
Bayesian Networks 

Read R&N Ch. 14.1-14.2 
 

Next lecture: Read R&N 18.1-18.4 



You will be expected to know 

• Basic concepts and vocabulary of Bayesian networks. 
– Nodes represent random variables. 
– Directed arcs represent (informally) direct influences. 
– Conditional probability tables, P( Xi | Parents(Xi) ). 

 
• Given a Bayesian network: 

– Write down the full joint distribution it represents. 
 

• Given a full joint distribution in factored form: 
– Draw the Bayesian network that represents it. 

 
• Given a variable ordering and some background assertions of 

conditional independence among the variables: 
– Write down the factored form of the full joint distribution, as 

simplified by the conditional independence assertions. 



•   A Bayesian network specifies a joint distribution in a structured form: 

 

 

 

 

   

 
• Dependence/independence represented via a directed graph:   

− Node   = random variable 
− Directed Edge  = conditional dependence 
− Absence of Edge  = conditional independence 
 

 
•Allows concise view of joint distribution relationships:   

− Graph nodes and edges show conditional relationships between variables. 
− Tables provide probability data. 
 

Bayesian Network 

A B 

C 

p(A,B,C) = p(C|A,B)p(A)p(B) 



Bayesian Networks 

• Structure of the graph  Conditional independence relations 
 
 
 
 
 
 
 
 

• Requires that graph is acyclic (no directed cycles) 
 

• 2 components to a Bayesian network 
– The graph structure (conditional independence assumptions) 
– The numerical probabilities (for each variable given its parents) 
 

•  Also known as belief networks, graphical models, causal networks 
 

In general, 
   p(X1, X2,....XN) = Π p(Xi | parents(Xi ) ) 

The full joint distribution The graph-structured approximation 



Examples of 3-way Bayesian Networks 

A C B Marginal Independence: 
p(A,B,C) = p(A) p(B) p(C) 



Examples of 3-way Bayesian Networks 

A 

C B 

Conditionally independent effects: 
p(A,B,C) = p(B|A)p(C|A)p(A) 
 
B and C are conditionally independent 
Given A 
 
e.g., A is a disease, and we model  
B and C as conditionally independent 
symptoms given A 
 



Examples of 3-way Bayesian Networks 

A B 

C 

Independent Causes: 
p(A,B,C) = p(C|A,B)p(A)p(B) 
 
 
“Explaining away” effect: 
Given C, observing A makes B less likely 
e.g., earthquake/burglary/alarm example 
 
A and B are (marginally) independent  
but become dependent once C is known 
  



Examples of 3-way Bayesian Networks 

A C B Markov dependence: 
p(A,B,C) = p(C|B) p(B|A)p(A) 



Example 

• Consider the following 5 binary variables: 
– B = a burglary occurs at your house 
– E = an earthquake occurs at your house 
– A = the alarm goes off 
– J  = John calls to report the alarm 
– M = Mary calls to report the alarm 

 
– What is P(B | M, J) ?  (for example) 

 
– We can use the full joint distribution to answer this question 

• Requires 25 = 32 probabilities 
 

• Can we use prior domain knowledge to come up with a 
Bayesian network that requires fewer probabilities? 



The Desired Bayesian Network 

Only requires 10 probabilities! 



Constructing a Bayesian Network: Step 1 

• Order the variables in terms of influence (may be a partial order) 
 
            e.g., {E, B} -> {A} -> {J, M} 
 
 
• P(J, M, A, E, B) =  P(J, M | A, E, B) P(A| E, B) P(E, B) 

 
                           ≈  P(J, M | A)         P(A| E, B) P(E) P(B) 
 
       ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) 
 
   
    These conditional independence assumptions are reflected in the 

graph structure of the Bayesian network 
 
 
 

 



Constructing this Bayesian Network: Step 2 

 
• P(J, M, A, E, B) =     
         P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B) 
 
 
 
 

 
• There are 3 conditional probability tables (CPDs) to be determined: 

 P(J | A),  P(M | A),  P(A | E, B)  
– Requiring 2 + 2 + 4 = 8 probabilities 

 
• And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities 

 
 

• Where do  these probabilities come from? 
– Expert knowledge 
– From data (relative frequency estimates) 
– Or a combination of both - see discussion in Section 20.1 and 20.2 (optional) 

 
 
 
 
 
 

 



The Resulting Bayesian Network 



Example (done the simple, marginalization way) 

• So, what is P(B | M, J) ? 
 E.g., say, P(b | m, ¬j) , i.e., P(B=true | M=true ∧ J=false) 
 
