
Informed search algorithms

This lecture topic
Chapter 3.5-3.7

Next lecture topic
Chapter 4.1-4.2

(Please read lecture topic material before and after each lecture on that topic)

Outline
 Review limitations of uninformed search methods
 Informed (or heuristic) search uses
 problem-specific heuristics to improve efficiency

 Best-first, A* (and if needed for memory limits, RBFS, SMA*)
 Techniques for generating heuristics
 A* is optimal with admissible (tree)/consistent (graph) heuristics
 A* is quick and easy to code, and often works *very* well

 Heuristics
 A structured way to add “smarts” to your solution
 Provide *significant* speed-ups in practice
 Still have worst-case exponential time complexity

 In AI, “NP-Complete” means “Formally interesting”

Limitations of uninformed search

 Search Space Size makes search tedious
 Combinatorial Explosion

 For example, 8-puzzle
 Avg. solution cost is about 22 steps
 branching factor ~ 3
 Exhaustive search to depth 22:

 3.1 x 1010 states
 E.g., d=12, IDS expands 3.6 million states on average

 [24 puzzle has 1024 states (much worse)]

Recall tree search…

Recall tree search…

This “strategy” is what
differentiates different

search algorithms

Heuristic search
 Idea: use an evaluation function f(n) for each node
 and a heuristic function h(n) for each node

 g(n) = known path cost so far to node n.
 h(n) = estimate of (optimal) cost to goal from node n.
 f(n) = g(n)+h(n) = estimate of total cost to goal through node n.
 f(n) provides an estimate for the total cost:
 Expand the node n with smallest f(n).

 Implementation:
 Order the nodes in frontier by increasing estimated cost.

 Evaluation function is an estimate of node quality

⇒ More accurate name for “best first” search would be
“seemingly best-first search”

⇒ Search efficiency depends on heuristic quality!
⇒ The better your heuristic, the faster your search!

Heuristic function
 Heuristic:

 Definition: a commonsense rule (or set of rules) intended to
increase the probability of solving some problem

 Same linguistic root as “Eureka” = “I have found it”
 “using rules of thumb to find answers”

 Heuristic function h(n)

 Estimate of (optimal) remaining cost from n to goal
 Defined using only the state of node n
 h(n) = 0 if n is a goal node
 Example: straight line distance from n to Bucharest

 Note that this is not the true state-space distance
 It is an estimate – actual state-space distance can be higher

 Provides problem-specific knowledge to the search algorithm

Heuristic functions for 8-puzzle

 8-puzzle
 Avg. solution cost is about 22 steps
 branching factor ~ 3
 Exhaustive search to depth 22:

 3.1 x 1010 states.
 A good heuristic function can reduce the search process.

 Two commonly used heuristics
 h1 = the number of misplaced tiles

 h1(s)=8
 h2 = the sum of the distances of the tiles from their goal

positions (Manhattan distance).
 h2(s)=3+1+2+2+2+3+3+2=18

Romania with straight-line dist.

Relationship of Search Algorithms
 g(n) = known cost so far to reach n
 h(n) = estimated (optimal) cost from n to goal
 f(n) = g(n) + h(n)
 = estimated (optimal) total cost of path through n to goal

 Uniform Cost search sorts frontier by g(n)
 Greedy Best First search sorts frontier by h(n)
 A* search sorts frontier by f(n)

 Optimal for admissible/ consistent heuristics
 Generally the preferred heuristic search

 Memory-efficient versions of A* are available
 RBFS, SMA*

Greedy best-first search
(often called just “best-first”)

 h(n) = estimate of cost from n to goal
 e.g., h(n) = straight-line distance from n to

Bucharest

 Greedy best-first search expands the
node that appears to be closest to goal.
 Priority queue sort function = h(n)

Greedy best-first search
example

Greedy best-first search
example

Greedy best-first search
example

Greedy best-first search
example

Optimal Path

Properties of greedy best-first
search
 Complete?

 Tree version can get stuck in loops.
 Graph version is complete in finite spaces.

 Time? O(bm)
 A good heuristic can give dramatic improvement

 Space? O(bm)
 Keeps all nodes in memory

 Optimal? No
 e.g., Arad Sibiu Rimnicu Vilcea Pitesti

Bucharest is shorter!

