iInformed search algorithms

., S

This lecture topic
Chapter 3.5-3.7

Next lecture topic
Chapter 4.1-4.2

(Please read lecture topic material before and after each lecture on that topic)

i Outline

Review limitations of uninformed search methods
= Informed (or heuristic) search uses

problem-specific heuristics to improve efficiency
= Best-first, A* (and if needed for memory limits, RBFS, SMA¥*)
= Techniques for generating heuristics

= A* is optimal with admissible (tree)/consistent (graph) heuristics
= A* Is quick and easy to code, and often works *very* well

= Heuristics
= A structured way to add “smarts” to your solution
= Provide *significant* speed-ups in practice
= Still have worst-case exponential time complexity
= In Al, “NP-Complete” means “Formally interesting”

Limitations of uninformed search

= Search Space Size makes search tedious

= Combinatorial Explosion || T 2

= For example, 8-puzzle 5 6 34| 5
= Avg. solution cost is about 22 steps 8| 3] 1 6| 71| 8
= branching factor ~ 3 Startiate Goatsate

= Exhaustive search to depth 22:
= 3.1 x 1010 states

= E.g., d=12, IDS expands 3.6 million states on average

[24 puzzle has 10%* states (much worse)]

‘L Recall tree search...

i

imiscara

¢ Oradea

Recall tree search...

hrad 3y ¢ Qradea 3

" Eas
= -~ - s
-~ - x, = ~ L “

function TREE-SEARCH(problem, strategy) returns a solu
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return faj
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

i Heuristic search

Idea: use an evaluation function 7(n) for each node

and a heuristic function A(n) for each node
g(n) = known path cost so far to node n.
h(n) = estimate of (optimal) cost to goal from node n.
f(n) = g(n)+h(n) = estimate of total cost to goal through node n.
f(n) provides an estimate for the total cost:
Expand the node n with smallest f(n).

¢ ® m m =

= Implementation:
Order the nodes in frontier by increasing estimated cost.

= Evaluation function is an estimate of node quality

- More accurate name for “best first” search would be
“seemingly best-first search”

= Search efficiency depends on heuristic quality!
— The better your heuristic, the faster your search!

Heuristic function

s Heuristic:

Definition: a commonsense rule (or set of rules) intended to
increase the probability of solving some problem

Same linguistic root as “Eureka” = “l have found it”
“using rules of thumb to find answers”

= Heuristic function A(n)

Estimate of (optimal) remaining cost from nto goal
Defined using only the state of node n

h(n) = 0 if n is a goal node

Example: straight line distance from n to Bucharest

= Note that this is not the true state-space distance
» Itis an estimate — actual state-space distance can be higher

Provides problem-specific knowledge to the search algorithm

Heuristic functions for 8-puzzle

= 8-puzzle 2 W 2 1 4 1
= Avg. solution cost is about 22 steps : ; - P
= Dbranching factor ~ 3
= Exhaustive search to depth 22: 8 11| 3 || 1 6 ||| 7

™ 31 X 1010 states. Start State Goal State
= A good heuristic function can reduce the search process.

= Two commonly used heuristics
= /1, = the number of misplaced tiles
= h,(s)=8
= /1, = the sum of the distances of the tiles from their goal
positions (Manhattan distance).
= hy(s)=3+1+2+2+2+3+3+2=18

‘L Romania with straight-line dist.

Straight—line distance

=] CDraciea

o Bucharst
Arad 54
Bucharest 0
75 Crawova L&D
Dobrets 247
Arad 4 Eforie 151
Fagaras 176
114 Giurgiu 77
80] vasiul T‘“r_ﬁﬂ"ﬂ 151
Ia= 175
Rimnieu Vilees Lugoj 244
MMehadia 241
Meamt 234
Orades B0
Pitest 1
U zicent - fite Rimnikcu Vikeas |93
Th Sibiu 153
Timisoars 119
Dobreta Urzicem B0
Efarle 11'r5.|“i 15

Zerind 174

Relationship of Search Algorithms

= g(n)= known cost so far to reach n
= /1(n) = estimated (optimal) cost from n to goal