P(b | m, ¬j) = P(b, m, ¬j) / P(m, ¬j) ;by definition 
 
P(b, m, ¬j) = ΣA∈{a,¬a}ΣE∈{e,¬e} P(¬j, m, A, E, b) ;marginal 
 
P(J, M, A, E, B) ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) ; conditional indep. 
P(¬j, m, A, E, b) ≈  P(¬j | A) P(m | A) P(A| E, b) P(E) P(b)  
 
Say, work the case A=a ∧ E=¬e 
P(¬j, m, a, ¬e, b) ≈  P(¬j | a) P(m | a) P(a| ¬e, b) P(¬e) P(b)  
        ≈    0.10   x   0.70   x   0.94  x  0.998 x 0.001 
Similar for the cases of a ∧e, ¬a∧e, ¬a∧¬e. 
 
Similar for P(m, ¬j).  Then just divide to get P(b | m, ¬j). 
 



Number of Probabilities in Bayesian Networks 

• Consider n binary variables 
 

• Unconstrained joint distribution requires O(2n) probabilities 
 
 

• If we have a Bayesian network, with a maximum of k parents 
for any node, then we need O(n 2k) probabilities 
 

• Example 
– Full unconstrained joint distribution 

• n = 30, k = 4:  need 109 probabilities for full joint distribution 
– Bayesian network 

• n = 30, k = 4:  need 480 probabilities 
 



The Bayesian Network from a different Variable Ordering 



The Bayesian Network from a different Variable Ordering 



Given a graph, can we “read off” conditional 
independencies? 

The “Markov Blanket” of X 
(the gray area in the figure) 
 
X is conditionally independent of 
everything else, GIVEN the 
values of: 
 * X’s parents 
 * X’s children 
 * X’s children’s parents 
 
X is conditionally independent of 
its non-descendants, GIVEN the 
values of its parents. 
 



General Strategy for inference 

• Want to compute P(q | e) 
 

Step 1: 
    P(q | e) = P(q,e)/P(e)  = α P(q,e),    since P(e) is constant wrt Q 

 
Step 2: 

    P(q,e)  =  Σa..z  P(q, e, a, b, …. z),   by the law of total probability 
 

Step 3: 
 Σa..z  P(q, e, a, b, …. z)  = Σa..z  Πi P(variable i | parents i)   
                                                    (using Bayesian network factoring) 
  

Step 4: 
      Distribute summations across product terms for efficient computation 



Naïve Bayes Model 

X1 X2 X3 

C 

Xn 

                 P(C | X1,…,Xn)  =  α  Π  P(Xi | C)  P (C) 
 
Features X are conditionally independent given the class variable C 
 
Widely used in machine learning 
 e.g., spam email classification: X’s = counts of words in emails 
 
Probabilities P(C) and  P(Xi | C) can easily be estimated from labeled data 



Naïve Bayes Model (2) 

                 P(C | X1,…Xn)  =  α  Π  P(Xi | C)  P (C) 
 
Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data 
 
P(C = cj)  ≈ #(Examples with class label cj)  /  #(Examples) 
 
P(Xi = xik | C = cj) 
      ≈ #(Examples with Xi value xik and class label cj)  
  /  #(Examples with class label cj) 
 
Usually easiest to work with logs 
 log [ P(C | X1,…Xn) ] 
   =  log α +   Σ  [ log P(Xi | C)  + log P (C) ] 
 
DANGER: Suppose ZERO examples with Xi value xik and class label cj ? 
An unseen example with Xi value xik will NEVER predict class label cj ! 
 
Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc. 
Theoretical solutions: Bayesian inference, beta distribution, etc. 



Hidden Markov Model (HMM) 

Y1 

S1 

Y2 

S2 

Y3 

S3 

Yn 

Sn 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

Observed 

Hidden 

Two key assumptions: 
 1. hidden state sequence is Markov 
           2. observation Yt is CI of all other variables given St 
 
Widely used in speech recognition, protein sequence models 
 
Since this is a Bayesian network polytree, inference is linear in n 
 
  



Summary 

• Bayesian networks represent a joint distribution using a graph 
 

• The graph encodes a set of conditional independence 
assumptions 
 

• Answering queries (or inference or reasoning) in a Bayesian 
network amounts to efficient computation of appropriate 
conditional probabilities 
 

• Probabilistic inference is intractable in the general case 
– But can be carried out in linear time for certain classes of Bayesian 

networks 
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