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(This material is not in the text: for further information see the paper by  
P. Viola and M. Jones,  International Journal of Computer Vision, 2004 

 



Viola-Jones Face Detection Algorithm 

• Overview :  
– Viola Jones technique overview 
– Features 
– Integral Images 
– Feature Extraction 
– Weak Classifiers 
– Boosting and classifier evaluation 
– Cascade of boosted classifiers 
– Example Results 

 
 

 
  



Viola Jones Technique Overview 

• Three major contributions/phases of the algorithm :  
– Feature extraction 
– Learning using boosting and decision stumps 
– Multi-scale detection algorithm 
 

• Feature extraction and feature evaluation. 
– Rectangular features are used, with a new image representation 

their calculation is very fast. 
 

• Classifier learning using a method called boosting 
 

• A combination of simple classifiers is very effective 



Features 

• Four basic types. 
– They are easy to calculate. 
– The white areas are subtracted from the black ones. 
– A special representation of the sample called the integral 

image makes feature extraction faster. 
 

  



Integral images 

• Summed area tables 
 
 
 
 
 
 
 
 
• A representation that means any rectangle’s values can be 

calculated in four accesses of the integral image. 
 

  



Fast Computation of Pixel Sums 



Feature Extraction 

• Features are extracted from sub windows of a sample 
image. 
– The base size for a sub window is 24 by 24 pixels. 
– Each of the four feature types are scaled and shifted across 

all possible combinations 
• In a 24 pixel by 24 pixel sub window there are ~160,000 

possible features to be calculated. 
 



Learning with many features 

• We have 160,000 features – how can we learn a classifier with 
only a few hundred training examples without overfitting? 
 

• Idea: 
– Learn a single very simple classifier (a “weak classifier”) 
– Classify the data 
– Look at where it makes errors 
– Reweight the data so that the inputs where we made errors get 

higher weight in the learning process 
– Now learn a 2nd simple classifier on the weighted data 
– Combine the 1st and 2nd classifier and weight the data according to 

where they make errors 
– Learn a 3rd classifier on the weighted data 

 
– … and so on until we learn T simple classifiers 

 
– Final classifier is the combination of all T classifiers 

 
– This procedure is called “Boosting” – works very well in practice. 



“Decision Stumps” 

• Decision stumps = decision tree with only a single root node 
– Certainly a very weak learner! 

 
– Say the attributes are real-valued 
– Decision stump algorithm looks at all possible thresholds for each 

attribute 
– Selects the one with the max information gain 
– Resulting classifier is a simple threshold on a single feature 

• Outputs a +1 if the attribute is above a certain threshold 
• Outputs a -1 if the attribute is below the threshold 

 
– Note: can restrict the search for to the n-1 “midpoint” locations 

between a sorted list of attribute values for each feature. So 
complexity is n log n per attribute. 
 

– Note this is exactly equivalent to learning a perceptron with a 
single intercept term (so we could also learn these stumps via 
gradient descent and mean squared error) 



Boosting Example 



First classifier 



First 2 classifiers 



First 3 classifiers 



Final Classifier learned by Boosting 



Final Classifier learned by Boosting 



Boosting with Decision Stumps 

• Viola-Jones algorithm 
– With K attributes (e.g., K = 160,000) we have 160,000 different 

decision stumps to choose from 
 

– At each stage of boosting  
• given reweighted data from previous stage 
• Train all K (160,000) single-feature perceptrons 
• Select the single best classifier at this stage 
• Combine it with the other previously selected classifiers 
• Reweight the data 
• Learn all K classifiers again, select the best, combine, reweight 
• Repeat until you have T classifiers selected 

 
– Very computationally intensive 

• Learning K decision stumps T times 
• E.g., K = 160,000 and T = 1000 



How is classifier combining done? 

• At each stage we select the best classifier on the current 
iteration and combine it with the set of classifiers learned so 
far 
 

• How are the classifiers combined? 
– Take the weight*feature for each classifier, sum these up, and 

compare to a threshold (very simple) 
 

– Boosting algorithm automatically provides the appropriate weight 
for each classifier and the threshold 
 

– This version of boosting is known as the AdaBoost algorithm 
 

– Some nice mathematical theory shows that it is in fact a very 
powerful machine learning technique 
 
 



Reduction in Error as Boosting adds Classifiers 



Useful Features Learned by Boosting 



A Cascade of Classifiers 



Detection in Real Images 

• Basic classifier operates on 24 x 24 subwindows 
 

• Scaling: 
– Scale the detector (rather than the images) 
– Features can easily be evaluated at any scale 
– Scale by factors of 1.25 

 
• Location: 

– Move detector around the image (e.g., 1 pixel increments) 
 

• Final Detections 
– A real face may result in multiple nearby detections   
– Postprocess detected subwindows to combine overlapping 

detections into a single detection 



Training 

• Examples of 24x24 images with faces 



Small set of 111 Training Images 



Sample results using the Viola-Jones Detector 

• Notice detection at multiple scales  



More Detection Examples 



Practical implementation 

• Details discussed in Viola-Jones paper 
 

• Training time = weeks  (with 5k faces and 9.5k non-faces) 
 

• Final detector has 38 layers in the cascade, 6060 features 
 

• 700 Mhz processor: 
– Can process a 384 x 288 image in 0.067 seconds (in 2003 when 

paper was written) 
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