
Machine Learning – Classifiers and Boosting

Reading

Ch 18.6-18.12, 20.1-20.3.2

Outline

• Different types of learning problems

• Different types of learning algorithms

• Supervised learning
– Decision trees
– Naïve Bayes
– Perceptrons, Multi-layer Neural Networks
– Boosting

• Applications: learning to detect faces in images

You will be expected to know

• Classifiers:
– Decision trees
– K-nearest neighbors
– Naïve Bayes
– Perceptrons, Support vector Machines (SVMs), Neural Networks

• Decision Boundaries for various classifiers
– What can they represent conveniently? What not?

Inductive learning

• Let x represent the input vector of attributes
– xj is the jth component of the vector x
– xj is the value of the jth attribute, j = 1,…d

• Let f(x) represent the value of the target variable for x

– The implicit mapping from x to f(x) is unknown to us
– We just have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f, i.e.,
 h(x; θ) is “close” to f(x) for all training data points x

 θ are the parameters of our predictor h(..)

• Examples:

– h(x; θ) = sign(w1x1 + w2x2+ w3)

– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4))

Training Data for Supervised Learning

True Tree (left) versus Learned Tree (right)

Classification Problem with Overlap

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Decision Boundaries

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Decision
Boundary Decision

Region 1

Decision
Region 2

Classification in Euclidean Space

• A classifier is a partition of the space x into disjoint decision
regions
– Each region has a label attached
– Regions with the same label need not be contiguous
– For a new test point, find what decision region it is in, and predict

the corresponding label

• Decision boundaries = boundaries between decision regions
– The “dual representation” of decision regions

• We can characterize a classifier by the equations for its

decision boundaries

• Learning a classifier searching for the decision boundaries
that optimize our objective function

Example: Decision Trees

• When applied to real-valued attributes, decision trees produce
“axis-parallel” linear decision boundaries

• Each internal node is a binary threshold of the form
 xj > t ?

 converts each real-valued feature into a binary one

 requires evaluation of N-1 possible threshold locations for N

data points, for each real-valued attribute, for each internal
node

Decision Tree Example

Income

Debt

Decision Tree Example

t1 Income

Debt
Income > t1

??

Decision Tree Example

t1

t2

Income

Debt
Income > t1

Debt > t2

??

Decision Tree Example

t1 t3

t2

Income

Debt
Income > t1

Debt > t2

Income > t3

Decision Tree Example

t1 t3

t2

Income

Debt
Income > t1

Debt > t2

Income > t3
Note: tree boundaries are
linear and axis-parallel

A Simple Classifier: Minimum Distance Classifier

• Training
– Separate training vectors by class
– Compute the mean for each class, µk, k = 1,… m

• Prediction

– Compute the closest mean to a test vector x’ (using Euclidean
distance)

– Predict the corresponding class

• In the 2-class case, the decision boundary is defined by the
locus of the hyperplane that is halfway between the 2 means
and is orthogonal to the line connecting them

• This is a very simple-minded classifier – easy to think of cases
where it will not work very well

Minimum Distance Classifier

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Another Example: Nearest Neighbor Classifier

• The nearest-neighbor classifier
– Given a test point x’, compute the distance between x’ and each

input data point
– Find the closest neighbor in the training data
– Assign x’ the class label of this neighbor
– (sort of generalizes minimum distance classifier to exemplars)

• If Euclidean distance is used as the distance measure (the

most common choice), the nearest neighbor classifier results
in piecewise linear decision boundaries

• Many extensions
– e.g., kNN, vote based on k-nearest neighbors
– k can be chosen by cross-validation

Local Decision Boundaries

1

1

1

2

2

2

Feature 1

Feature 2

?

Boundary? Points that are equidistant
between points of class 1 and 2
Note: locally the boundary is linear

Finding the Decision Boundaries

1

1

1

2

2

2

Feature 1

Feature 2

?

Finding the Decision Boundaries

1

1

1

2

2

2

Feature 1

Feature 2

?

Finding the Decision Boundaries

1

1

1

2

2

2

Feature 1

Feature 2

?

Overall Boundary = Piecewise Linear

1

1

1

2

2

2

Feature 1

Feature 2

?

Decision Region
for Class 1

Decision Region
for Class 2

Nearest-Neighbor Boundaries on this data set?

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Predicts blue

Predicts red

The kNN Classifier

• The kNN classifier often works very well.

• Easy to implement.

• Easy choice if characteristics of your problem are unknown.

• Can be sensitive to the choice of distance metric.
– Often normalize feature axis values, e.g., z-score or [0, 1]
– Categorical feature axes are difficult, e.g., Color as Red/Blue/Green

• Can encounter problems with sparse training data.

• Can encounter problems in very high dimensional spaces.

– Most points are corners.
– Most points are at the edge of the space.
– Most points are neighbors of most other points.

