Bayesian Networks

Read R\&N Ch. 14.1-14.2

Next lecture: Read R\&N 18.1-18.4

You will be expected to know

- Basic concepts and vocabulary of Bayesian networks.
- Nodes represent random variables.
- Directed arcs represent (informally) direct influences.
- Conditional probability tables, P(Xi| Parents(Xi)).
- Given a Bayesian network:
- Write down the full joint distribution it represents.
- Given a full joint distribution in factored form:
- Draw the Bayesian network that represents it.
- Given a variable ordering and some background assertions of conditional independence among the variables:
- Write down the factored form of the full joint distribution, as simplified by the conditional independence assertions.

Bayesian Network

- A Bayesian network specifies a joint distribution in a structured form:

- Dependence/independence represented via a directed graph:
- Node
= random variable
- Directed Edge
= conditional dependence
- Absence of Edge = conditional independence
-Allows concise view of joint distribution relationships:
- Graph nodes and edges show conditional relationships between variables.
- Tables provide probability data.

Bayesian Networks

- Structure of the graph \Leftrightarrow Conditional independence relations

In general,

The full joint distribution
The graph-structured approximation

- Requires that graph is acyclic (no directed cycles)
- 2 components to a Bayesian network
- The graph structure (conditional independence assumptions)
- The numerical probabilities (for each variable given its parents)
- Also known as belief networks, graphical models, causal networks

Examples of 3-way Bayesian Networks

Marginal Independence: $p(A, B, C)=p(A) p(B) p(C)$

Examples of 3-way Bayesian Networks

Conditionally independent effects: $p(A, B, C)=p(B \mid A) p(C \mid A) p(A)$

B and C are conditionally independent Given A
e.g., A is a disease, and we model B and C as conditionally independent symptoms given A

Examples of 3-way Bayesian Networks

Independent Causes: $p(A, B, C)=p(C \mid A, B) p(A) p(B)$
"Explaining away" effect:
Given C, observing A makes B less likely e.g., earthquake/burglarylalarm example
A and B are (marginally) independent but become dependent once C is known

Examples of 3-way Bayesian Networks

Markov dependence:
$p(A, B, C)=p(C \mid B) p(B \mid A) p(A)$

Example

- Consider the following 5 binary variables:
- $B=a$ burglary occurs at your house
- $E=$ an earthquake occurs at your house
- A = the alarm goes off
- J = J ohn calls to report the alarm
- $M=$ Mary calls to report the alarm
- What is $P(B \mid M, J)$? (for example)
- We can use the full joint distribution to answer this question
- Requires $2^{5}=32$ probabilities
- Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

The Desired Bayesian Network

Only requires 10 probabilities!

Constructing a Bayesian Network: Step 1

- Order the variables in terms of influence (may be a partial order)

$$
\text { e.g., }\{E, B\}->\{A\}->\{J, M\}
$$

- $P(J, M, A, E, B)=P(J, M \mid A, E, B) P(A \mid E, B) P(E, B)$

$$
\begin{aligned}
& \approx P(J, M \mid A) \quad P(A \mid E, B) P(E) P(B) \\
& \approx P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)
\end{aligned}
$$

These conditional independence assumptions are reflected in the graph structure of the Bayesian network

Constructing this Bayesian Network: Step 2

- $P(J, M, A, E, B)=$
$P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)$

- There are 3 conditional probability tables (CPDs) to be determined: $P(J \mid A), P(M \mid A), P(A \mid E, B)$
- Requiring $2+2+4=8$ probabilities
- And 2 marginal probabilities $P(E), P(B)->2$ more probabilities
- Where do these probabilities come from?
- Expert knowledge
- From data (relative frequency estimates)
- Or a combination of both - see discussion in Section 20.1 and 20.2 (optional)

The Resulting Bayesian Network

Example (done the simple, marginalization way)

- So, what is $P(B \mid M, J)$?
E.g., say, $P(b \mid m, \neg j)$, i.e., $P(B=$ true $\mid M=$ true $\wedge J=$ false $)$
$P(b \mid m, \neg j)=P(b, m, \neg j) / P(m, \neg j) ;$ by definition
$P(b, m, \neg j)=\Sigma A \in\{a, \neg a\} \Sigma E \in\{e, \neg e\} P(\neg j, m, A, E, b) ;$ marginal
$P(J, M, A, E, B) \approx P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)$; conditional indep.
$P(\neg j, m, A, E, b) \approx P(\neg j \mid A) P(m \mid A) P(A \mid E, b) P(E) P(b)$
Say, work the case $A=a \wedge E=\neg e$
$\mathrm{P}(\neg j, m, a, \neg e, b) \approx P(\neg j \mid a) P(m \mid a) P(a \mid \neg e, b) P(\neg e) P(b)$

$$
\approx 0.10 \times 0.70 \times 0.94 \times 0.998 \times 0.001
$$

Similar for the cases of a $\wedge e, ~ \neg a \wedge e, ~ \neg a \wedge \neg e$.
Similar for $P(m, \neg j)$. Then just divide to get $P(b \mid m, ~ \neg j)$.

