
Informed search algorithms 
 

This lecture topic 
Chapter 3.5-3.7 

 
Next lecture topic 
Chapter 4.1-4.2 

(Please read lecture topic material before and after each lecture on that topic) 



Outline 
 Review limitations of uninformed search methods   
 Informed (or heuristic) search uses 
  problem-specific heuristics to improve efficiency  

 Best-first, A* (and if needed for memory limits, RBFS, SMA*) 
 Techniques for generating heuristics 
 A* is optimal with admissible (tree)/consistent (graph) heuristics 
 A* is quick and easy to code, and often works *very* well 

 Heuristics 
 A structured way to add “smarts” to your solution 
 Provide *significant* speed-ups in practice 
 Still have worst-case exponential time complexity 

 In AI, “NP-Complete” means “Formally interesting” 



Limitations of uninformed search 

 Search Space Size makes search tedious 
 Combinatorial Explosion 

 For example, 8-puzzle 
 Avg. solution cost is about 22 steps  
 branching factor ~ 3 
 Exhaustive search to depth 22:  

 3.1 x 1010 states 
 E.g., d=12, IDS expands 3.6 million states on average 

 
   [24 puzzle has 1024 states (much worse)] 

 



Recall tree search… 



Recall tree search… 

This “strategy” is what 
differentiates different 

search algorithms 



Heuristic search 
 Idea: use an evaluation function f(n) for each node 
    and a heuristic function h(n) for each node 

 g(n) = known path cost so far to node n. 
 h(n) = estimate of (optimal) cost to goal from node n. 
 f(n) = g(n)+h(n) = estimate of total cost to goal through node n. 
 f(n) provides an estimate for the total cost: 
 Expand the node n with smallest f(n). 
 

 Implementation: 
 Order the nodes in frontier by increasing estimated cost. 
 
 Evaluation function is an estimate of node quality 

⇒ More accurate name for “best first” search would be 
“seemingly best-first search” 

⇒ Search efficiency depends on heuristic quality! 
⇒ The better your heuristic, the faster your search!  

 
 



Heuristic function 
 Heuristic: 

 Definition: a commonsense rule (or set of rules) intended to 
increase the probability of solving some problem 

 Same linguistic root as “Eureka” = “I have found it” 
 “using rules of thumb to find answers” 

 
 Heuristic function h(n) 

 Estimate of (optimal) remaining cost from n to goal 
 Defined using only the state of node n 
 h(n) = 0 if n is a goal node 
 Example: straight line distance from n to Bucharest 

 Note that this is not the true state-space distance 
 It is an estimate – actual state-space distance can be higher 

 
 Provides problem-specific knowledge to the search algorithm 

 
 



Heuristic functions for 8-puzzle 

 8-puzzle 
 Avg. solution cost is about 22 steps  
 branching factor ~ 3 
 Exhaustive search to depth 22:  

 3.1 x 1010 states. 
 A good heuristic function can reduce the search process. 

 

 Two commonly used heuristics 
 h1 = the number of misplaced tiles 

 h1(s)=8 
 h2 = the sum of the distances of the tiles from their goal 

positions (Manhattan distance).  
 h2(s)=3+1+2+2+2+3+3+2=18 

 



Romania with straight-line dist. 



Relationship of Search Algorithms 
 g(n) = known cost so far to reach n 
 h(n) = estimated (optimal) cost from n to goal 
 f(n) = g(n) + h(n) 
        = estimated (optimal) total cost of path through n to goal 

 
 Uniform Cost search sorts frontier by g(n) 
 Greedy Best First search sorts frontier by h(n) 
 A* search sorts frontier by f(n) 

 Optimal for admissible/ consistent heuristics 
 Generally the preferred heuristic search 

 Memory-efficient versions of A* are available 
 RBFS, SMA* 

 
 

 



Greedy best-first search 
(often called just “best-first”) 

 h(n) = estimate of cost from n to goal 
 e.g., h(n) = straight-line distance from n to 

Bucharest 
 

 Greedy best-first search expands the 
node that appears to be closest to goal. 
 Priority queue sort function = h(n) 



Greedy best-first search 
example 



Greedy best-first search 
example 



Greedy best-first search 
example 



Greedy best-first search 
example 



Optimal Path 



Properties of greedy best-first 
search 
 Complete?  

 Tree version can get stuck in loops. 
 Graph version is complete in finite spaces. 