= f(n) =9(n) + h(n)

= estimated (optimal) total cost of path through » to goal

= Uniform Cost search sorts frontier by g(n)
= Greedy Best First search sorts frontier by A(n)

= A* search sorts frontier by 7(n)
» Optimal for admissible/consistent heuristics
s Generally the preferred heuristic search

= Memory-efficient versions of A* are available
= RBFS, SMA*

Greedy best-first search
(often called just “best-first™)

= /1(n) = estimate of cost from nto goal

= €.9., A(n) = straight-line distance from 17 to
Bucharest

= Greedy best-first search expands the
node that appears to be closest to goal.

s Priority queue sort function = h(n)

Greedy best-first search

example

366

Straight-line distance

o Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Ciurgiu
Hirsova
Ia=

Lugoj
MMehadia
Neamt
Oradea
Pilesti
Rimnicu Vikes
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
180
242
161
176
T7
151
224
144
141
134

1
193
153
329

19=
374

Greedy best-first search

example

CAmd

=,
\.\M

.,
imisoara

328

Straight-line distance

o Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Ciurgiu
Hirsova
Ia=

Lugoj
MMehadia
Neamt
Oradea
Pilesti
Rimnicu Vikes
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
180
242
161
176
T7
151
224
144
141
134

1
193
153
329

19=
374

Greedy best-first search

example

N

T ~, "'“'---.ﬂ___h
356 176 aa0 193

Straight-line distance

o Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Ciurgiu
Hirsova
Ia=

Lugoj
MMehadia
Neamt
Oradea
Pilesti
Rimnicu Vikes
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

55
Q
L0
32
14l
176
T
151
1%
1+
141
14

1
193
153
329

19=
374

Greedy best-first search
example

=
P N 32 a4
— N T
356 ™, 380 193
S,
- ~,
e Db Echarsd
253 a
Straight-line distance
] Qradea 'nwachmst
Arad 158
Bucharest 0
Cralova 180
Dobreta 243
Eforie Lal
Fagaras 178
Ciurgiu 77
Hirsova 151
Ia= 135
Lugoj 24
Mehadia 241
MNeamt 114
Oradea 150
Pitest Lo
Rimnicu Vikea |0
Sibiu 253
Timisoars 379
Urziceni 0
Vaslui 199

Zerind 174

Optimal Path

- Oradea

Pitesti

Properties of greedy best-first

i search

= Complete?
= Tree version can get stuck in loops.
= Graph version is complete in finite spaces.

= [IMme? O")

= A good heuristic can give dramatic improvement
= Space? O@")

= Keeps all nodes in memory
= Optimal? No

e.g., Arad - Sibiu = Rimnicu Vilcea - Pitesti -2
Bucharest is shorter!

i A* search

= ldea: avoid paths that are already expensive
= Generally the preferred simple heuristic search
= Optimal If heuristic is:
admissible(tree)/consistent(graph)

= Evaluation function 7(n) = g(n) + h(n)
= g(n) = known path cost so far to node n.
= h(n) = estimate of (optimal) cost to goal from node n.

= f(n) = g(n)+h(n)
= estimate of total cost to goal through node n.

s Priority queue sort function = 1(n)

i Admissible heuristics

= A heuristic /2(n)is admissible if for every node n,
h(n) < h'(n),
where A7(n) is the true cost to reach the goal state from 7.

= An admissible heuristic never overestimates the cost to reach
the goal, I.e., it is optimistic (or at least, never pessimistic)
= Example: hg (1) (never overestimates actual road distance)
s Theorem:

If A(n)is admissible, A" using TREE-SEARCH is optimal

i Admissible heuristics

E.g., for the 8-puzzle:

= /1,(n) = number of misplaced tiles
= /1,(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

1

4

7 2 4
5 6
8 3 1

7

Start State

Goal State

i Admissible heuristics

E.g., for the 8-puzzle:

