Learning to Detect Faces

A Large-Scale Application of Machine Learning

(This material is not in the text: for further information see the paper by P. Viola and M. Jones, International Journal of Computer Vision, 2004

Viola-Jones Face Detection Algorithm

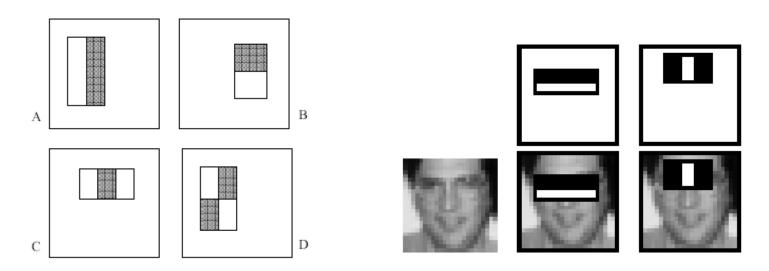
- Overview :
 - Viola Jones technique overview
 - Features
 - Integral Images
 - Feature Extraction
 - Weak Classifiers
 - Boosting and classifier evaluation
 - Cascade of boosted classifiers
 - Example Results

Viola Jones Technique Overview

- Three major contributions/phases of the algorithm :
 - Feature extraction
 - Learning using boosting and decision stumps
 - Multi-scale detection algorithm
- Feature extraction and feature evaluation.
 - Rectangular features are used, with a new image representation their calculation is very fast.
- Classifier learning using a method called boosting
- A combination of simple classifiers is very effective

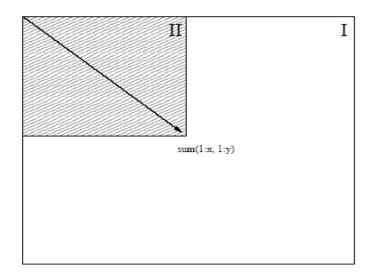
Features

- Four basic types.
 - They are easy to calculate.
 - The white areas are subtracted from the black ones.
 - A special representation of the sample called the integral image makes feature extraction faster.



Integral images

• Summed area tables



• A representation that means any rectangle's values can be calculated in four accesses of the integral image.

Fast Computation of Pixel Sums

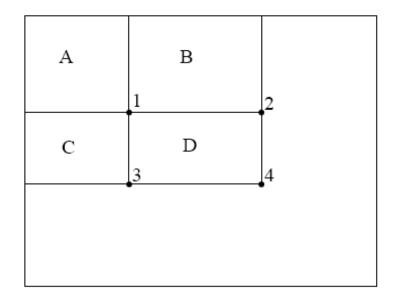
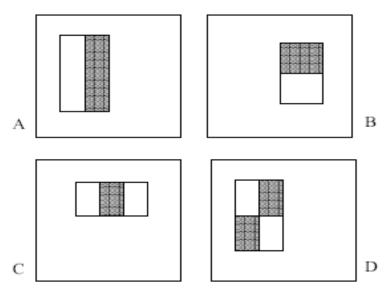


Figure 3: The sum of the pixels within rectangle D can be computed with four array references. The value of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is A + B, at location 3 is A + C, and at location 4 is A + B + C + D. The sum within D can be computed as 4 + 1 - (2 + 3).

Feature Extraction

- Features are extracted from sub windows of a sample image.
 - The base size for a sub window is 24 by 24 pixels.
 - Each of the four feature types are scaled and shifted across all possible combinations
 - In a 24 pixel by 24 pixel sub window there are ~160,000 possible features to be calculated.