 Time? O(bm) 
 A good heuristic can give dramatic improvement 

 Space? O(bm)  
 Keeps all nodes in memory 

 Optimal? No 
   e.g., Arad  Sibiu  Rimnicu Vilcea  Pitesti  

Bucharest is shorter! 



A* search 

 Idea: avoid paths that are already expensive 
 Generally the preferred simple heuristic search 
 Optimal if heuristic is: 

admissible(tree)/consistent(graph) 

 Evaluation function f(n) = g(n) + h(n) 
 g(n) = known path cost so far to node n. 
 h(n) = estimate of (optimal) cost to goal from node n. 
 f(n) = g(n)+h(n) 
      = estimate of total cost to goal through node n. 

 Priority queue sort function = f(n) 



Admissible heuristics 

 A heuristic h(n) is admissible if for every node n, 
  h(n) ≤ h*(n), 
 where h*(n) is the true cost to reach the goal state from n. 
 An admissible heuristic never overestimates the cost to reach 

the goal, i.e., it is optimistic (or at least, never pessimistic) 
 Example: hSLD(n) (never overestimates actual road distance) 

 Theorem: 
 If h(n) is admissible, A* using TREE-SEARCH is optimal 



Admissible heuristics 
E.g., for the 8-puzzle: 
 h1(n) = number of misplaced tiles 
 h2(n) = total Manhattan distance 
(i.e., no. of squares from desired location of each tile) 
 

 
 
 
 h1(S) = ?  
 h2(S) = ?  



Admissible heuristics 
E.g., for the 8-puzzle: 
 h1(n) = number of misplaced tiles 
 h2(n) = total Manhattan distance 
(i.e., no. of squares from desired location of each tile) 
 

 
 
 
 h1(S) = ? 8 
 h2(S) = ? 3+1+2+2+2+3+3+2 = 18  



Consistent heuristics 
(consistent => admissible) 
 A heuristic is consistent if for every node n, every successor n' 

of n generated by any action a,    
 

      h(n) ≤ c(n,a,n') + h(n') 
 

 If h is consistent, we have 
 

f(n’)  = g(n’) + h(n’)                   (by def.) 
       = g(n) + c(n,a,n') + h(n’)    (g(n’)=g(n)+c(n.a.n’))  
       ≥ g(n) + h(n) = f(n)            (consistency) 
f(n’)   ≥ f(n) 
 
 i.e., f(n) is non-decreasing along any path. 

 
 Theorem:  
     If h(n) is consistent, A* using GRAPH-SEARCH is optimal 

It’s the triangle 
inequality ! 

keeps all checked nodes 
in memory to avoid repeated  
                               states 



Admissible (Tree Search)  
vs. 

Consistent (Graph Search) 

 Why two different conditions? 
 In graph search you often find a long cheap path to a node 

after a short expensive one, so you might have to update all 
of its descendants to use the new cheaper path cost so far 

 A consistent heuristic avoids this problem (it can’t happen) 
 Consistent is slightly stronger than admissible 
 Almost all admissible heuristics are also consistent 

 Could we do optimal graph search with 
an admissible heuristic? 
 Yes, but you would have to do additional work to update 

descendants when a cheaper path to a node is found 
 A consistent heuristic avoids this problem 



A* search example 



A* search example: 
Simulated queue.  City/h/g/f 
 Expanded:  
 Next:  
 Children:  
 Frontier: Arad/366/0/366 

 



A* search example: 
Simulated queue.  City/h/g/f 
 Expanded: Arad 
 Next: Arad/366/0/366 
 Children: Sibiu/253/140/393, Timisoara/329/118/447, 

Zerind/374/75/449 
 Frontier: Arad/366/0/366, Sibiu/253/140/393, 

Timisoara/329/118/447, Zerind/374/75/449 
 
 



A* search example 



A* search example: 
Simulated queue.  City/h/g/f 
 Expanded: Arad, Sibiu 
 Next: Sibiu/253/140/393 
 Children: Arad/366/280/646, Fagaras/176/239/415, 

Oradea/380/291/671, RimnicuVilcea/193/220/413 
 Frontier: Arad/366/0/366, Sibiu/253/140/393, 

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646, 
Fagaras/176/239/415, Oradea/380/291/671, 
RimnicuVilcea/193/220/413 
 
 
 