A* search

 Idea: avoid paths that are already expensive
 Generally the preferred simple heuristic search
 Optimal if heuristic is:

admissible(tree)/consistent(graph)

 Evaluation function f(n) = g(n) + h(n)
 g(n) = known path cost so far to node n.
 h(n) = estimate of (optimal) cost to goal from node n.
 f(n) = g(n)+h(n)
 = estimate of total cost to goal through node n.

 Priority queue sort function = f(n)

Admissible heuristics

 A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n),
 where h*(n) is the true cost to reach the goal state from n.
 An admissible heuristic never overestimates the cost to reach

the goal, i.e., it is optimistic (or at least, never pessimistic)
 Example: hSLD(n) (never overestimates actual road distance)

 Theorem:
 If h(n) is admissible, A* using TREE-SEARCH is optimal

Admissible heuristics
E.g., for the 8-puzzle:
 h1(n) = number of misplaced tiles
 h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

 h1(S) = ?
 h2(S) = ?

Admissible heuristics
E.g., for the 8-puzzle:
 h1(n) = number of misplaced tiles
 h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

 h1(S) = ? 8
 h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Consistent heuristics
(consistent => admissible)
 A heuristic is consistent if for every node n, every successor n'

of n generated by any action a,

 h(n) ≤ c(n,a,n') + h(n')

 If h is consistent, we have

f(n’) = g(n’) + h(n’) (by def.)
 = g(n) + c(n,a,n') + h(n’) (g(n’)=g(n)+c(n.a.n’))
 ≥ g(n) + h(n) = f(n) (consistency)
f(n’) ≥ f(n)

 i.e., f(n) is non-decreasing along any path.

 Theorem:
 If h(n) is consistent, A* using GRAPH-SEARCH is optimal

It’s the triangle
inequality !

keeps all checked nodes
in memory to avoid repeated
 states

Admissible (Tree Search)
vs.

Consistent (Graph Search)

 Why two different conditions?
 In graph search you often find a long cheap path to a node

after a short expensive one, so you might have to update all
of its descendants to use the new cheaper path cost so far

 A consistent heuristic avoids this problem (it can’t happen)
 Consistent is slightly stronger than admissible
 Almost all admissible heuristics are also consistent

 Could we do optimal graph search with
an admissible heuristic?
 Yes, but you would have to do additional work to update

descendants when a cheaper path to a node is found
 A consistent heuristic avoids this problem

A* search example

A* search example:
Simulated queue. City/h/g/f
 Expanded:
 Next:
 Children:
 Frontier: Arad/366/0/366

A* search example:
Simulated queue. City/h/g/f
 Expanded: Arad
 Next: Arad/366/0/366
 Children: Sibiu/253/140/393, Timisoara/329/118/447,

Zerind/374/75/449
 Frontier: Arad/366/0/366, Sibiu/253/140/393,

Timisoara/329/118/447, Zerind/374/75/449

A* search example

A* search example:
Simulated queue. City/h/g/f
 Expanded: Arad, Sibiu
 Next: Sibiu/253/140/393
 Children: Arad/366/280/646, Fagaras/176/239/415,

Oradea/380/291/671, RimnicuVilcea/193/220/413
 Frontier: Arad/366/0/366, Sibiu/253/140/393,

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,
Fagaras/176/239/415, Oradea/380/291/671,
RimnicuVilcea/193/220/413

A* search example

A* search example:
Simulated queue. City/h/g/f
 Expanded: Arad, Sibiu, RimnicuVilcea
 Next: RimnicuVilcea/193/220/413
 Children: Craiova/160/368/528, Pitesti/100/317/417,

Sibiu/253/300/553
 Frontier: Arad/366/0/366, Sibiu/253/140/393,

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,
Fagaras/176/239/415, Oradea/380/291/671,
RimnicuVilcea/193/220/413, Craiova/160/368/528,
Pitesti/100/317/417, Sibiu/253/300/553

A* search example

A* search example:
Simulated queue. City/h/g/f
 Expanded: Arad, Sibiu, RimnicuVilcea, Fagaras
 Next: Fagaras/176/239/415
 Children: Bucharest/0/579/579, Sibiu/253/338/591
 Frontier: Arad/366/0/366, Sibiu/253/140/393,