Number of Probabilities in Bayesian Networks

- Consider n binary variables
- Unconstrained joint distribution requires $\mathrm{O}\left(2^{\mathrm{n}}\right)$ probabilities
- If we have a Bayesian network, with a maximum of k parents for any node, then we need $O\left(\begin{array}{l} \\ \left.2^{k}\right)\end{array}\right)$ probabilities
- Example
- Full unconstrained joint distribution
- $\mathrm{n}=30, \mathrm{k}=4$: need 10^{9} probabilities for full joint distribution
- Bayesian network
- $\mathrm{n}=30, \mathrm{k}=4$: need 480 probabilities

The Bayesian Network from a different Variable Ordering

(a)

The Bayesian Network from a different Variable Ordering

(b)

Given a graph, can we "read off" conditional independencies?

The "Markov Blanket" of X (the gray area in the figure)

X is conditionally independent of everything else, GIVEN the values of:

* X's parents
* X's children
* X's children's parents

X is conditionally independent of its non-descendants, GIVEN the values of its parents.

General Strategy for inference

- Want to compute $\mathrm{P}(\mathrm{q} \mid \mathrm{e})$

Step 1:

$$
P(q \mid e)=P(q, e) / P(e)=\alpha P(q, e), \quad \text { since } P(e) \text { is constant wrt } Q
$$

Step 2:

$$
\mathrm{P}(\mathrm{q}, \mathrm{e})=\Sigma_{\mathrm{a} . . z} \mathrm{P}(\mathrm{q}, \mathrm{e}, \mathrm{a}, \mathrm{~b}, \ldots \mathrm{z}), \quad \text { by the law of total probability }
$$

Step 3:

$$
\Sigma_{\mathrm{a} . . \mathrm{z}} \mathrm{P}(\mathrm{q}, \mathrm{e}, \mathrm{a}, \mathrm{~b}, \ldots \mathrm{z})=\Sigma_{\mathrm{a} . . \mathrm{z}} \Pi_{\mathrm{i}} \mathrm{P}(\text { variable } \mathrm{i} \mid \text { parents } \mathrm{i})
$$

(using Bayesian network factoring)
Step 4:
Distribute summations across product terms for efficient computation

Naïve Bayes Model

Features X are conditionally independent given the class variable C
Widely used in machine learning
e.g., spam email classification: X's = counts of words in emails

Probabilities $\mathrm{P}(\mathrm{C})$ and $\mathrm{P}(\mathrm{Xi} \mid \mathrm{C})$ can easily be estimated from labeled data

Naïve Bayes Model (2)

$$
P\left(C \mid X_{1}, \ldots X_{n}\right)=\alpha \Pi P\left(X_{i} \mid C\right) P(C)
$$

Probabilities $P(C)$ and $P(X i \mid C)$ can easily be estimated from labeled data
$\mathrm{P}(\mathrm{C}=\mathrm{cj}) \approx \#($ Examples with class label cj$) / \#($ Examples $)$
$\mathrm{P}(\mathrm{Xi}=x i k \mid C=c j)$
₹ \#(Examples with Xi value xik and class label cj)
/ \#(Examples with class label cj)
Usually easiest to work with logs

$$
\begin{aligned}
\log [P(C & \left.\left.\mid X_{1}, \ldots X_{n}\right)\right] \\
& =\log \alpha+\Sigma\left[\log P\left(X_{i} \mid C\right)+\log P(C)\right]
\end{aligned}
$$

DANGER: Suppose ZERO examples with Xi value xik and class label cj? An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every \#() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Hidden Markov Model (HMM)

Two key assumptions:

1. hidden state sequence is Markov
2. observation Y_{t} is Cl of all other variables given S_{t}

Widely used in speech recognition, protein sequence models
Since this is a Bayesian network polytree, inference is linear in n

Summary

- Bayesian networks represent a joint distribution using a graph
- The graph encodes a set of conditional independence assumptions
- Answering queries (or inference or reasoning) in a Bayesian network amounts to efficient computation of appropriate conditional probabilities
- Probabilistic inference is intractable in the general case
- But can be carried out in linear time for certain classes of Bayesian networks