A* search example 



A* search example: 
Simulated queue.  City/h/g/f 
 Expanded: Arad, Sibiu, RimnicuVilcea 
 Next: RimnicuVilcea/193/220/413 
 Children: Craiova/160/368/528, Pitesti/100/317/417, 

Sibiu/253/300/553 
 Frontier: Arad/366/0/366, Sibiu/253/140/393, 

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646, 
Fagaras/176/239/415, Oradea/380/291/671, 
RimnicuVilcea/193/220/413, Craiova/160/368/528, 
Pitesti/100/317/417, Sibiu/253/300/553 
 
 
 
 



A* search example 



A* search example: 
Simulated queue.  City/h/g/f 
 Expanded: Arad, Sibiu, RimnicuVilcea, Fagaras 
 Next: Fagaras/176/239/415  
 Children: Bucharest/0/579/579, Sibiu/253/338/591 
 Frontier: Arad/366/0/366, Sibiu/253/140/393, 

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646, 
Fagaras/176/239/415, Oradea/380/291/671, 
RimnicuVilcea/193/220/413, Craiova/160/368/528, 
Pitesti/100/317/417, Sibiu/253/300/553, Bucharest/0/579/579, 
Sibiu/253/338/591 
 
 
 
 
 



A* search example 



A* search example: 
Simulated queue.  City/h/g/f 
 Expanded: Arad, Sibiu, RimnicuVilcea, Fagaras, Pitesti 
 Next: Pitesti/100/317/417  
 Children: Bucharest/0/418/418, Craiova/160/455/615, 

RimnicuVilcea/193/414/607 
 Frontier: Arad/366/0/366, Sibiu/253/140/393, 

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646, 
Fagaras/176/239/415, Oradea/380/291/671, 
RimnicuVilcea/193/220/413, Craiova/160/368/528, 
Pitesti/100/317/417, Sibiu/253/300/553, Bucharest/0/579/579, 
Sibiu/253/338/591, Bucharest/0/418/418, Craiova/160/455/615, 
RimnicuVilcea/193/414/607 
 
 
 
 
 
 



A* search example 



A* search example: 
Simulated queue.  City/h/g/f 
 Expanded: Arad, Sibiu, RimnicuVilcea, Fagaras, Pitesti, 

Bucharest 
 Next: Bucharest/0/418/418  
 Children: None; goal test succeeds. 
 Frontier: Arad/366/0/366, Sibiu/253/140/393, 

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646, 
Fagaras/176/239/415, Oradea/380/291/671, 
RimnicuVilcea/193/220/413, Craiova/160/368/528, 
Pitesti/100/317/417, Sibiu/253/300/553, Bucharest/0/579/579, 
Sibiu/253/338/591, Bucharest/0/418/418, Craiova/160/455/615, 
RimnicuVilcea/193/414/607 
 
 
 
 
 
 



Contours of A* Search 

 A* expands nodes in order of increasing f value 
 Gradually adds "f-contours" of nodes  
 Contour i has all nodes with f=fi, where fi < fi+1 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



Properties of A* 
 Complete? Yes 
 (unless there are infinitely many nodes with f ≤ f(G); 
 can’t happen if step-cost ≥ ε > 0) 

 Time/Space? Exponential O(bd) 
           except if:   
 Optimal? Yes 
 (with: Tree-Search, admissible heuristic; 
 Graph-Search, consistent heuristic) 
 Optimally Efficient? Yes 
 (no optimal algorithm with same heuristic is guaranteed to 

expand fewer nodes) 

* *| ( ) ( ) | (log ( ))h n h n O h n− ≤



Optimality of A* (proof) 
 Suppose some suboptimal goal G2 has been generated and is in 

the frontier. Let n be an unexpanded node in the frontier such 
that n is on a shortest path to an optimal goal G. 
 
 
 

 f(G2)  = g(G2) since h(G2) = 0  
 f(G)   = g(G) since h(G) = 0  
 g(G2) > g(G)  since G2 is suboptimal  

 f(G2)  > f(G) from above  
 h(n) ≤ h*(n)  since h is admissible (under-estimate) 
 g(n) + h(n) ≤ g(n) + h*(n)  from above 
 f(n)  ≤ f(G)  since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G) 
 f(n)  < f(G2) from above 

 

We want to prove: 
f(n) < f(G2) 
(then A* will prefer n over G2) 
 
 



Memory Bounded Heuristic Search: 
Recursive Best First Search (RBFS) 

 How can we solve the memory problem for 
A* search? 

