
Machine Learning – Classifiers and Boosting 

Reading 
 

Ch 18.6-18.12, 20.1-20.3.2 
 



Outline 

• Different types of learning problems 
 

• Different types of learning algorithms 
 

• Supervised learning 
– Decision trees 
– Naïve Bayes 
– Perceptrons, Multi-layer Neural Networks 
– Boosting 

 
• Applications: learning to detect faces in images 

 
 



You will be expected to know 

• Classifiers: 
– Decision trees 
– K-nearest neighbors 
– Naïve Bayes 
– Perceptrons, Support vector Machines (SVMs), Neural Networks 

• Decision Boundaries for various classifiers 
– What can they represent conveniently?  What not? 

 
 
 



Inductive learning 

• Let x represent the input vector of attributes 
– xj is the jth component of the vector x  
– xj is the value of the jth attribute, j = 1,…d 

 
• Let f(x) represent the value of the target variable for x 

– The implicit mapping from x to f(x) is unknown to us 
– We just have training data pairs, D = {x, f(x)} available 

 
• We want to learn a mapping from x to f, i.e.,  
            h(x; θ) is “close” to f(x) for all training data points x           
 
            θ are the parameters of our predictor h(..) 

 
• Examples: 

– h(x; θ) = sign(w1x1 + w2x2+ w3) 
 

– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4)) 
 



Training Data for Supervised Learning 



True Tree (left) versus Learned Tree (right) 



Classification Problem with Overlap 
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Decision Boundaries 
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Classification in Euclidean Space 

• A classifier is a partition of the space x into disjoint decision 
regions 
– Each region has a label attached  
– Regions with the same label need not be contiguous 
– For a new test point, find what decision region it is in, and predict 

the corresponding label 
 

• Decision boundaries = boundaries between decision regions 
– The “dual representation” of decision regions 

 
• We can characterize a classifier by the equations for its 

decision boundaries 
 

• Learning a classifier  searching for the decision boundaries 
that optimize our objective function  



Example: Decision Trees 

• When applied to real-valued attributes, decision trees produce 
“axis-parallel” linear decision boundaries 
 

• Each internal node is a binary threshold of the form  
    xj > t ?   
 

    converts each real-valued feature into a binary one 
 
    requires evaluation of N-1 possible threshold locations for N 

data points, for each real-valued attribute, for each internal 
node 



Decision Tree Example 
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Decision Tree Example 
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Income > t1 
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Decision Tree Example 
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Decision Tree Example 
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Decision Tree Example 

t1 t3 

t2 

Income 

Debt 
Income > t1 

Debt > t2 

Income > t3 
Note: tree boundaries are   
linear and axis-parallel 



A Simple Classifier: Minimum Distance Classifier 

• Training 
– Separate training vectors by class 
– Compute the mean for each class, µk,   k = 1,… m 

 
• Prediction 

– Compute the closest mean to a test vector x’ (using Euclidean 
distance) 

– Predict the corresponding class 
 

• In the 2-class case, the decision boundary is defined by the 
locus of the hyperplane that is halfway between the 2 means 
and is orthogonal to the line connecting them 
 

• This is a very simple-minded classifier – easy to think of cases 
where it will not work very well 

 



Minimum Distance Classifier 
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Another Example: Nearest Neighbor Classifier 

• The nearest-neighbor classifier 
– Given a test point x’, compute the distance between x’ and each 

input data point  
– Find the closest neighbor in the training data 
– Assign x’ the class label of this neighbor 
– (sort of generalizes minimum distance classifier to exemplars) 

 
• If Euclidean distance is used as the distance measure (the 

most common choice), the nearest neighbor classifier results 
in piecewise linear decision boundaries 
 

• Many extensions 
– e.g., kNN, vote based on k-nearest neighbors 
– k can be chosen by cross-validation 

 



Local Decision Boundaries 
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Finding the Decision Boundaries 
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Finding the Decision Boundaries 
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Finding the Decision Boundaries 
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Overall Boundary = Piecewise Linear 

1 

1 

1 

2 

2 

2 

Feature 1 

Feature 2 

? 

Decision Region  
for Class 1 

Decision Region  
for Class 2 



Nearest-Neighbor Boundaries on this data set? 

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Predicts blue 

Predicts red 









The kNN Classifier 

• The kNN classifier often works very well. 
 

• Easy to implement. 
 

• Easy choice if characteristics of your problem are unknown. 
 

• Can be sensitive to the choice of distance metric. 
– Often normalize feature axis values, e.g., z-score or [0, 1] 
– Categorical feature axes are difficult, e.g., Color as Red/Blue/Green 

 
• Can encounter problems with sparse training data. 

 
• Can encounter problems in very high dimensional spaces. 

– Most points are corners. 
– Most points are at the edge of the space. 
– Most points are neighbors of most other points. 

