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Unsupervised learning 
• Supervised learning 

– Predict target value (“y”) given features (“x”) 
 

• Unsupervised learning 
– Understand patterns of data (just “x”) 
– Useful for many reasons 

• Data mining (“explain”) 
• Missing data values (“impute”) 
• Representation (feature generation or selection) 

 

• One example: clustering 



Clustering and Data Compression 
• Clustering is related to vector quantization 

– Dictionary of vectors (the cluster centers) 
– Each original value represented using a dictionary index 
– Each center “claims” a nearby region (Voronoi region) 



Hierarchical  Agglomerative Clustering 
• Another simple clustering algorithm 

 
• Define a distance between clusters 

(return to this) 
• Initialize: every example is a cluster 
• Iterate: 

– Compute distances between all 
clusters  
(store for efficiency) 

– Merge two closest clusters 
• Save both clustering and sequence 

of cluster operations 
• “Dendrogram” 

Initially, every datum is a cluster 



Iteration 1 



Iteration 2 



Iteration 3 
• Builds up a sequence of 

clusters (“hierarchical”) 
 
 
 
 
 
 
 

• Algorithm complexity   O(N2) 
 (Why?) 

In matlab:  “linkage”  function   (stats toolbox) 



Dendrogram 



Cluster Distances 

produces minimal spanning tree. 

avoids elongated clusters. 



Example: microarray expression 
• Measure gene expression 

 
• Various experimental 

conditions 
– Cancer, normal 
– Time 
– Subjects 

 
• Explore similarities 

– What genes change 
together? 

– What conditions are similar? 
 

• Cluster on both genes and 
conditions 



K-Means Clustering 
• A simple clustering algorithm 
• Iterate between 

– Updating the assignment of data to clusters 
– Updating the cluster’s summarization 

• Suppose we have K clusters, c=1..K 
– Represent clusters by locations ¹c 
– Example i has features xi  
– Represent assignment of ith example as zi in 1..K  

• Iterate until convergence: 
– For each datum, find the closest cluster 
  
 
– Set each cluster to the mean of all assigned data: 
  

 



Choosing the number of clusters 
• With cost function 

 
 
what is the optimal value of k? 

    (can increasing k ever increase the cost?) 
 

• This is a model complexity issue 
– Much like choosing lots of features – they only (seem to) help 
– But we want our clustering to generalize to new data 

 
• One solution is to penalize for complexity 

– Bayesian information criterion (BIC) 
– Add   (# parameters) * log(N) to the cost 
– Now more clusters can increase cost, if they don’t help 

“enough” 



Choosing the number of clusters (2) 
• The Cattell scree test: 
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Number of Clusters 

2 1 3 4 7 5 6 

Scree is a loose accumulation of broken  rock at the base of a cliff or mountain. 



Mixtures of Gaussians 
• K-means algorithm 

– Assigned each example to exactly one cluster 
– What if clusters are overlapping? 

• Hard to tell which cluster is right 
• Maybe we should try to remain uncertain 

– Used Euclidean distance 
– What if cluster has a non-circular shape? 

 

• Gaussian mixture models 
– Clusters modeled as Gaussians 

• Not just by their mean 
– EM algorithm: assign data to  

cluster with some probability 

 



Multivariate Gaussian models 

We’ll model each cluster 
using one of these Gaussian 
“bells”… -2 -1 0 1 2 3 4 5 
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Maximum Likelihood estimates 



EM Algorithm: E-step 
• Start with parameters describing each cluster 
• Mean μc, Covariance Σc, “size” πc 

 
• E-step (“Expectation”) 

– For each datum (example) x_i,  
– Compute “r_{ic}”, the probability that it belongs to cluster c 

• Compute its probability under model c 
• Normalize to sum to one (over clusters c) 

 
 
 

– If x_i is very likely under the cth Gaussian, it gets high weight 
– Denominator just makes r’s sum to one 



EM Algorithm: M-step 
• Start with assignment probabilities ric 
• Update parameters: mean μc, Covariance Σc, “size” πc 

 
• M-step (“Maximization”) 

– For each cluster (Gaussian) x_c,  
– Update its parameters using the (weighted) data points 

Total responsibility allocated to cluster c 

Fraction of total assigned to cluster c 

Weighted mean of  assigned data Weighted covariance of  assigned data 
  (use new weighted means here) 



Expectation-Maximization 
• Each step increases the log-likelihood of our model 

 
 
 
(we won’t derive this, though) 
 

• Iterate until convergence 
– Convergence guaranteed – another ascent method 

 
• What should we do  

– If we want to choose a single cluster for an “answer”? 
– With new data we didn’t see during training? 
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Summary 
• Clustering algorithms 

– Agglomerative clustering 
– K-means 
– Expectation-Maximization 

• Open questions for each application 
 
 

• What does it mean to be “close” or “similar”? 
– Depends on your particular problem… 

 
• “Local” versus “global” notions of similarity 

– Former is easy, but we usually want the latter… 
 

• Is it better to “understand” the data itself (unsupervised 
learning), to focus just on the final task (supervised learning), or 
both? 
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