= /1,(n) = number of misplaced tiles

= /1,(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7 2 4 1

> 6 3 ||| 4

8 3 1 6 7
O hl(S) =728 Start State Goal State

s N,(S) =7? 3+1+2+2+2+3+3+2 = 18

Consistent heuristics
(consistent => admissible)

= A heuristic is consistent if for every node 7, every successor 77’
of 17 generated by any action 4,

h(n) < c(n,a,n’) + h(n’)

s If Ais consistent, we have

f(n’) = g(n’) + h(n) (by def.)
=g(n) + c(n,a,n’) + h(n) (g(n)=g(n)+c(n.a.n’))
() ; 1g’_g((nn)) + h(n) = f(n) (consistency) It's the triangle

inequality !
= i.e., f(n)is non-decreasing along any path.

keeps all checked nodes
s Theorem: in memory to avoid repeated

If A(n)is consistent, A* using GRAPH-SEARCH is optimal States

Admissible (Tree Search)
VS.
Consistent (Graph Search)

= Why two different conditions?

= In graph search you often find a long cheap path to a node
after a short expensive one, so you might have to update all
of its descendants to use the new cheaper path cost so far

= A consistent heuristic avoids this problem (it can’'t happen)
= Consistent is slightly stronger than admissible
= Almost all admissible heuristics are also consistent

= Could we do optimal graph search with
an admissible heuristic?

= Yes, but you would have to do additional work to update
descendants when a cheaper path to a node is found

= A consistent heuristic avoids this problem

A" searc

example

A66=0+368

Straight-line distance

o Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Ciurgiu
Hirsova
Ia=

Lugoj
MMehadia
Neamt
Oradea
Pilesti
Rimnicu Vikes
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

55
Q
L0
32
14l
176
T
151
1%
1+
141
14

1
193
153
329

19=
374

A” search example:
i Simulated queue. City/h/g/f

Expanded:
= Next:
= Children:
= Frontier: |Arad/366/0/366)

A” search example:
Simulated queue. City/h/g/f

= Expanded: Arad
= Next: Arad/366/0/366

s Children: Sibiu/253/140/393, Timisoara/329/118/447,
Zerind/374/75/449

= Frontier: ﬁrl'adfeeﬁv‘eBGG.[Sibiu/253ﬂ40/393,]
Timisoara/329/118/447, Zerind/374/75/449

A” search example

——

imi=soara

H47=1158+3249

Chmd o

Straight-line distance

o Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Ciurgiu
Hirsova
Ia=

Lugoj
MMehadia
Neamt
Oradea
Pilesti
Rimnicu Vikes
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

55
Q
L0
32
14l
176
T
151
1%
1+
141
14

1
193
153
329

19=
374

A” search example:
Simulated queue. City/h/g/f

= EXxpanded: Arad, Sibiu
= Next: Sibiu/253/140/393

= Children: Arad/366/280/646, Fagaras/176/239/415,
Oradea/380/291/671, RimnicuVilcea/193/220/413

n Frontier: Aradf366/6/1366; Sthraf25311407139S,
Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,
Fagaras/176/239/415, Oradea/380/291/671,
RimnicuVilcea/193/220/413

A~ search example

——

T

Chmd o

e SN #47=118+329 448=T5+3T4

< 8biu_

G4G=280+366 415=239+176 671=281+380 4+13=220+193

Straight-line distance

o Bucharest

Arad 158
Bucharest 0
Cralova 180
Dobreta 243
Eforie Lal
Fagaras 174
Ciurgiu 7
Hirsova 151
Ia= 135
Lugoj 24
Mehadia 241
MNeamt 114
Oradea 150
Pitest 1o
Rimnicu Vikea |0
Sibiu 253
Timisoars 319
Urziceni 0
Vaslui 199

Zerind 174

A” search example:
i Simulated queue. City/h/g/f

= EXxpanded: Arad, Sibiu, RimnicuVilcea
= Next: RimnicuVilcea/193/220/413

= Children: Craiova/160/368/528, Pitesti/100/317/417,
Sibiu/253/300/553

= Frontier ATad’366707366, SIbit/Z537T407393,
Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,