 
 Idea: Try something like depth first search, 

but let’s not forget everything about the 
branches we have partially explored. 

 We remember the best f(n) value we have 
found so far in the branch we are deleting.  



RBFS:  

RBFS changes its mind  
very often in practice. 
 
This is because the  
f=g+h become more  
accurate (less optimistic) 
as we approach the goal. 
Hence, higher level nodes 
have smaller f-values and 
will be explored first. 
 
Problem: We should keep  
in memory whatever we can. 

best alternative 
over frontier nodes, 
which are not children: 
i.e. do I want to back up? 



Simple Memory Bounded A* (SMA*) 

 This is like A*, but when memory is full we delete 
the worst node (largest f-value). 

 Like RBFS, we remember the best descendent in 
the branch we delete. 

 If there is a tie (equal f-values) we delete the oldest 
nodes first. 

 simple-MBA* finds the optimal reachable solution 
given the memory constraint.  

 Time can still be exponential.  
A Solution is not reachable  
if a single path from root to goal 
does not fit into memory 



SMA* pseudocode (not in 2nd edition of R&N) 
function SMA*(problem) returns a solution sequence 
   inputs: problem, a problem 
   static: Queue, a queue of nodes ordered by f-cost 
 

   Queue  MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])}) 
   loop do 
          if Queue is empty then return failure 
          n  deepest least-f-cost node in Queue 
          if GOAL-TEST(n) then return success 
          s  NEXT-SUCCESSOR(n) 
          if s is not a goal and is at maximum depth then 
              f(s)  ∞ 
          else 
              f(s)  MAX(f(n),g(s)+h(s)) 
          if all of n’s successors have been generated then 
              update n’s f-cost and those of its ancestors if necessary 
          if SUCCESSORS(n) all in memory then remove n from Queue 
          if memory is full then 
              delete shallowest, highest-f-cost node in Queue 
              remove it from its parent’s successor list 
              insert its parent on Queue if necessary 
          insert s in Queue 
    end 



Simple Memory-bounded A* (SMA*) 
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Memory Bounded A* Search 

 The Memory Bounded A* Search is the 
best of the search algorithms we have 
seen so far. It uses all its memory to avoid 
double work and uses smart heuristics to 
first descend into promising branches of 
the search-tree. 

 If memory not a problem, then plain A* 
search is easy to code and performs well. 



Heuristic functions 

 8-puzzle 
 Avg. solution cost is about 22 steps  
 branching factor ~ 3 
 Exhaustive search to depth 22:  

 3.1 x 1010 states. 
 A good heuristic function can reduce the search process. 

 

 Two commonly used heuristics 
 h1 = the number of misplaced tiles 

 h1(s)=8 
 h2 = the sum of the axis-parallel distances of the tiles from 

their goal positions (manhattan distance).  
 h2(s)=3+1+2+2+2+3+3+2=18 

 



Dominance 
 IF h2(n) ≥ h1(n) for all n (both admissible) 
 THEN h2 dominates h1  

 h2 is always better for search than h1 
 h2 guarantees to expand no more nodes than does h1 
 h2 almost always expands fewer nodes than does h1 

 
 Typical 8-puzzle search costs 
 (average number of nodes expanded): 

 d=12 IDS = 3,644,035 nodes 
  A*(h1) = 227 nodes  
  A*(h2) = 73 nodes  

 d=24  IDS = too many nodes 
  A*(h1) = 39,135 nodes  
  A*(h2) = 1,641 nodes  



Heuristic for “Go to Bucharest” that dominates SLD 

• Array A[i,j] = straight-line distance (SLD) from city i to city j; B = Bucharest; 
• s(n) = successors of n; 
• c(m,n) = {if (n in s(m)) then (one-step road distance m to n) else +infinity}; 
• s_k(n) = all descendants of n accessible from n in exactly k steps; 
• S_k(n) = all descendants of n accessible from n in k steps or less; 
• C_k(m,n) 
          = {if (n in S_k(m)) then (shortest road distance m to n in k steps or less) 
     else +infinity}; 
• s, c, are computable in O(b); s_k, S_k, C_k, are computable in O(b^k). 
 
