
Probability and Uncertainty 
Warm-up and Review for 

Bayesian Networks and Machine Learning 

This lecture: Read Chapter 13 
Next Lecture: Read Chapter 14.1-14.2 

 
Please do all readings 

both before and again after lecture. 



Outline 
• Representing uncertainty is useful in knowledge bases. 

– Probability provides a framework for managing uncertainty 
 

• Review of basic concepts in probability. 
– Emphasis on conditional probability and conditional independence 

 
• Using a full joint distribution and probability rules, we can derive any 

probability relationship in a probability space. 
– Number of required probabilities can be reduced through independence and 

conditional independence relationships 
 

• Probabilities allow us to make better decisions. 
– Decision theory and expected utility. 
 

• Rational agents cannot violate probability theory. 



You will be expected to know 
• Basic probability notation/definitions: 

– Probability model, unconditional/prior and 
conditional/posterior probabilities, factored 
representation (= variable/value pairs), random variable, 
(joint) probability distribution, probability density function 
(pdf), marginal probability, (conditional) independence, 
normalization, etc. 

• Basic probability formulae: 
– Probability axioms, product rule, Bayes’ rule. 

• How to use Bayes’ rule: 
– Naïve Bayes model (naïve Bayes classifier) 

 



The Problem: Uncertainty 
 

• We cannot always know everything relevant to the problem before we select 
an action: 
– Environments that are non-deterministic, partially observable 
– Noisy sensors 
– Some features may be too complex model 
 

• For Example: Trying to decide when to leave for the airport to make a flight 
– Will I get me there on time? 
– Uncertainties: 

 Car failures (flat tire, engine failure)  (non-deterministic) 
 Road state, accidents, natural disasters   (partially observable) 
 Unreliable weather reports, traffic updates (noisy sensors) 
 Predicting traffic along route   (complex modeling)  

 
• A purely logical agent does not allow for strong decision making in the face of 

such uncertainty. 
– Purely logical agents are based on binary True/False statements, no maybe 
– Forces us to make assumptions to find a solution --> weak solutions 



Handling Uncertainty 
 
• Default or non-monotonic logic: 

– Based on assuming things are a certain way, unless evidence to the contrary. 
 Assume my car does not have a flat tire 
 Assume road ahead is clear, no accidents 

– Issues:  What assumptions are reasonable?  
   How to retract inferences when assumptions found false? 

 
• Rules with fudge factors: 

– Based on guesses or rules of thumb for relationships between events. 
 A25 => 0.3 get there on time 
 Rain => 0.99 grass wet 

– Issues:  No theoretical framework for combination 
 
• Probability: 

– Based on degrees of belief, given the available evidence 
– Solidly rooted in statistics 



Probability 
• P(a) is the probability of proposition “a” 

– e.g., P(it will rain in London tomorrow) 
– The proposition a is actually true or false in the real-world 
 

• Probability Axioms: 
– 0  ≤ P(a) ≤ 1 
– P(NOT(a))  = 1 – P(a) =>  ΣA P(A) = 1 
– P(true)  =  1 
– P(false) =  0 
– P(A OR B) = P(A) + P(B) – P(A AND B) 

 
• Any agent that holds degrees of beliefs that contradict these 

axioms will act irrationally in some cases 
 

• Rational agents cannot violate probability theory. 
─ Acting otherwise results in irrational behavior. 

 
 
 
 
 

 



Probability 
 

• Probabilities can be subjective: 
– Agents develop probabilities based on their 

experiences: 
 Two agents may have different internal probabilities 

of the same event occurring. 
 

• Probabilities of propositions change with 
new evidence: 
– P(party tonight) = 0.15 
– P(party tonight | Friday) = 0.60 
 



Interpretations of Probability 
• Relative Frequency:   What we were taught in school 

– P(a) represents the frequency that event a will happen in repeated trials. 
– Requires event a to have happened enough times for data to be collected. 

 

• Degree of Belief:   A more general view of probability 
– P(a) represents an agent’s degree of belief that event a is true. 
– Can predict probabilities of events that occur rarely or have not yet occurred. 
– Does not require new or different rules, just a different interpretation. 

 

• Examples: 
– a = “life exists on another planet” 

• What is P(a)?  We will all assign different probabilities 
– a = “Hilary Clinton will be the next US president” 

• What is P(a)? 
– a = “over 50% of the students in this class will get A’s” 

• What is P(a)? 