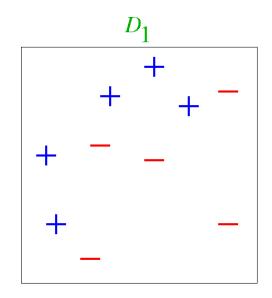
Learning with many features

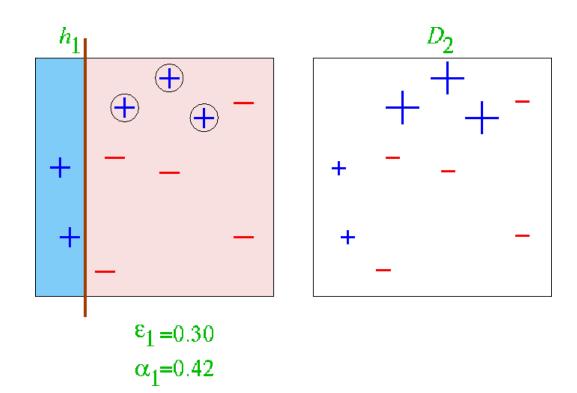
- We have 160,000 features how can we learn a classifier with only a few hundred training examples without overfitting?
- Idea:
 - Learn a single very simple classifier (a "weak classifier")
 - Classify the data
 - Look at where it makes errors
 - Reweight the data so that the inputs where we made errors get higher weight in the learning process
 - Now learn a 2nd simple classifier on the weighted data
 - Combine the 1st and 2nd classifier and weight the data according to where they make errors
 - Learn a 3rd classifier on the weighted data
 - ... and so on until we learn T simple classifiers
 - Final classifier is the combination of all T classifiers
 - This procedure is called "Boosting" works very well in practice.

"Decision Stumps"

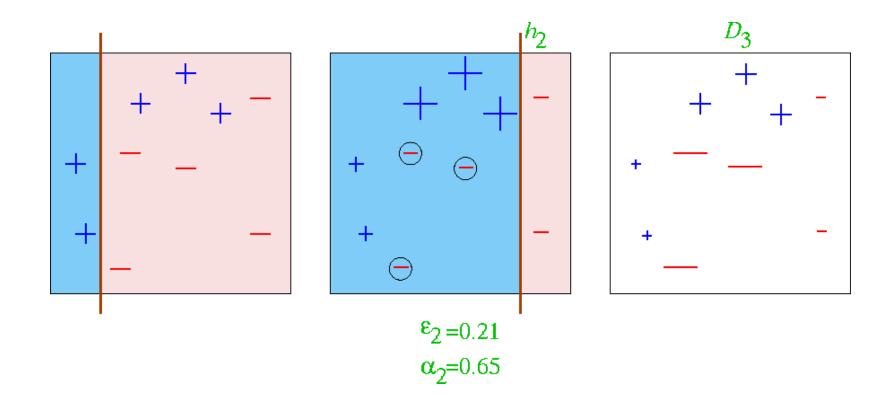
- Decision stumps = decision tree with only a single root node
 - Certainly a very weak learner!
 - Say the attributes are real-valued
 - Decision stump algorithm looks at all possible thresholds for each attribute
 - Selects the one with the max information gain
 - Resulting classifier is a simple threshold on a single feature
 - Outputs a +1 if the attribute is above a certain threshold
 - Outputs a -1 if the attribute is below the threshold
 - Note: can restrict the search for to the n-1 "midpoint" locations between a sorted list of attribute values for each feature. So complexity is n log n per attribute.
 - Note this is exactly equivalent to learning a perceptron with a single intercept term (so we could also learn these stumps via gradient descent and mean squared error)