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,
Fagaras/176/239/415, Oradea/380/291/671,
RimnicuVilcea/193/220/413, Craiova/160/368/528,
Pitesti/100/317/417, Sibiu/253/300/553, Bucharest/0/579/579,
Sibiu/253/338/591

A* search example

A* search example:
Simulated queue. City/h/g/f
 Expanded: Arad, Sibiu, RimnicuVilcea, Fagaras, Pitesti
 Next: Pitesti/100/317/417
 Children: Bucharest/0/418/418, Craiova/160/455/615,

RimnicuVilcea/193/414/607
 Frontier: Arad/366/0/366, Sibiu/253/140/393,

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,
Fagaras/176/239/415, Oradea/380/291/671,
RimnicuVilcea/193/220/413, Craiova/160/368/528,
Pitesti/100/317/417, Sibiu/253/300/553, Bucharest/0/579/579,
Sibiu/253/338/591, Bucharest/0/418/418, Craiova/160/455/615,
RimnicuVilcea/193/414/607

A* search example

A* search example:
Simulated queue. City/h/g/f
 Expanded: Arad, Sibiu, RimnicuVilcea, Fagaras, Pitesti,

Bucharest
 Next: Bucharest/0/418/418
 Children: None; goal test succeeds.
 Frontier: Arad/366/0/366, Sibiu/253/140/393,

Timisoara/329/118/447, Zerind/374/75/449, Arad/280/366/646,
Fagaras/176/239/415, Oradea/380/291/671,
RimnicuVilcea/193/220/413, Craiova/160/368/528,
Pitesti/100/317/417, Sibiu/253/300/553, Bucharest/0/579/579,
Sibiu/253/338/591, Bucharest/0/418/418, Craiova/160/455/615,
RimnicuVilcea/193/414/607

Contours of A* Search

 A* expands nodes in order of increasing f value
 Gradually adds "f-contours" of nodes
 Contour i has all nodes with f=fi, where fi < fi+1

Properties of A*
 Complete? Yes
 (unless there are infinitely many nodes with f ≤ f(G);
 can’t happen if step-cost ≥ ε > 0)

 Time/Space? Exponential O(bd)
 except if:
 Optimal? Yes
 (with: Tree-Search, admissible heuristic;
 Graph-Search, consistent heuristic)
 Optimally Efficient? Yes
 (no optimal algorithm with same heuristic is guaranteed to

expand fewer nodes)

* *| () () | (log ())h n h n O h n− ≤

Optimality of A* (proof)
 Suppose some suboptimal goal G2 has been generated and is in

the frontier. Let n be an unexpanded node in the frontier such
that n is on a shortest path to an optimal goal G.

 f(G2) = g(G2) since h(G2) = 0
 f(G) = g(G) since h(G) = 0
 g(G2) > g(G) since G2 is suboptimal

 f(G2) > f(G) from above
 h(n) ≤ h*(n) since h is admissible (under-estimate)
 g(n) + h(n) ≤ g(n) + h*(n) from above
 f(n) ≤ f(G) since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G)
 f(n) < f(G2) from above

We want to prove:
f(n) < f(G2)
(then A* will prefer n over G2)

Memory Bounded Heuristic Search:
Recursive Best First Search (RBFS)

 How can we solve the memory problem for
A* search?

 Idea: Try something like depth first search,

but let’s not forget everything about the
branches we have partially explored.

 We remember the best f(n) value we have
found so far in the branch we are deleting.

RBFS:

RBFS changes its mind
very often in practice.

This is because the
f=g+h become more
accurate (less optimistic)
as we approach the goal.
Hence, higher level nodes
have smaller f-values and
will be explored first.

Problem: We should keep
in memory whatever we can.

best alternative
over frontier nodes,
which are not children:
i.e. do I want to back up?

Simple Memory Bounded A* (SMA*)

 This is like A*, but when memory is full we delete
the worst node (largest f-value).

 Like RBFS, we remember the best descendent in
the branch we delete.

 If there is a tie (equal f-values) we delete the oldest
nodes first.

 simple-MBA* finds the optimal reachable solution
given the memory constraint.