Concepts of Probability 
• Unconditional Probability (AKA marginal or prior probability): 

─ P(a), the probability of “a” being true 
─ Does not depend on anything else to be true (unconditional) 
─ Represents the probability prior to further information that may adjust it 

(prior) 
 

• Conditional Probability (AKA posterior probability): 
─ P(a|b), the probability of “a” being true, given that “b” is true 
─ Relies on “b” =  true (conditional) 
─ Represents the prior probability adjusted based upon new information “b” 

(posterior) 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a|b, c, d) 
 

• Joint Probability : 
─ P(a, b) = P(a ˄ b), the probability of “a” and “b” both being true 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a, b, c, d) 
 

 
 

 
 
 
 
 

 



Random Variables 
• Random Variable:  

─ Basic element of probability assertions 
─ Similar to CSP variable, but values reflect probabilities not constraints. 

 Variable:  A   
 Domain:  {a1, a2, a3} <-- events / outcomes 
 
 

• Types of Random Variables: 
– Boolean random variables  =  { true, false }  

 e.g., Cavity (= do I have a cavity?) 
 

– Discrete random variables  =  One value from a set of values 
 e.g., Weather is one of <sunny, rainy, cloudy ,snow> 
 

– Continuous random variables  =  A value from within constraints 
 e.g., Current temperature is bounded by (10°, 200°) 

 
 
• Domain values must be exhaustive and mutually exclusive: 

– One of the values must  always be the case (Exhaustive) 
– Two of the values cannot both be the case  (Mutually Exclusive) 

 
 
 
 

 



Random Variables 
• For Example: Flipping a coin 

– Variable = R, the result of the coin flip 
– Domain = {heads, tails, edge}  <-- must be exhaustive 
– P(R = heads) = 0.4999  } 
– P(R = tails) = 0.4999   } -- must be exclusive 
– P(R = edge) = 0.0002   } 

 

• Shorthand is often used for simplicity: 
– Upper-case letters for variables, lower-case letters for values. 
– e.g.  P(a) ≡ P(A = a)   
    P(a|b)  ≡ P(A = a | B = b) 
   P(a, b)   ≡ P(A = a, B = b) 

 
• Two kinds of probability propositions: 

– Elementary propositions are an assignment of a value to a random variable: 
 e.g., Weather = sunny; Cavity = false (abbreviated as ¬cavity) 
 

– Complex propositions are formed from elementary propositions and standard 
logical connectives : 
 e.g., Cavity = false ∨  Weather = sunny 



Probability Space 

Area = Probability of Event 

P(A) + P(רA) = 1 



AND Probability 

Area = Probability of Event 

P(A, B) = P(A ˄ B) = P(A) + P(B) - P(A ˅ B) 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



OR Probability 

Area = Probability of Event 

P(A ˅B) = P(A) + P(B) – P(A,B) 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Conditional Probability 

Area = Probability of Event 

P(A | B) = P(A, B) / P(B) 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Product Rule 

Area = Probability of Event 

P(A,B) = P(A|B) P(B) 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Using the Product Rule 

• Applies to any number of variables: 
– P(a, b, c) = P(a, b|c) P(c) = P(a|b, c) P(b, c) 
– P(a, b, c|d, e)  = P(a|b, c, d, e) P(b, c) 

 
• Factoring: (AKA Chain Rule for probabilities) 

– By the product rule, we can always write: 
  P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z) 
 

– Repeatedly applying this idea, we can write: 
   P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z) 
 

– This holds for any ordering of the variables 



Sum Rule 

Area = Probability of Event 

P(A) =  ΣB,C P(A,B,C) 



Using the Sum Rule 

• We can marginalize variables out of any joint distribution by simply 
summing over that variable: 
–  P(b)  = Σa Σc Σd P(a, b, c, d)  
– P(a, d) = Σb Σc  P(a, b, c, d)  
 

• For Example: Determine probability of catching a fish today 
– Given a set of probabilities P(CatchFishToday, Day, Lake) 
– Where: 

 CatchFishToday =  {true, false} 
 Day =   {mon, tues, wed, thurs, fri, sat, sun} 
 Lake =   {buel lake, ralph lake, crystal lake} 

 
– Need to find P(CatchFish = True): 

 P(CatchFishToday = true)  = ΣDay ΣFish ΣLake P(CatchFishToday = true, Day, Lake) 
                                        

