#### Machine Learning and Data Mining

#### Clustering

#### (adapted from) Prof. Alexander Ihler



+





#### **Unsupervised learning**

- Supervised learning
  - Predict target value ("y") given features ("x")
- Unsupervised learning
  - Understand patterns of data (just "x")
  - Useful for many reasons
    - Data mining ("explain")
    - Missing data values ("impute")
    - Representation (feature generation or selection)
- One example: *clustering*



#### **Clustering and Data Compression**

- Clustering is related to vector quantization
  - Dictionary of vectors (the cluster centers)
  - Each original value represented using a dictionary index
  - Each center "claims" a nearby region (Voronoi region)





# Hierarchical Agglomerative Clustering

#### Initially, every datum is a cluster



- Another simple clustering algorithm
- Define a distance between clusters (return to this)
- Initialize: every example is a cluster
- Iterate:
  - Compute distances between all clusters (store for efficiency)
  - Merge two closest clusters
- Save both clustering and sequence of cluster operations
- "Dendrogram"

#### Iteration 1





#### Iteration 2





#### **Iteration 3**

 Builds up a sequence of clusters ("hierarchical")





 Algorithm complexity O(N<sup>2</sup>) (Why?)

In matlab: "linkage" function (stats toolbox)

# Dendrogram





#### Example: microarray expression

- Measure gene expression
- Various experimental conditions
  - Cancer, normal
  - Time
  - Subjects
- Explore similarities
  - What genes change together?
  - What conditions are similar?
- Cluster on both genes and conditions



#### **K-Means Clustering**

- A simple clustering algorithm
- Iterate between
  - Updating the assignment of data to clusters
  - Updating the cluster's summarization
- Suppose we have K clusters, c=1..K
  - Represent clusters by locations <sup>1</sup><sub>c</sub>
  - Example i has features x<sub>i</sub>
  - Represent assignment of i<sup>th</sup> example as z<sub>i</sub> in 1..K
- Iterate until convergence:
  - For each datum, find the closest cluster

$$z_i = \arg\min_c \|x_i - \mu_c\|^2 \qquad \forall i$$

- Set each cluster to the mean of all assigned data:

$$\forall c, \qquad \mu_c = \frac{1}{N_c} \sum_{i \in S_c} x_i$$

$$S_c = \{i : z_i = c\}, \ N_c = |S_c|$$

#### Choosing the number of clusters

With cost function

$$C(\underline{z},\underline{\mu}) = \sum_{i} \|x_i - \mu_{z_i}\|^2$$

what is the optimal value of k? (can increasing k ever increase the cost?)

- This is a model complexity issue
  - Much like choosing lots of features they only (seem to) help
  - But we want our clustering to generalize to new data
- One solution is to penalize for complexity
  - Bayesian information criterion (BIC)
  - Add (# parameters) \* log(N) to the cost
  - Now more clusters can increase cost, if they don't help "enough"



Scree is a loose accumulation of broken rock at the base of a cliff or mountain.

#### Mixtures of Gaussians

- K-means algorithm
  - Assigned each example to exactly one cluster
  - What if clusters are overlapping?
    - Hard to tell which cluster is right
    - Maybe we should try to remain uncertain
  - Used Euclidean distance
  - What if cluster has a non-circular shape?
- Gaussian mixture models
  - Clusters modeled as Gaussians
    - Not just by their mean
  - EM algorithm: assign data to cluster with some *probability*



#### Multivariate Gaussian models

$$\mathcal{N}(\underline{x} \; ; \; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\underline{x} - \underline{\mu})^T \Sigma^{-1}(\underline{x} - \underline{\mu})\right\}$$



**Maximum Likelihood estimates** 

$$\hat{\mu} = \frac{1}{N} \sum_{i} x^{(i)}$$
$$\hat{\Sigma} = \frac{1}{N} \sum_{i} (x^{(i)} - \hat{\mu})^T (x^{(i)} - \hat{\mu})$$

We'll model each cluster using one of these Gaussian "bells"...

# EM Algorithm: E-step

- Start with parameters describing each cluster
- Mean  $\mu_c$ , Covariance  $\Sigma_c$ , "size"  $\pi_c$
- E-step ("Expectation")
  - For each datum (example) x\_i,
  - Compute "r\_{ic}", the probability that it belongs to cluster c
    - Compute its probability under model c
    - Normalize to sum to one (over clusters c)

$$r_{ic} = \frac{\pi_c \mathcal{N}(x_i \; ; \; \mu_c, \Sigma_c)}{\sum_{c'} \pi_{c'} \mathcal{N}(x_i \; ; \; \mu_{c'}, \Sigma_{c'})}$$

- If x\_i is very likely under the c<sup>th</sup> Gaussian, it gets high weight
- Denominator just makes r's sum to one

# EM Algorithm: M-step

- Start with assignment probabilities r<sub>ic</sub>
- Update parameters: mean  $\mu_c$ , Covariance  $\Sigma_c$ , "size"  $\pi_c$
- M-step ("Maximization")
  - For each cluster (Gaussian) x\_c,
  - Update its parameters using the (weighted) data points

$$N_c = \sum_i r_{ic}$$
 Total responsibility allocated to cluster c  
 $\pi_c = \frac{N_c}{N}$  Fraction of total assigned to cluster c

$$\mu_c = \frac{1}{N_c} \sum_i r_{ic} x_i$$

Weighted mean of assigned data

$$\Sigma_c = \frac{1}{N_c} \sum_i r_{ic} (x_i - \mu_c)^T (x_i - \mu_c)$$

Weighted covariance of assigned data (use new weighted means here)

#### **Expectation-Maximization**

Each step increases the log-likelihood of our model

$$\log p(\underline{X}) = \sum_{i} \log \left[ \sum_{c} \pi_{c} \mathcal{N}(x_{i} ; \mu_{c}, \Sigma_{c}) \right]$$

(we won't derive this, though)

- Iterate until convergence
  - Convergence guaranteed another ascent method
- What should we do
  - If we want to choose a single cluster for an "answer"?
  - With new data we didn't see during training?





**EM ITERATION 1** 







**EM ITERATION 10** 



**EM ITERATION 15** 



LOG-LIKELIHOOD AS A FUNCTION OF EM ITERATIONS



# Summary

- Clustering algorithms
  - Agglomerative clustering
  - K-means
  - Expectation-Maximization
- Open questions for each application
- What does it mean to be "close" or "similar"?
  - Depends on your particular problem...
- "Local" versus "global" notions of similarity
  - Former is easy, but we usually want the latter...
- Is it better to "understand" the data itself (unsupervised learning), to focus just on the final task (supervised learning), or both?