Boosting Example

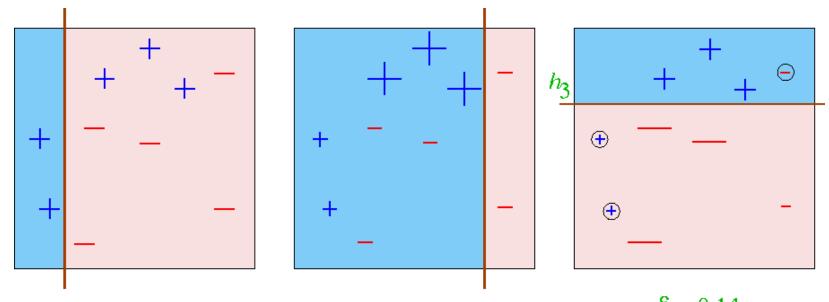




First 2 classifiers

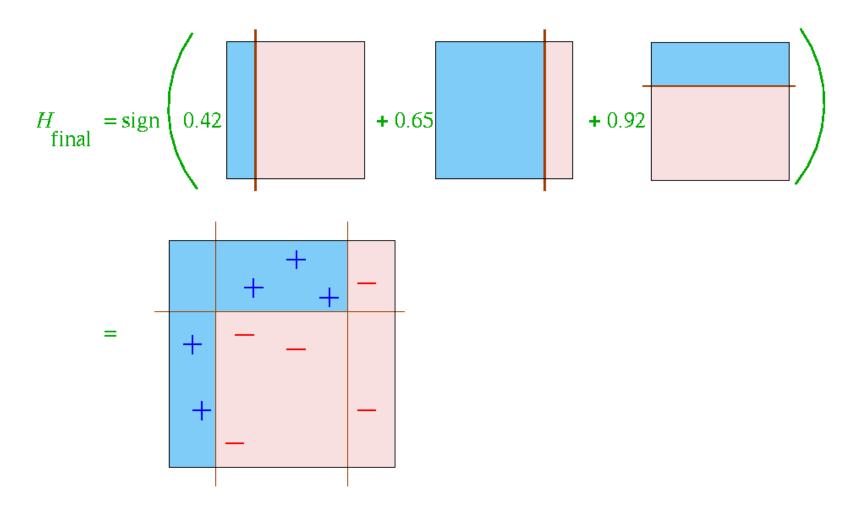


First 3 classifiers

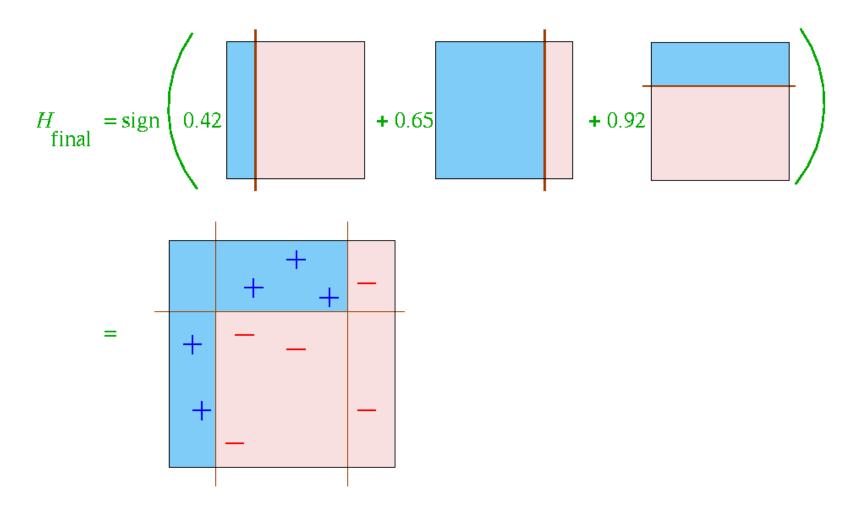


 $\epsilon_{3=0.14}$ $\alpha_{3}=0.92$

Final Classifier learned by Boosting



Final Classifier learned by Boosting



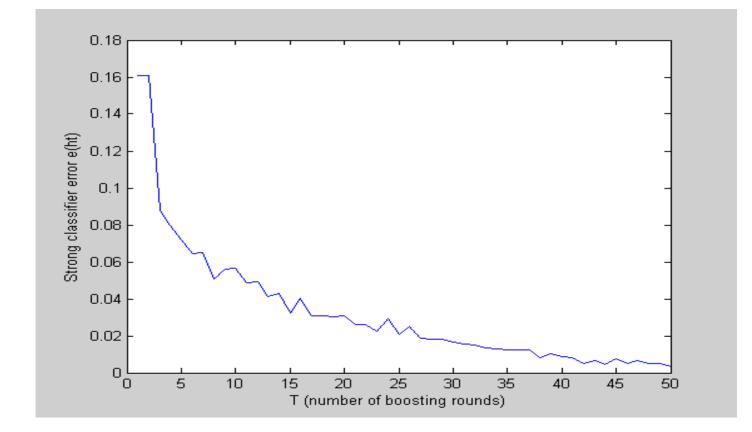
Boosting with Decision Stumps

- Viola-Jones algorithm
 - With K attributes (e.g., K = 160,000) we have 160,000 different decision stumps to choose from
 - At each stage of boosting
 - given reweighted data from previous stage
 - Train all K (160,000) single-feature perceptrons
 - Select the single best classifier at this stage
 - Combine it with the other previously selected classifiers
 - Reweight the data
 - Learn all K classifiers again, select the best, combine, reweight
 - Repeat until you have T classifiers selected
 - Very computationally intensive
 - Learning K decision stumps T times
 - E.g., K = 160,000 and T = 1000