Linear Classifiers

• Linear classifier single linear decision boundary
 (for 2-class case)

• We can always represent a linear decision boundary by a linear equation:
 w1 x1 + w2 x2 + … + wd xd = Σ wj xj = wt x = 0

• In d dimensions, this defines a (d-1) dimensional hyperplane

– d=3, we get a plane; d=2, we get a line

• For prediction we simply see if Σ wj xj > 0

• The wi are the weights (parameters)
– Learning consists of searching in the d-dimensional weight space for the set of weights

(the linear boundary) that minimizes an error measure
– A threshold can be introduced by a “dummy” feature that is always one; its weight

corresponds to (the negative of) the threshold

• Note that a minimum distance classifier is a special (restricted) case of a linear
classifier

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

A Possible Decision Boundary

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Another Possible
Decision Boundary

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Minimum Error
Decision Boundary

The Perceptron Classifier (pages 729-731 in text)

• The perceptron classifier is just another name for a linear
classifier for 2-class data, i.e.,

 output(x) = sign(Σ wj xj)

• Loosely motivated by a simple model of how neurons fire

• For mathematical convenience, class labels are +1 for one
class and -1 for the other

• Two major types of algorithms for training perceptrons
– Objective function = classification accuracy (“error correcting”)
– Objective function = squared error (use gradient descent)

– Gradient descent is generally faster and more efficient – but there

is a problem! No gradient!

The Perceptron Classifier (pages 729-731 in text)

Input
Attributes
(Features)

Weights
For Input
Attributes

Bias or
Threshold

Transfer
Function Output

Two different types of perceptron output

x-axis below is f(x) = f = weighted sum of inputs
y-axis is the perceptron output

f

σ(f)

Thresholded output (step function),
 takes values +1 or -1

Sigmoid output, takes
real values between -1 and +1

The sigmoid is in effect an approximation
to the threshold function above, but
has a gradient that we can use for learning

o(f)

f

• Sigmoid function is defined as

 σ[f] = [2 / (1 + exp[- f])] - 1
• Derivative of sigmoid
 ∂σ/δf [f] = .5 * (σ[f]+1) * (1-σ[f])

Squared Error for Perceptron with Sigmoidal Output

• Squared error = E[w] = Σi [σ(f[x(i)]) - y(i)]2

 where x(i) is the ith input vector in the training data, i=1,..N
 y(i) is the ith target value (-1 or 1)

 f[x(i)] = Σ wj xj is the weighted sum of inputs
 σ(f[x(i)]) is the sigmoid of the weighted sum

• Note that everything is fixed (once we have the training data)

except for the weights w

• So we want to minimize E[w] as a function of w

Gradient Descent Learning of Weights

Gradient Descent Rule:

 w new = w old - η ∆ (E[w])
where
 ∆ (E[w]) is the gradient of the error function E wrt weights, and
 η is the learning rate (small, positive)

Notes:

1. This moves us downhill in direction ∆ (E[w]) (steepest downhill)

2. How far we go is determined by the value of η

Gradient Descent Update Equation

• From basic calculus, for perceptron with sigmoid, and squared

error objective function, gradient for a single input x(i) is
 ∆ (E[w]) = - (y(i) – σ[f(i)]) ∂σ[f(i)] xj(i)

• Gradient descent weight update rule:

 wj = wj + η (y(i) – σ[f(i)]) ∂σ[f(i)] xj(i)

– can rewrite as:
 wj = wj + η * error * c * xj(i)

Pseudo-code for Perceptron Training

• Inputs: N features, N targets (class labels), learning rate η
• Outputs: a set of learned weights

Initialize each wj (e.g.,randomly)

While (termination condition not satisfied)

for i = 1: N % loop over data points (an iteration)
for j= 1 : d % loop over weights

 deltawj = η (y(i) – σ[f(i)]) ∂σ[f(i)] xj(i)
 wj = wj + deltawj

end
calculate termination condition
end

Comments on Perceptron Learning

• Iteration = one pass through all of the data

• Algorithm presented = incremental gradient descent
– Weights are updated after visiting each input example
– Alternatives

• Batch: update weights after each iteration (typically slower)
• Stochastic: randomly select examples and then do weight updates

• A similar iterative algorithm learns weights for thresholded output

(step function) perceptrons

• Rate of convergence
– E[w] is convex as a function of w, so no local minima
– So convergence is guaranteed as long as learning rate is small enough

• But if we make it too small, learning will be *very* slow
– But if learning rate is too large, we move further, but can overshoot

the solution and oscillate, and not converge at all

Support Vector Machines (SVM): “Modern perceptrons”
(section 18.9, R&N)

• A modern linear separator classifier
– Essentially, a perceptron with a few extra wrinkles

• Constructs a “maximum margin separator”

– A linear decision boundary with the largest possible distance from the
decision boundary to the example points it separates

– “Margin” = Distance from decision boundary to closest example
– The “maximum margin” helps SVMs to generalize well

• Can embed the data in a non-linear higher dimension space

– Constructs a linear separating hyperplane in that space
• This can be a non-linear boundary in the original space

– Algorithmic advantages and simplicity of linear classifiers
– Representational advantages of non-linear decision boundaries

• Currently most popular “off-the shelf” supervised classifier.