(Fagaras/176/239/415) Oradea/380/291/671,

-Rimnpteteear93226413; Craiova/160/368/528,
Pitesti/100/317/417, Sibiu/253/300/553

A~ search example

Cﬁmﬂ}

"""2" ——

I '*-\.__

< Shlu—__:)

— N H47=118+329

G4G=280+366 415=239+176 G71= 291+EEI:|

L4 Clai.cwa 3y £ F‘Ttesh » -{----éhiu]

526=366+160 417=317+100 553=300+253

Straight-line distance

o Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Ciurgiu
Hirsova
Ia=

Lugoj
MMehadia
Neamt
Oradea
Pilesti
Rimnicu Vikes
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
180
242
161
176
T7
151
224
144
141
134

1
193
153
329

19=
374

A” search example:
Simulated queue. City/h/g/f

= EXxpanded: Arad, Sibiu, RimnicuVilcea, Fagaras
= Next: Fagaras/176/239/415
= Children: Bucharest/0/579/579, Sibiu/253/338/591

= Frontier:-Aradf366/6/366, Sibitf253H446/393;
Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,
+agarast+6/239415, Oradea/380/291/671,
RimntetvHeear93/226/413; Craiova/160/368/528,
(Pitesti/100/3177/417) Sibiu/253/300/553, Bucharest/0/579/579,
Sibiu/253/338/591

A~ search example

< Shlu_}

.'f \-

’

G46=280+366 o ™ . G71= 291+EEI:|

Csa.u:} @_’__h_af_r_a;

581=338+253 450=450+0

C“Ef.:.?

H47=1158+3249

aova b{:ﬂ@ Sbiu
526=366+180 417=317+100 553=300+253

Straight-line distance

o Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Ciurgiu
Hirsova
Ia=

Lugoj
MMehadia
Neamt
Oradea
Pilesti
Rimnicu Vikes
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

55
Q
L0
32
14l
176
T
151
1%
1+
141
14

1
193
153
329

19=
374

A” search example:
Simulated queue. City/h/g/f

= EXxpanded: Arad, Sibiu, RimnicuVilcea, Fagaras, Pitesti
= Next: Pitesti/100/317/417

= Children: Bucharest/0/418/418, Craiova/160/455/615,
RimnicuVilcea/193/414/607

s Frontier-Aradf366/6/366, Sibttf25311407139S,
Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,
FagarastA+6239/415; Oradea/380/291/671,
Rimntetveead931226/413; Craiova/160/368/528,
PiestHo631++41+ Sibiu/253/300/553, Bucharest/0/579/579,
Sibiu/253/338/591, Bucharest/0/418/418, Craiova/160/455/615,
RimnicuVilcea/193/414/607

A~ search example

< Shlu_}

.-z o

C“Ef.:.?

H47=118+3249

m

G46=280+366 o ™ . 5?1 291+EEI:|

581=338+253 450=450+0

525_3654-150 __.--" ""--,__ _553=300+253

D G @D

418=418+40 &15=455+160 GO7T=414+193

Straight-line distance

o Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Ciurgiu
Hirsova
Ia=

Lugoj
MMehadia
Neamt
Oradea
Pilesti
Rimnicu Vikes
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

55
Q
L0
32
14l
176
T
151
1%
1+
141
14

1
193
153
329

19=
374

A” search example:
Simulated queue. City/h/g/f

= Expanded: Arad, Sibiu, RimnicuVilcea, Fagaras, Pitesti,
Bucharest

= Next: Bucharest/0/418/418
= Children: None; goal test succeeds.

s Frontier-Aradf366/6/366, Sibttf25311407139S,
Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,
FagarastA+6239/415; Oradea/380/291/671,
Rimntetveead931226/413; Craiova/160/368/528,
PiestHo631++41+ Sibiu/253/300/553, Bucharest/0/579/579,
Sibiu/253/338/591, Bucharest0/418{418, Craiova/160/455/615,
RimnicuVilcea/193/414/607

i Contours of A* Search

= A" expands nodes in order of increasing fvalue
= Gradually adds "£contours" of nodes
= Contour /has all nodes with 7/=f, where 7, <7,

i Properties of A*

s Complete? Yes
(unless there are infinitely many nodes with f < 7(G),
can’'t happen if step-cost > € > 0)