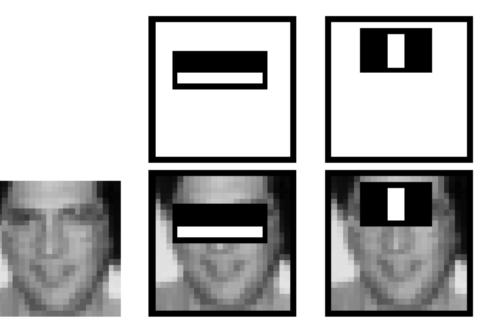
How is classifier combining done?

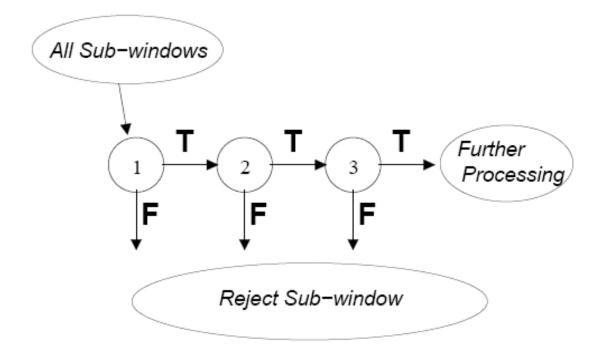
- At each stage we select the best classifier on the current iteration and combine it with the set of classifiers learned so far
- How are the classifiers combined?
 - Take the weight*feature for each classifier, sum these up, and compare to a threshold (very simple)
 - Boosting algorithm automatically provides the appropriate weight for each classifier and the threshold
 - This version of boosting is known as the AdaBoost algorithm
 - Some nice mathematical theory shows that it is in fact a very powerful machine learning technique

Reduction in Error as Boosting adds Classifiers



Useful Features Learned by Boosting





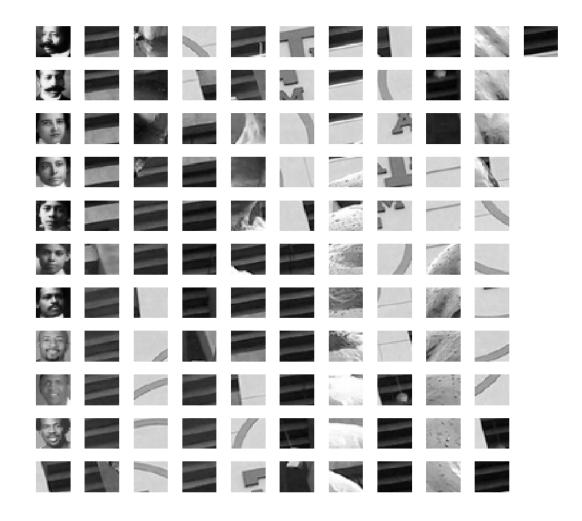
Detection in Real Images

- Basic classifier operates on 24 x 24 subwindows
- Scaling:
 - Scale the detector (rather than the images)
 - Features can easily be evaluated at any scale
 - Scale by factors of 1.25
- Location:
 - Move detector around the image (e.g., 1 pixel increments)
- Final Detections
 - A real face may result in multiple nearby detections
 - Postprocess detected subwindows to combine overlapping detections into a single detection

Training

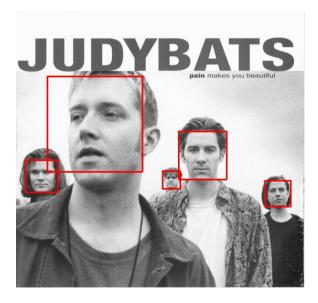
• Examples of 24x24 images with faces

Small set of 111 Training Images



Sample results using the Viola-Jones Detector

• Notice detection at multiple scales



More Detection Examples

Practical implementation

- Details discussed in Viola-Jones paper
- Training time = weeks (with 5k faces and 9.5k non-faces)
- Final detector has 38 layers in the cascade, 6060 features
- 700 Mhz processor:
 - Can process a 384 x 288 image in 0.067 seconds (in 2003 when paper was written)