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

• What if we took K perceptrons and trained them in parallel and
then took a weighted sum of their sigmoidal outputs?
– This is a multi-layer neural network with a single “hidden” layer (the

outputs of the first set of perceptrons)
– If we train them jointly in parallel, then intuitively different

perceptrons could learn different parts of the solution
• They define different local decision boundaries in the input space

• What if we hooked them up into a general Directed Acyclic Graph?
– Can create simple “neural circuits” (but no feedback; not fully general)
– Often called neural networks with hidden units

• How would we train such a model?

– Backpropagation algorithm = clever way to do gradient descent
– Bad news: many local minima and many parameters

• training is hard and slow
– Good news: can learn general non-linear decision boundaries
– Generated much excitement in AI in the late 1980’s and 1990’s
– Techniques like boosting, support vector machines, are often preferred

Multi-Layer Perceptrons (Artificial Neural Networks)
(sections 18.7.3-18.7.4 in textbook)

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about
computing the probability of a class from input attributes of an example.

Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into an equivalent
expression that involves only P(C) and P(Xi | C).

We can estimate P(C) easily from the frequency with which each class
appears within our training data, and P(Xi | C) from the frequency with
which each Xi appears in each class C within our training data.

Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)

X1 X2 X3

C

Xn

Bayes Rule: P(C | X1,…Xn) is proportional to P (C) Πi P(Xi | C)
[note: denominator P(X1,…Xn) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C

• choose the class value ci with the highest P(ci | x1,…, xn)
• simple to implement, often works very well
• e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(Xi | C) can easily be estimated from labeled date

• Problem: Need to avoid zeroes, e.g., from limited training data
• Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Naïve Bayes Model (2)

 P(C | X1,…Xn) = α Π P(Xi | C) P (C)

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

P(C = cj) ≈ #(Examples with class label cj) / #(Examples)

P(Xi = xik | C = cj)
 ≈ #(Examples with Xi value xik and class label cj)
 / #(Examples with class label cj)

Usually easiest to work with logs
 log [P(C | X1,…Xn)]
 = log α + Σ [log P(Xi | C) + log P (C)]

DANGER: Suppose ZERO examples with Xi value xik and class label cj ?
An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Classifier Bias — Decision Tree or Linear Perceptron?

Summary

• Learning
– Given a training data set, a class of models, and an error function,

this is essentially a search or optimization problem

• Different approaches to learning
– Divide-and-conquer: decision trees
– Global decision boundary learning: perceptrons
– Constructing classifiers incrementally: boosting

• Learning to recognize faces

– Viola-Jones algorithm: state-of-the-art face detector, entirely
learned from data, using boosting+decision-stumps

	Machine Learning – Classifiers and Boosting
	Outline
	You will be expected to know
	Inductive learning
	Training Data for Supervised Learning
	True Tree (left) versus Learned Tree (right)
	Classification Problem with Overlap
	Decision Boundaries
	Classification in Euclidean Space
	Example: Decision Trees
	Decision Tree Example
	Decision Tree Example
	Decision Tree Example
	Decision Tree Example
	Decision Tree Example
	A Simple Classifier: Minimum Distance Classifier
	Minimum Distance Classifier
	Another Example: Nearest Neighbor Classifier
	Local Decision Boundaries
	Finding the Decision Boundaries
	Finding the Decision Boundaries
	Finding the Decision Boundaries
	Overall Boundary = Piecewise Linear
	Nearest-Neighbor Boundaries on this data set?
	Slide Number 25
	Slide Number 26
	Slide Number 27
	The kNN Classifier
	Linear Classifiers
	Slide Number 30
	Slide Number 31
	Slide Number 32
	The Perceptron Classifier (pages 729-731 in text)
	The Perceptron Classifier (pages 729-731 in text)
	Two different types of perceptron output
	Squared Error for Perceptron with Sigmoidal Output
	Gradient Descent Learning of Weights
	Gradient Descent Update Equation
	Pseudo-code for Perceptron Training
	Comments on Perceptron Learning
	Support Vector Machines (SVM): “Modern perceptrons”�(section 18.9, R&N)
	Multi-Layer Perceptrons (Artificial Neural Networks) (sections 18.7.3-18.7.4 in textbook)
	Multi-Layer Perceptrons (Artificial Neural Networks) (sections 18.7.3-18.7.4 in textbook)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (2)
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Summary