                  



Linear Classifiers 

• Linear classifier  single linear decision boundary 
   (for 2-class case)  
 

• We can always represent a linear decision boundary by a linear equation: 
           w1 x1 + w2 x2 + … + wd xd    =  Σ wj xj  =  wt x = 0 
 
• In d dimensions, this defines a (d-1) dimensional hyperplane 

– d=3, we get a plane;  d=2, we get a line 
 

• For prediction we simply see if Σ wj xj > 0   
 

• The wi are the weights (parameters) 
– Learning consists of searching in the d-dimensional weight space for the set of weights 

(the linear boundary) that minimizes an error measure 
– A threshold can be introduced by a “dummy” feature that is always one; its weight 

corresponds to (the negative of) the threshold 
 
 

• Note that a minimum distance classifier is a special (restricted) case of a linear 
classifier 
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A Possible Decision Boundary 
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Another Possible
Decision Boundary 
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The Perceptron Classifier  (pages 729-731 in text) 

• The perceptron classifier is just another name for a linear 
classifier for 2-class data, i.e., 

       output(x) = sign( Σ wj xj ) 
 

• Loosely motivated by a simple model of how neurons fire 
 

• For mathematical convenience, class labels are +1 for one 
class and -1 for the other 
 

• Two major types of algorithms for training perceptrons 
– Objective function = classification accuracy (“error correcting”) 
– Objective function = squared error (use gradient descent) 

 
– Gradient descent is generally faster and more efficient – but there 

is a problem!  No gradient! 
                  



The Perceptron Classifier  (pages 729-731 in text) 
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Two different types of perceptron output 

x-axis below is f(x) = f  = weighted sum of inputs 
y-axis is the perceptron output 

f 

σ(f) 

Thresholded output (step function), 
 takes values +1 or -1 
 
  

Sigmoid output, takes 
real values between -1 and +1 
 
The sigmoid is in effect an approximation 
to the threshold function above,  but 
has a gradient that we can use for learning  

o(f) 

f 

• Sigmoid function is defined as 
 

     σ[ f ] = [ 2 / ( 1 + exp[- f ] ) ] - 1 
•  Derivative of sigmoid 
                  ∂σ/δf [ f ]  = .5  * ( σ[f]+1 ) * ( 1-σ[f] ) 

 
 

  
 



Squared Error for Perceptron with Sigmoidal Output 

•  Squared error = E[w]  = Σi  [ σ(f[x(i)])  -  y(i) ]2 

 
       where x(i) is the ith input vector in the training data, i=1,..N  
                 y(i) is the ith target value (-1 or 1)  
 

      f[x(i)]  = Σ wj xj   is the weighted sum of inputs 
              σ(f[x(i)]) is the sigmoid of the weighted sum  
 
 
• Note that everything is fixed (once we have the training data) 

except for the weights w 
 

• So we want to minimize E[w] as a function of w 
         



Gradient Descent Learning of Weights 

  
Gradient Descent Rule: 

  w new   =  w old   -   η  ∆ ( E[w] )   
where  
 ∆ (E[w]) is the gradient of the error function E wrt weights, and  
 η  is the learning rate (small, positive) 
 
Notes: 

1. This moves us downhill in direction ∆ ( E[w] )  (steepest downhill) 

2. How far we go is determined by the value of η  
 
 
 

 



Gradient Descent Update Equation 

 
• From basic calculus, for perceptron with sigmoid, and squared 

error objective function, gradient for a single input x(i) is 
 ∆ ( E[w] )  =   - ( y(i) – σ[f(i)] ) ∂σ[f(i)] xj(i) 

 
• Gradient descent weight update rule: 

          
  wj    =      wj   + η ( y(i) – σ[f(i)] ) ∂σ[f(i)] xj(i) 

 
 
 

–  can rewrite as: 
             wj    =      wj   +  η * error * c * xj(i) 

 
 

 



Pseudo-code for Perceptron Training   

• Inputs:  N features, N targets (class labels), learning rate  η  
• Outputs: a set of learned weights 

Initialize each wj   (e.g.,randomly)  
 
While (termination condition not satisfied) 

for i = 1: N   % loop over data points (an iteration) 
for j= 1 : d    % loop over weights 

   deltawj = η ( y(i) – σ[f(i)] ) ∂σ[f(i)] xj(i) 
   wj   = wj   +  deltawj 

end 
calculate termination condition 
end 



Comments on Perceptron Learning 

• Iteration = one pass through all of the data 
 

• Algorithm presented = incremental gradient descent 
– Weights are updated after visiting each input example 
– Alternatives 

• Batch: update weights after each iteration (typically slower) 
• Stochastic: randomly select examples and then do weight updates 