• These heuristics both dominate SLD, and h2 dominates h1: 

– h1(n) = min_{x in Romania} (A[n,x] + A[x,B]) 
– h2(n) = min_{x in s(n)} ( c(n,x) + A[x,B] ) 

• This family of heuristics all dominate SLD, and i>j => h_i dominates h_ j: 
– h_k(n) = min( (min_{x in (S_k(n) ∩ S_k(B))} C_k(n,x)+C_k(x,B))), 
       (min_{x in s_k(n), y in s_k(B)} (C_k(n,x) + A[x,y] + C_k(y,B))) 

• h_final(n) = same as bidirectional search; => exponential cost 
 



Effective branching factor: b* 

 Let A* generate N nodes to find a goal at depth d 
 b* is the branching factor that a uniform tree of depth d would have in 

order to contain N+1 nodes. 
 
 
 
 
 
 

 For sufficiently hard problems, the measure b* usually is fairly constant 
across different problem instances. 

 A good guide to the heuristic’s overall usefulness. 
 A good way to compare different heuristics. 
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Effective Branching Factor 
Pseudo-code (Binary search) 

 PROCEDURE EFFBRANCH (START, END, N, D, DELTA)  
 COMMENT DELTA IS A SMALL POSITIVE NUMBER FOR ACCURACY OF RESULT.  
 MID := (START + END) / 2.  
 IF (END - START < DELTA)  
     THEN RETURN (MID).  
 TEST := EFFPOLY (MID, D).  
 IF (TEST < N+1)  
     THEN RETURN (EFFBRANCH (MID, END, N, D, DELTA) )  
     ELSE RETURN (EFFBRANCH (START, MID, N, D, DELTA) ).  
END EFFBRANCH.  
 
PROCEDURE EFFPOLY (B, D)  
 ANSWER = 1.  
 TEMP = 1.  
 FOR I FROM 1 TO (D-1) DO  
     TEMP := TEMP * B.  
     ANSWER := ANSWER + TEMP.  
 ENDDO.  
 RETURN (ANSWER).  
END EFFPOLY.  
 

 For binary search please see:  http://en.wikipedia.org/wiki/Binary_search_algorithm  
 An attractive alternative is to use Newton’s Method (next lecture) to solve for the root  (i.e., f(b)=0) of 

 f(b) = 1 + b + ... + b^d - (N+1) 

http://en.wikipedia.org/wiki/Binary_search_algorithm


Effectiveness of different 
heuristics 

 Results averaged over random instances 
of the 8-puzzle 



Inventing heuristics via 
“relaxed problems” 
 A problem with fewer restrictions on the actions is called a relaxed 

problem 
 

 The cost of an optimal solution to a relaxed problem is an admissible 
heuristic for the original problem 
 

 If the rules of the 8-puzzle are relaxed so that a tile can move 
anywhere, then h1(n) gives the shortest solution 
 

 If the rules are relaxed so that a tile can move to any adjacent square, 
then h2(n) gives the shortest solution 
 

 Can be a useful way to generate heuristics 
 E.g., ABSOLVER (Prieditis, 1993) discovered the first useful heuristic for the 

Rubik’s cube puzzle 
 



More on heuristics 
 h(n) = max{ h1(n), h2(n), …, hk(n) } 

 Assume all h functions are admissible 
 E.g., h1(n) = # of misplaced tiles 
 E.g., h2(n) = manhattan distance, etc. 
 max chooses least optimistic heuristic (most accurate) at each node 
 

 h(n) = w1 h1 (n) + w2 h2(n) + … + wk hk(n) 
 A convex combination of features 

 Weighted sum of h(n)’s, where weights sum to 1 

 Weights learned via repeated puzzle-solving 
 Try to identify which features are predictive of path cost 

 
 



Summary 
 Uninformed search methods have uses, also severe limitations 
 Heuristics are a structured way to add “smarts” to your search 

 
 Informed (or heuristic) search uses problem-specific heuristics 

to improve efficiency 
 Best-first, A* (and if needed for memory limits, RBFS, SMA*) 
 Techniques for generating heuristics 
 A* is optimal with admissible (tree)/consistent (graph) heuristics 

 
 Can provide significant speed-ups in practice 

 E.g., on 8-puzzle, speed-up is dramatic 
 Still have worst-case exponential time complexity 
 In AI, “NP-Complete” means “Formally interesting” 

 
 Next lecture topic: local search techniques 

 Hill-climbing, genetic algorithms, simulated annealing, etc. 
 Read Chapter 4 in advance of lecture, and again after lecture 
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