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Supervised learning 
• Notation 

– Features      x 
– Targets        y 
– Predictions  ŷ 
– Parameters θ  

Program  (“Learner”) 
 
Characterized by  
some “parameters”   θ 
 
Procedure (using θ)  
that outputs a prediction 
 

Training data  
(examples) 

Features 

Learning algorithm 
 
Change θ 
Improve performance 

Feedback /  
Target values Score performance 

(“cost function”) 



Linear regression 
 
 
 
 
 
 
 

• Define form of function f(x) explicitly 
• Find a good f(x) within that family 
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“Predictor”: 
Evaluate line: 
 
 
  return r 
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More dimensions? 
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Notation 

Define  “feature”  x0 = 1  (constant) 
Then 
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Measuring error 
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Mean squared error 
• How can we quantify the error? 

 
 
 
 

• Could choose something else, of course… 
– Computationally convenient (more later) 
– Measures the variance of the residuals 
– Corresponds to likelihood under Gaussian model of “noise” 
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MSE cost function 

• Rewrite using matrix form 

(Matlab)    >> e = y’ – th*X’;   J = e*e’/m; 
(c) Alexander Ihler 



Visualizing the cost function 
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Supervised learning 
• Notation 

– Features      x 
– Targets        y 
– Predictions  ŷ 
– Parameters θ  

Program  (“Learner”) 
 
Characterized by  
some “parameters” θ 
 
Procedure (using θ)  
that outputs a prediction 
 

Training data  
(examples) 

Features 

Learning algorithm 
 
Change θ 
Improve performance 

Feedback /  
Target values Score performance 

(“cost function”) 



Finding good parameters 
• Want to find parameters which minimize our error… 

 
• Think of a cost “surface”: error residual for that θ… 
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MSE Minimum 
• Consider a simple problem 

– One feature, two data points 
– Two unknowns:  µ0, µ1 
– Two equations: 

• Can solve this system directly: 

• However, most of the time,  m > n 
– There may be no linear function that hits all the data exactly 
– Instead, solve directly for minimum of MSE function 
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SSE Minimum 

• Reordering, we have 

• X (XT X)-1 is called the “pseudo-inverse” 

• If XT is square and independent, this is the inverse 
• If  m > n:  overdetermined; gives minimum MSE fit 

(c) Alexander Ihler 



Matlab SSE 
• This is easy to solve in Matlab… 

 
 
%  y = [y1 ; … ; ym] 
%  X = [x1_0 … x1_m ; x2_0 … x2_m ; …] 

% Solution 1: “manual” 
   th = y’ * X * inv(X’ * X); 

% Solution 2: “mrdivide” 
   th = y’ / X’; % th*X’ = y  =>  th = y/X’  
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Effects of MSE choice 
• Sensitivity to outliers 

16 2 cost for this one datum 
 
Heavy penalty for large errors 
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L1 error 
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Cost functions for regression 

“Arbitrary” functions can’t be 
solved in closed form… 
 - use gradient descent 

(MSE) 

(MAE) 

Something else entirely… 

(???) 
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Nonlinear functions 
• What if our hypotheses are not lines? 

– Ex: higher-order polynomials 
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Nonlinear functions 
• Single feature x, predict target y: 

 
 
 
 
 
 
 

• Sometimes useful to think of “feature transform” 
 
 
 

 

Add features: 

Linear regression in new features 
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Higher-order polynomials 
• Fit in the same way 
• More “features” 
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Features 
• In general, can use any features we think are useful 

 
• Other information about the problem 

– Sq. footage, location, age, … 

• Polynomial functions 
– Features [1, x, x2, x3, …] 

• Other functions 
– 1/x,  sqrt(x), x1 * x2, … 

 
• “Linear regression” = linear in the parameters 

– Features we can make as complex as we want! 
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Higher-order polynomials 
• Are more features better? 

 

• “Nested” hypotheses 
– 2nd order more general than 1st, 
– 3rd order  “ “ than 2nd, … 

• Fits the observed data better 



Overfitting and complexity 
• More complex models will always fit the training data 

better 
• But they may “overfit” the training data, learning 

complex relationships that are not really present 
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Test data 
• After training the model 
• Go out and get more data from the world 

– New observations (x,y) 

• How well does our model perform? 
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Training data 
New, “test” data 



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
0 

5 

10 

15 

20 

25 

30 

Training data 

Training versus test error 
• Plot MSE as a function     

of model complexity 
– Polynomial order 

 

• Decreases 
– More complex function 

fits training data better 
 

• What about new data? 
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Polynomial order 

New, “test” data 

 
• 0th to 1st order 

– Error decreases 
– Underfitting 

• Higher order 
– Error increases 
– Overfitting 
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