 
 

 

 
 



Bayes’ Rule 
P(B|A) =  P(A|B) P(B)  / P(A) 

Area = Probability of Event 

P(A ˄ B) = 
P(A) + P(B) 
- P(A ˅ B) 



Derivation of Bayes’ Rule 

• Start from Product Rule: 
– P(a, b) = P(a|b) P(b)  = P(b|a) P(a) 
 

• Isolate Equality on Right Side: 
– P(a|b) P(b)  = P(b|a) P(a) 

 

• Divide through by P(b): 
– P(a|b) = P(b|a) P(a) / P(b)  <-- Bayes’ Rule 



Using Bayes’ Rule 

• For Example: Determine probability of meningitis given a stiff neck 
- Given: 

 P(stiff neck | meningitis) = 0.5      } 
 P(meningitis) = 1/50,000       } -- From medical databases 
 P(stiff neck) = 1/20  } 

 
- Need to find P(meningitis | stiff neck): 

 P(m|s)  = P(s|m)  P(m)  / P(s)   [Bayes’ Rule] 
   = [ 0.5 * 1/50,000  ] / [1/20]  = 1/5,000 
 
- 10 times more likely to have meningitis given a stiff neck 

 
• Applies to any number of variables: 

– Any probability P(X|Y) can be rewritten as P(Y|X) P(X) / P(Y), even if X 
and Y are lists of variables. 

– P(a | b, c) = P(b, c | a) P(a)  / P(b, c) 
– P(a, b | c, d)  = P(c, d | a, b) P(a, b)  / P(c, d) 

 
 
 



Summary of Probability Rules 
• Product Rule: 

– P(a, b) = P(a|b) P(b)  = P(b|a) P(a) 
– Probability of “a” and “b” occurring is the same as probability of “a” occurring 

given “b” is true, times the probability of “b” occurring. 
 e.g., P( rain, cloudy ) = P(rain | cloudy) * P(cloudy) 

 
• Sum Rule: (AKA Law of Total Probability) 

– P(a) =  Σb P(a, b) =  Σb  P(a|b) P(b),   where B is any random variable 
– Probability of “a” occurring is the same as the sum of all joint probabilities 

including the event, provided the joint probabilities represent all possible 
events. 

– Can be used to “marginalize” out other variables from probabilities, resulting 
in prior probabilities also being called marginal probabilities. 
 e.g., P(rain) = ΣWindspeed P(rain, Windspeed) 
  where Windspeed = {0-10mph, 10-20mph, 20-30mph, etc.} 

 
• Bayes’ Rule: 

- P(b|a) =  P(a|b) P(b)  / P(a) 
- Acquired from rearranging the product rule. 
- Allows conversion between conditionals, from  P(a|b) to P(b|a). 

 e.g.,  b = disease, a = symptoms 
         More natural to encode knowledge as P(a|b) than as P(b|a). 

 
 



Full Joint Distribution 

• We can fully specify a probability space by constructing a full 
joint distribution: 
– A full joint distribution contains a probability for every possible combination of 

variable values. This requires:  
    Πvars (nvar) probabilities 
    where nvar is the number of values in the domain of variable var 
 

– e.g. P(A, B, C), where A,B,C have 4 values each 
   Full joint distribution specified by 43 values = 64 values 
 

• Using a full joint distribution, we can use the product rule, sum rule, 
and Bayes’ rule to create any combination of joint and conditional 
probabilities. 

    

 



Decision Theory:  
Why Probabilities are Useful 

• We can use probabilities to make better decisions! 
 
• For Example: Deciding whether to operate on a patient 

– Given: 
 Operate =  {true, false} 
 Cancer =  {true, false} 
 A set of evidence e 
 

– So far, agent’s degree of belief is p(Cancer = true | e). 
 

– Which action to choose? 
 Depends on the agent’s preferences: 

o How willing is the agent to operate if there is no cancer?  
o How willing is the agent to not operate when there is cancer? 

 Preferences can be quantified by a Utility Function, or a Cost Function. 
 