 Time can still be exponential.
A Solution is not reachable
if a single path from root to goal
does not fit into memory

SMA* pseudocode (not in 2nd edition of R&N)
function SMA*(problem) returns a solution sequence
 inputs: problem, a problem
 static: Queue, a queue of nodes ordered by f-cost

 Queue MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
 loop do
 if Queue is empty then return failure
 n deepest least-f-cost node in Queue
 if GOAL-TEST(n) then return success
 s NEXT-SUCCESSOR(n)
 if s is not a goal and is at maximum depth then
 f(s) ∞
 else
 f(s) MAX(f(n),g(s)+h(s))
 if all of n’s successors have been generated then
 update n’s f-cost and those of its ancestors if necessary
 if SUCCESSORS(n) all in memory then remove n from Queue
 if memory is full then
 delete shallowest, highest-f-cost node in Queue
 remove it from its parent’s successor list
 insert its parent on Queue if necessary
 insert s in Queue
 end

Simple Memory-bounded A* (SMA*)

24+0=24

A

B G

C D

E F

H

J

I

K

0+12=12

10+5=15

20+5=25

30+5=35

20+0=20

30+0=30

8+5=13

16+2=18

24+0=24 24+5=29

10 8

10 10

10 10

8 16

8 8

g+h = f

(Example with 3-node memory)
Progress of SMA*. Each node is labeled with its current f-cost.
Values in parentheses show the value of the best forgotten descendant.

Algorithm can tell you when best solution found within memory constraint is optimal or not.

☐ = goal
Search space

maximal depth is 3, since
memory limit is 3. This
branch is now useless.

best forgotten node

A
12

A

B

12

15

A

B G

13

15 13 H

13

∞

A

G

18

13[15]

A

G
24[∞]

I

15[15]

24

A

B G

15

15 24
∞

A

B

C

15[24]

15

25

A

B

D

8

20

20[24]

20[∞]

best estimated solution
so far for that node

Memory Bounded A* Search

 The Memory Bounded A* Search is the
best of the search algorithms we have
seen so far. It uses all its memory to avoid
double work and uses smart heuristics to
first descend into promising branches of
the search-tree.

 If memory not a problem, then plain A*
search is easy to code and performs well.

Heuristic functions

 8-puzzle
 Avg. solution cost is about 22 steps
 branching factor ~ 3
 Exhaustive search to depth 22:

 3.1 x 1010 states.
 A good heuristic function can reduce the search process.

 Two commonly used heuristics
 h1 = the number of misplaced tiles

 h1(s)=8
 h2 = the sum of the axis-parallel distances of the tiles from

their goal positions (manhattan distance).
 h2(s)=3+1+2+2+2+3+3+2=18

Dominance
 IF h2(n) ≥ h1(n) for all n (both admissible)
 THEN h2 dominates h1

 h2 is always better for search than h1
 h2 guarantees to expand no more nodes than does h1
 h2 almost always expands fewer nodes than does h1

 Typical 8-puzzle search costs
 (average number of nodes expanded):

 d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

 d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

Heuristic for “Go to Bucharest” that dominates SLD

• Array A[i,j] = straight-line distance (SLD) from city i to city j; B = Bucharest;
• s(n) = successors of n;
• c(m,n) = {if (n in s(m)) then (one-step road distance m to n) else +infinity};
• s_k(n) = all descendants of n accessible from n in exactly k steps;
• S_k(n) = all descendants of n accessible from n in k steps or less;
• C_k(m,n)
 = {if (n in S_k(m)) then (shortest road distance m to n in k steps or less)
 else +infinity};
• s, c, are computable in O(b); s_k, S_k, C_k, are computable in O(b^k).

• These heuristics both dominate SLD, and h2 dominates h1:

– h1(n) = min_{x in Romania} (A[n,x] + A[x,B])
– h2(n) = min_{x in s(n)} (c(n,x) + A[x,B])

• This family of heuristics all dominate SLD, and i>j => h_i dominates h_ j:
– h_k(n) = min((min_{x in (S_k(n) ∩ S_k(B))} C_k(n,x)+C_k(x,B))),
 (min_{x in s_k(n), y in s_k(B)} (C_k(n,x) + A[x,y] + C_k(y,B)))

• h_final(n) = same as bidirectional search; => exponential cost

Effective branching factor: b*

 Let A* generate N nodes to find a goal at depth d
 b* is the branching factor that a uniform tree of depth d would have in

order to contain N+1 nodes.

 For sufficiently hard problems, the measure b* usually is fairly constant
across different problem instances.

