbf{P}(\mathrm{b}), \quad$ where B is any random variable
- Probability of "a" occurring is the same as the sum of all joint probabilities including the event, provided the joint probabilities represent all possible events.
- Can be used to "marginalize" out other variables from probabilities, resulting in prior probabilities also being called marginal probabilities.
- e.g., $\quad P($ rain $)=\Sigma_{\text {Windspeed }} P($ rain, Windspeed $)$
where Windspeed $=\{0-10 \mathrm{mph}, 10-20 \mathrm{mph}, 20-30 \mathrm{mph}$, etc. $\}$
- Bayes' Rule:
- $P(b \mid a)=P(a \mid b) P(b) / P(a)$
- Acquired from rearranging the product rule.
- Allows conversion between conditionals, from $P(a \mid b)$ to $P(b \mid a)$.
- e.g., $b=$ disease, $a=$ symptoms

More natural to encode knowledge as $\mathrm{P}(\mathrm{a} \mid \mathrm{b})$ than as $\mathrm{P}(\mathrm{b} \mid \mathrm{a})$.

## Full Joint Distribution

- We can fully specify a probability space by constructing a full joint distribution:
- A full joint distribution contains a probability for every possible combination of variable values. This requires:
$\Pi_{\text {vars }}\left(\mathbf{n}_{\text {var }}\right)$ probabilities where $\mathrm{n}_{\mathrm{var}}$ is the number of values in the domain of variable var
- e.g. $\quad P(A, B, C)$, where $A, B, C$ have 4 values each

Full joint distribution specified by $4^{3}$ values $=64$ values

- Using a full joint distribution, we can use the product rule, sum rule, and Bayes' rule to create any combination of joint and conditional probabilities.


## Decision Theory: Why Probabilities are Useful

- We can use probabilities to make better decisions!
- For Example: Deciding whether to operate on a patient
- Given:
- Operate = \{true, false\}
- Cancer = \{true, false\}
- A set of evidence $e$
- So far, agent's degree of belief is $p$ (Cancer = true |e).
- Which action to choose?
- Depends on the agent's preferences:
o How willing is the agent to operate if there is no cancer?
o How willing is the agent to not operate when there is cancer?
- Preferences can be quantified by a Utility Function, or a Cost Function.


## Utility Function / Cost Function

- Utility Function:
- Quantifies an agent's utility from (happiness with) a given outcome.
- Rational agents act to maximize expected utility.
- Expected Utility of action $A=a$, resulting in outcomes $B=b$ :
- Expected Utility $=\Sigma_{b} \mathbf{P}(\mathrm{~b} \mid \mathrm{a})$ * Utility(b)
- Cost Function:
- Quantifies an agent's cost from (unhappiness with) a given outcome.
- Rational agents act to minimize expected cost.
- Expected Cost of action a, resulting in outcomes o:
- Expected Cost $=\Sigma_{b} \mathbf{P}(\mathbf{b} \mid \mathbf{a}) * \operatorname{Cost}(\mathrm{~b})$


## Decision Theory:

## Why Probabilities are Useful

- Utility associated with various outcomes:
- Operate $=$ true, Cancer $=$ true: utility $=30$
- Operate = true, Cancer = false: utility =-50
- Operate = false, Cancer = true: utility=-100
- Operate =false, Cancer = false: utility = 0
- Expected utility of actions:
$-P(c)=P($ Cancer $=$ true)
<-- for simplicity
- E[utility(Operate $=$ true)] $=30 \mathrm{P}(c)-50[1-P(c)]$
- E[utility(Operate $=$ false) $]=-100 P(c)$
- Break even point?
$-30 P(c)-50+50 P(c)=-100 P(c)$
$-\quad P(c)=50 / 180 \approx 0.28$
- If $P(c)>0.28$, the optimal decision (highest expected utility) is to operate!


## Independence

- Formal Definition:
- 2 random variables $A$ and $B$ are independent iff:

$$
P(a, b)=P(a) P(b), \quad \text { for all values } a, b
$$

- Informal Definition:
- 2 random variables $A$ and $B$ are independent iff:

$$
P(a \mid b)=P(a) \quad O R \quad P(b \mid a)=P(b), \quad \text { for all values } a, b
$$

$-P(a \mid b)=P(a)$ tells us that knowing $b$ provides no change in our probability for $a$, and thus $b$ contains no information about $a$.

- Also known as marginal independence, as all other variables have been marginalized out.
- In practice true independence is very rare:
- "butterfly in China" effect
- Conditional independence is much more common and useful


## Conditional Independence

- Formal Definition:
- 2 random variables $A$ and $B$ are conditionally independent given $C$ iff: $P(a, b \mid c)=P(a \mid c) P(b \mid c), \quad$ for all values $a, b, c$
- Informal Definition:
- 2 random variables $A$ and $B$ are conditionally independent given $C$ iff: $P(a \mid b, c)=P(a \mid c) \quad O R \quad P(b \mid a, c)=P(b \mid c), \quad$ for all values $a, b, c$
- $P(a \mid b, c)=P(a \mid c)$ tells us that learning about $b$, given that we already know $c$, provides no change in our probability for $a$, and thus $b$ contains no information about a beyond what c provides.
- Naïve Bayes Model:
- Often a single variable can directly influence a number of other variables, all of which are conditionally independent, given the single variable.
- E.g., $k$ different symptom variables $X_{1}, X_{2}, \ldots X_{k}$, and $C=$ disease, reducing to:

$$
P\left(X_{1}, X_{2}, \ldots . X_{K} \mid C\right)=\Pi P\left(X_{i} \mid C\right)
$$

## Conditional Independence vs. Independence

- For Example:
- $A$ = height
$-B=$ reading ability
$-C=a g e$
$-P($ reading ability | age, height $)=P($ reading ability | age)
$-P($ height | reading ability, age $)=P($ height $\mid$ age $)$
- Note:
- Height and reading ability are dependent (not independent)
but are conditionally independent given age


## Conditional Independence



In each group, symptom 1 and symptom 2 are conditionally independent.
But clearly, symptom 1 and 2 are marginally dependent (unconditionally).

## Putting It All Together

- Full joint distributions can be difficult to obtain:
- Vast quantities of data required, even with relatively few variables
- Data for some combinations of probabilities may be sparse
- Determining independence and conditional independence allows us to decompose our full joint distribution into much smaller pieces:
- e.g., P(Toothache, Catch, Cavity)
$=P($ Toothache, Catch/Cavity) P(Cavity)
$=P$ (Toothache/Cavity) P(Catch/Cavity) P(Cavity)
- All three variables are Boolean.
- Before conditional independence, requires $2^{3}$ probabilities for full specification:
--> Space Complexity: O(2 $\left.{ }^{n}\right)$
- After conditional independence, requires 3 probabilities for full specification:
--> Space Complexity: O(n)


## Conclusions...

- Representing uncertainty is useful in knowledge bases.
- Probability provides a framework for managing uncertainty.
- Using a full joint distribution and probability rules, we can derive any probability relationship in a probability space.
- Number of required probabilities can be reduced through independence and conditional independence relationships
- Probabilities allow us to make better decisions by using decision theory and expected utilities.
- Rational agents cannot violate probability theory.