= Time/Space? Exponential O(b?)
except if: | A(n)—h" (n) 1< O(logh™ (n))
= Optimal? Yes

(with: Tree-Search, admissible heuristic;
Graph-Search, consistent heuristic)

s Optimally Efficient? Yes
(no optimal algorithm with same heuristic is guaranteed to
expand fewer nodes)

i Optimality of A* (proof)

= Suppose some suboptimal goal G, has been generated and is in
the frontier. Let /7 be an unexpanded node in the frontier such
that nis on a shortest path to an optimal goal G.

We want to prove: Srart
f(n) < f(G2) i
(then A* will prefer n over G2)

i

= (G =9(Gy) since A(G;y) =0
= f(G) =g(G) since A(G) =0

= 9(G,) > g(G) since G, is suboptimal G @ 7,
= f(G) =>1(G) from above

= h(n) < h*) since h is admissible (under-estimate)

= g(n) + h(n) < g(h\+ h*(n) from above

 f(n) <16 since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G)

f(n) <f(G2) from above

Memory Bounded Heuristic Search:
Recursive Best First Search (RBFS)

= How can we solve the memory problem for
A* search?

= ldea: Try something like depth first search,
but let’s not forget everything about the
branches we have partially explored.

s We remember the best f(n) value we have
found so far in the branch we are deleting.

RBI:Sb t alt t//

over frontier nodes{@

which are not children:®

249

l.e. do I want to back up?

RBFS changes its mind
very often in practice.

This is because the
f=g+h become more
accurate (less optimistic)
as we approach the goal.
Hence, higher level nodes
have smaller f-values and
will be explored first.

Problem: We should keep

iIn memory whatever we can.

(b) After unwinding back to Sibiu
and expanding Fagaras

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

449

i Simple Memory Bounded A* (SMA¥*)

This is like A*, but when memory is full we delete
the worst node (largest f-value).

Like RBFS, we remember the best descendent in
the branch we delete.

If there is a tie (equal f-values) we delete the oldest
nodes first.

simple-MBA* finds the optimal reachable solution
given the memory constraint. A Solution is ot reachable

if a single path from root to goal

Tlme Can St'” be exponentlal does not fit into memory

SMA* pseudocode (not in 2" edition of R&N)

function SMA*(problem) returns a solution sequence
inputs: problem, a problem
static: Queue, a queue of nodes ordered by f-cost

Queue € MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
loop do
iIf Queue is empty then return failure
n < deepest least-f-cost node in Queue
if GOAL-TEST(n) then return success
s € NEXT-SUCCESSOR(n)
if s is not a goal and is at maximum depth then
f(s) €
else
f(s) € MAX(f(n),g(s)+h(s))
if all of n’s successors have been generated then
update n’s f-cost and those of its ancestors if necessary
if SUCCESSORS(n) all in memory then remove n from Queue
if memory is full then
delete shallowest, highest-f-cost node in Queue
remove it from its parent’s successor list
insert its parent on Queue if necessary
insert s in Queue
end

Simple Memory-bounded A* (SMA*)

(Example with 3-node memory)

Progress of SMA*. Each node is labeled with its current f-cost.

maximal depth is 3, since
memory limit is 3. This
branch is now useless.

Values in parentheses show the value of the best forgotten descendant.

Search space

so far for that node

best estimated solution

best forgotten node

gth=f

[] =goal

\

13[15]
A A ™
\ A
12 © 12 1
G
13
B
15 B
H
15 13 %’g
A A
15[24] 20[24]
A 8
15
30+5=35 30+0=30 24+0=2% 24+5=29 B B
15 20[o0]
B
D
15 24 C
%g 20

Algorithm can tell you when best solution found within memory constraint is optimal or not.

i Memory Bounded A* Search

= The Memory Bounded A* Search Is the
best of the search algorithms we have
seen so far. It uses all its memory to avoid
double work and uses smart heuristics to
first descend into promising branches of
the search-tree.