 
• A similar iterative algorithm learns weights for thresholded output 

(step function) perceptrons 
 

• Rate of convergence 
– E[w] is convex as a function of w, so no local minima 
– So convergence is guaranteed as long as learning rate is small enough 

• But if we make it too small, learning will be *very* slow 
– But if learning rate is too large, we move further, but can overshoot 

the solution and oscillate, and not converge at all 
 

 



Support Vector Machines (SVM): “Modern perceptrons” 
(section 18.9, R&N) 

• A modern linear separator classifier 
– Essentially, a perceptron with a few extra wrinkles 

 
• Constructs a “maximum margin separator” 

– A linear decision boundary with the largest possible distance from the 
decision boundary to the example points it separates 

– “Margin” = Distance from decision boundary to closest example 
– The “maximum margin” helps SVMs to generalize well 

 
• Can embed the data in a non-linear higher dimension space 

– Constructs a linear separating hyperplane in that space 
• This can be a non-linear boundary in the original space 

– Algorithmic advantages and simplicity of linear classifiers 
– Representational advantages of non-linear decision boundaries 

 
• Currently most popular “off-the shelf” supervised classifier. 



Multi-Layer Perceptrons (Artificial Neural Networks)  
(sections 18.7.3-18.7.4 in textbook) 

• What if we took K perceptrons and trained them in parallel and 
then took a weighted sum of their sigmoidal outputs? 
– This is a multi-layer neural network with a single “hidden” layer (the 

outputs of the first set of perceptrons) 
– If we train them jointly in parallel, then intuitively different 

perceptrons could learn different parts of the solution 
• They define different local decision boundaries in the input space 

• What if we hooked them up into a general Directed Acyclic Graph? 
– Can create simple “neural circuits” (but no feedback; not fully general) 
– Often called neural networks with hidden units 

 
• How would we train such a model? 

– Backpropagation algorithm = clever way to do gradient descent 
– Bad news: many local minima and many parameters 

•  training is hard and slow 
– Good news: can learn general non-linear decision boundaries 
– Generated much excitement in AI in the late 1980’s and 1990’s 
– Techniques like boosting, support vector machines, are often preferred 



Multi-Layer Perceptrons (Artificial Neural Networks)  
(sections 18.7.3-18.7.4 in textbook) 



Naïve Bayes Model                  (section 20.2.2 R&N 3rd ed.) 

X1 X2 X3 

C 

Xn 

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about 
computing the probability of a class from input attributes of an example. 
 
Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into an equivalent 
expression that involves only P(C) and P(Xi | C). 
 
We can estimate P(C) easily from the frequency with which each class 
appears within our training data, and P(Xi | C) from the frequency with 
which each Xi appears in each class C within our training data. 



Naïve Bayes Model                  (section 20.2.2 R&N 3rd ed.) 

X1 X2 X3 

C 

Xn 

Bayes Rule:    P(C | X1,…Xn)  is proportional to P (C)  Πi  P(Xi | C) 
[note: denominator P(X1,…Xn)  is constant for all classes, may be ignored.] 
 
Features Xi are conditionally independent given the class variable C 

• choose the class value ci with the highest P(ci | x1,…, xn) 
• simple to implement, often works very well 
• e.g., spam email classification: X’s = counts of words in emails 

 
Conditional probabilities P(Xi | C) can easily be estimated from labeled date 

• Problem:  Need to avoid zeroes, e.g., from limited training data 
• Solutions: Pseudo-counts, beta[a,b] distribution, etc. 



Naïve Bayes Model (2) 

                 P(C | X1,…Xn)  =  α  Π  P(Xi | C)  P (C) 
 
Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data 
 
P(C = cj)  ≈ #(Examples with class label cj)  /  #(Examples) 
 
P(Xi = xik | C = cj) 
      ≈ #(Examples with Xi value xik and class label cj)  
  /  #(Examples with class label cj) 
 
Usually easiest to work with logs 
 log [ P(C | X1,…Xn) ] 
   =  log α +   Σ  [ log P(Xi | C)  + log P (C) ] 
 
DANGER: Suppose ZERO examples with Xi value xik and class label cj ? 
An unseen example with Xi value xik will NEVER predict class label cj ! 
 
Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc. 
Theoretical solutions: Bayesian inference, beta distribution, etc. 



Classifier Bias — Decision Tree or Linear Perceptron? 
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Classifier Bias — Decision Tree or Linear Perceptron? 



Classifier Bias — Decision Tree or Linear Perceptron? 



Summary 

• Learning 
– Given a training data set, a class of models, and an error function, 

this is essentially a search or optimization problem 
 

• Different approaches to learning 
– Divide-and-conquer: decision trees 
– Global decision boundary learning: perceptrons 
– Constructing classifiers incrementally: boosting 

 
• Learning to recognize faces 

– Viola-Jones algorithm: state-of-the-art face detector, entirely 
learned from data, using boosting+decision-stumps 
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