 
 

 
 



Utility Function / Cost Function 

• Utility Function:  
- Quantifies an agent’s utility from (happiness with) a given outcome.  
- Rational agents act to maximize expected utility. 
- Expected Utility of action A = a, resulting in outcomes B = b: 

 Expected Utility = ∑b P(b|a) * Utility(b) 
 

• Cost Function:   
- Quantifies an agent’s cost from (unhappiness with) a given outcome. 
- Rational agents act to minimize expected cost. 
- Expected Cost of action a, resulting in outcomes o: 

 Expected Cost = ∑b P(b|a) * Cost(b) 

 
 



• Utility associated with various outcomes: 
– Operate = true, Cancer = true:    utility =  30 
– Operate = true, Cancer = false:   utility = -50 
– Operate = false, Cancer = true:    utility = -100 
– Operate = false, Cancer = false:   utility = 0 

 

• Expected utility of actions: 
– P(c) = P(Cancer = true)    <-- for simplicity 
– E[utility(Operate = true)]  = 30 P(c) – 50 [1-P(c)] 
– E[utility(Operate = false)] = -100 P(c) 

 

• Break even point?    
– 30 P(c) – 50 + 50 P(c) = -100 P(c)  
– P(c) = 50/180 ≈ 0.28 
– If P(c) > 0.28, the optimal decision (highest expected utility) is to operate! 

Decision Theory:  
Why Probabilities are Useful 



Independence 
• Formal Definition: 

– 2 random variables A and B are independent iff: 
   P(a, b) = P(a) P(b),     for all values a, b 

 

• Informal Definition: 
– 2 random variables A and B are independent iff: 
              P(a | b) = P(a)     OR   P(b | a) = P(b),   for all values a, b 
– P(a | b) = P(a) tells us that knowing b provides no change in our probability 

for a, and thus b contains no information about a. 
 

• Also known as marginal independence, as all other variables have 
been marginalized out. 

 
• In practice true independence is very rare: 

– “butterfly in China” effect 
– Conditional independence is much more common and useful   

 
 



Conditional Independence 
• Formal Definition: 

– 2 random variables A and B are conditionally independent given C iff: 
  P(a, b|c) = P(a|c) P(b|c),     for all values a, b, c 
 

• Informal Definition: 
– 2 random variables A and B are conditionally independent given C iff: 
  P(a|b, c) = P(a|c)     OR   P(b|a, c) = P(b|c),   for all values a, b, c 
– P(a|b, c) = P(a|c) tells us that learning about b, given that we already know c, 

provides no change in our probability for a, and thus b contains no 
information about a beyond what c provides. 
 

• Naïve Bayes Model: 
– Often a single variable can directly influence a number of other variables, all 

of which are conditionally independent, given the single variable. 
– E.g., k different symptom variables X1, X2, … Xk, and C = disease, reducing to: 
  P(X1, X2,…. XK | C) = Π  P(Xi | C) 

 

 



Conditional Independence 
vs. Independence 

• For Example:  
– A = height 
– B = reading ability 
– C = age 

 
– P(reading ability | age, height) = P(reading ability | age) 
– P(height | reading ability, age) = P(height | age) 

 
• Note: 

– Height and reading ability are dependent (not 
independent) 
but are conditionally independent given age 
 
 
 
 



Conditional Independence 

Symptom 1 

Symptom 2 

Different values of C (condition variable) 
correspond to different groups/colors 

In each group, symptom 1 and symptom 2 are conditionally independent. 
 
But clearly, symptom 1 and 2 are marginally dependent (unconditionally).  



Putting It All Together 
• Full joint distributions can be difficult to obtain: 

– Vast quantities of data required, even with relatively few variables 
– Data for some combinations of probabilities may be sparse  
 

• Determining independence and conditional independence allows us to 
decompose our full joint distribution into much smaller pieces: 

– e.g., P(Toothache, Catch, Cavity) 
  = P(Toothache, Catch|Cavity) P(Cavity) 
  = P(Toothache|Cavity) P(Catch|Cavity) P(Cavity) 
 

• All three variables are Boolean. 
• Before conditional independence, requires 23 probabilities for full specification: 
     --> Space Complexity: O(2n) 
• After conditional independence, requires 3 probabilities for full specification: 
     --> Space Complexity: O(n) 

 
 
    

 



Conclusions… 
• Representing uncertainty is useful in knowledge bases. 

 
• Probability provides a framework for managing uncertainty. 

 
• Using a full joint distribution and probability rules, we can derive any 

probability relationship in a probability space. 
 

• Number of required probabilities can be reduced through 
independence and conditional independence relationships 
 

• Probabilities allow us to make better decisions by using decision 
theory and expected utilities. 
 

• Rational agents cannot violate probability theory. 
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