= If memory not a problem, then plain A*
search Is easy to code and performs well.

Heuristic functions

7 2 ||| 4 1
S 6 3 4
= 8-puzzle
= Avg. solution cost is about 22 steps 8| 3 || 1 6 (|| 7
= branching factor ~ 3 . S

= Exhaustive search to depth 22:
= 3.1 x 1010 states.
= A good heuristic function can reduce the search process.

= Two commonly used heuristics
= /1, = the number of misplaced tiles
= h,(s)=8
= /1, = the sum of the axis-parallel distances of the tiles from
their goal positions (manhattan distance).
= hy(s)=3+1+2+2+2+3+3+2=18

Dominance

= IF hy(n) = h,(n)for all n (both admissible)

THEN A, dominates A,

= h,is always better for search than A,
= /1, guarantees to expand no more nodes than does #,
= h,almost always expands fewer nodes than does A,

= Typical 8-puzzle search costs

(average number of nodes expanded):

 gd=12 IDS = 3,644,035 nodes
A*(h;) = 227 nodes
A*(h,) = 73 nodes

s d=24 IDS = too many nodes
A*(h;) = 39,135 nodes
A*(h,) = 1,641 nodes

Heuristic for “Go to Bucharest” that dominates SLD

Array A[i,j] = straight-line distance (SLD) from city i to city j; B = Bucharest;
s(n) = successors of n;

c(m,n) ={if (n in s(m)) then (one-step road distance m to n) else +infinity};
s_k(n) = all descendants of n accessible from n in exactly k steps;

S k(n) = all descendants of n accessible from n in k steps or less;
C_k(m,n)

={if (nin S_k(m)) then (shortest road distance m to n in k steps or less)
else +infinity};

S, c, are computable in O(b); s_k, S _k, C k, are computable in O(b”"k).

These heuristics both dominate SLD, and h2 dominates h1l.:
— h1(n) = min_{x in Romania} (A[n,x] + A[x,B])
— h2(n) = min_{x in s(n)} (c(n,x) + A[x,B])
This family of heuristics all dominate SLD, and i>) => h_i dominates h_ j:
— h_k(n) =min((min_{x in (S_k(n) N S_k(B))} C_k(n,x)+C_k(x,B))),
(min_{x in s_k(n), y ins_k(B)} (C_k(n,x) + A[x,y] + C_k(y,B)))
h_final(n) = same as bidirectional search; => exponential cost

Effective branching factor: b*

+

= Let A* generate NV nodes to find a goal at depth &

= b* is the branching factor that a uniform tree of depth 4 would have in
order to contain N+1 nodes.

N +1=1+b*+(b*)* +...+ (b*)°
N +1=((b*)"" -1)/(b*-1)
N ~ (b*)! = b*~ YN

= For sufficiently hard problems, the measure b* usually is fairly constant
across different problem instances.

= A good guide to the heuristic’s overall usefulness.
= A good way to compare different heuristics.

Effective Branching Factor
Pseudo-code (Binary search)

PROCEDURE EFFBRANCH (START, END, N, D, DELTA)
COMMENT DELTA IS A SMALL POSITIVE NUMBER FOR ACCURACY OF RESULT.
MID := (START + END) / 2.
IF (END - START < DELTA)
THEN RETURN (MID).
TEST := EFFPOLY (MID, D).
IF (TEST < N+1)
THEN RETURN (EFFBRANCH (MID, END, N, D, DELTA))
ELSE RETURN (EFFBRANCH (START, MID, N, D, DELTA)).
END EFFBRANCH.

PROCEDURE EFFPOLY (B, D)
ANSWER = 1.
TEMP = 1.
FOR | FROM 1 TO (D-1) DO
TEMP := TEMP * B.
ANSWER := ANSWER + TEMP.
ENDDO.
RETURN (ANSWER).
END EFFPOLY.

For binary search please see: http://en.wikipedia.org/wiki/Binary search_algorithm
An attractive alternative is to use Newton’s Method (next lecture) to solve for the root (i.e., f(b)=0) of
fb)=1+b+...+b" - (N+1)

http://en.wikipedia.org/wiki/Binary_search_algorithm

Effectiveness of different
heuristics

| Search Cost Effective Branching Factor

d IDS Af(hy) A (ha) IDS A (hy) A*(hs)

2 10 6 O 245 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 || 650 20 13 2:93 1.34 1.30

8 63584 39 25 280 1.33 1.24
10 47127 93 39 279 1.38 1.22
12 || 3644035 227 73 2.78 1.42 1.24
14 = 539 113 - 1.44 1.23
16 = 1301 211 - 1.45 125
18 z 3056 363 1.46 1.26
20 - 7276 676 1.47 1.27
22 - 18094 1219 1.48 .28
24 l = 39135 1641 - 1.48 1.26

. | =

s Resu

lts averaged over random Instan
of the 8-puzzle

CES

Inventing heuristics via
“relaxed problems”

= A problem with fewer restrictions on the actions is called a relaxed
problem

= The cost of an optimal solution to a relaxed problem is an admissible
heuristic for the original problem

= If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then #,(n) gives the shortest solution

= If the rules are relaxed so that a tile can move to any adjacent square,
then A,(n) gives the shortest solution

= Can be a useful way to generate heuristics

= E.g., ABSOLVER (Prieditis, 1993) discovered the first useful heuristic for the
Rubik’s cube puzzle

i More on heuristics

= h(n) = max{ h,(n), h,(n), ..., h,(n) }
= Assume all h functions are admissible
= E.g., h1(n) = # of misplaced tiles
= E.g., h2(n) = manhattan distance, etc.
= Mmax chooses least optimistic heuristic (most accurate) at each node

= h(n) =w, h; (n) +w, h,(n) +... + w, h,(n)
= A convex combination of features
= Weighted sum of h(n)’s, where weights sum to 1
= Weights learned via repeated puzzle-solving

= Try to identify which features are predictive of path cost

Summary

s Uninformed search methods have uses, also severe limitations
m Heuristics are a structured way to add “smarts” to your search

= Informed (or heuristic) search uses problem-specific heuristics
to improve efficiency

= Best-first, A* (and if needed for memory limits, RBFS, SMA*)
= Techniques for generating heuristics
= A* is optimal with admissible (tree)/consistent (graph) heuristics

= Can provide significant speed-ups in practice
= E.g., on 8-puzzle, speed-up is dramatic
= Still have worst-case exponential time complexity
= In Al, “NP-Complete” means “Formally interesting”

= Next lecture topic: local search techniques
= Hill-climbing, genetic algorithms, simulated annealing, etc.
= Read Chapter 4 in advance of lecture, and again after lecture

	Informed search algorithms�
	Outline
	Limitations of uninformed search
	Recall tree search…
	Recall tree search…
	Heuristic search
	Heuristic function
	Heuristic functions for 8-puzzle
	Romania with straight-line dist.
	Relationship of Search Algorithms
	Greedy best-first search�(often called just “best-first”)
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Optimal Path
	Properties of greedy best-first search
	A* search
	Admissible heuristics
	Admissible heuristics
	Admissible heuristics
	Consistent heuristics�(consistent => admissible)
	Admissible (Tree Search) �vs.�Consistent (Graph Search)
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	Contours of A* Search
	Properties of A*
	Optimality of A* (proof)
	Memory Bounded Heuristic Search: Recursive Best First Search (RBFS)
	RBFS:
	Simple Memory Bounded A* (SMA*)
	SMA* pseudocode (not in 2nd edition of R&N)
	Simple Memory-bounded A* (SMA*)
	Memory Bounded A* Search
	Heuristic functions
	Dominance
	Heuristic for “Go to Bucharest” that dominates SLD
	Effective branching factor: b*
	Effective Branching Factor�Pseudo-code (Binary search)
	Effectiveness of different heuristics
	Inventing heuristics via “relaxed problems”
	More on heuristics
	Summary