 A good guide to the heuristic’s overall usefulness.
 A good way to compare different heuristics.

dd

d

d

NbbN

bbN
bbbN

≈⇒≈

−−=+

++++=+
+

**)(

)1*/()1*)((1
)(...)(*11

1

2

Effective Branching Factor
Pseudo-code (Binary search)

 PROCEDURE EFFBRANCH (START, END, N, D, DELTA)
 COMMENT DELTA IS A SMALL POSITIVE NUMBER FOR ACCURACY OF RESULT.
 MID := (START + END) / 2.
 IF (END - START < DELTA)
 THEN RETURN (MID).
 TEST := EFFPOLY (MID, D).
 IF (TEST < N+1)
 THEN RETURN (EFFBRANCH (MID, END, N, D, DELTA))
 ELSE RETURN (EFFBRANCH (START, MID, N, D, DELTA)).
END EFFBRANCH.

PROCEDURE EFFPOLY (B, D)
 ANSWER = 1.
 TEMP = 1.
 FOR I FROM 1 TO (D-1) DO
 TEMP := TEMP * B.
 ANSWER := ANSWER + TEMP.
 ENDDO.
 RETURN (ANSWER).
END EFFPOLY.

 For binary search please see: http://en.wikipedia.org/wiki/Binary_search_algorithm
 An attractive alternative is to use Newton’s Method (next lecture) to solve for the root (i.e., f(b)=0) of

 f(b) = 1 + b + ... + b^d - (N+1)

http://en.wikipedia.org/wiki/Binary_search_algorithm

Effectiveness of different
heuristics

 Results averaged over random instances
of the 8-puzzle

Inventing heuristics via
“relaxed problems”
 A problem with fewer restrictions on the actions is called a relaxed

problem

 The cost of an optimal solution to a relaxed problem is an admissible
heuristic for the original problem

 If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

 If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

 Can be a useful way to generate heuristics
 E.g., ABSOLVER (Prieditis, 1993) discovered the first useful heuristic for the

Rubik’s cube puzzle

More on heuristics
 h(n) = max{ h1(n), h2(n), …, hk(n) }

 Assume all h functions are admissible
 E.g., h1(n) = # of misplaced tiles
 E.g., h2(n) = manhattan distance, etc.
 max chooses least optimistic heuristic (most accurate) at each node

 h(n) = w1 h1 (n) + w2 h2(n) + … + wk hk(n)
 A convex combination of features

 Weighted sum of h(n)’s, where weights sum to 1

 Weights learned via repeated puzzle-solving
 Try to identify which features are predictive of path cost

Summary
 Uninformed search methods have uses, also severe limitations
 Heuristics are a structured way to add “smarts” to your search

 Informed (or heuristic) search uses problem-specific heuristics

to improve efficiency
 Best-first, A* (and if needed for memory limits, RBFS, SMA*)
 Techniques for generating heuristics
 A* is optimal with admissible (tree)/consistent (graph) heuristics

 Can provide significant speed-ups in practice

 E.g., on 8-puzzle, speed-up is dramatic
 Still have worst-case exponential time complexity
 In AI, “NP-Complete” means “Formally interesting”

 Next lecture topic: local search techniques

 Hill-climbing, genetic algorithms, simulated annealing, etc.
 Read Chapter 4 in advance of lecture, and again after lecture

	Informed search algorithms�
	Outline
	Limitations of uninformed search
	Recall tree search…
	Recall tree search…
	Heuristic search
	Heuristic function
	Heuristic functions for 8-puzzle
	Romania with straight-line dist.
	Relationship of Search Algorithms
	Greedy best-first search�(often called just “best-first”)
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Optimal Path
	Properties of greedy best-first search
	A* search
	Admissible heuristics
	Admissible heuristics
	Admissible heuristics
	Consistent heuristics�(consistent => admissible)
	Admissible (Tree Search) �vs.�Consistent (Graph Search)
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	A* search example
	A* search example:�Simulated queue. City/h/g/f
	Contours of A* Search
	Properties of A*
	Optimality of A* (proof)
	Memory Bounded Heuristic Search: Recursive Best First Search (RBFS)
	RBFS:
	Simple Memory Bounded A* (SMA*)
	SMA* pseudocode (not in 2nd edition of R&N)
	Simple Memory-bounded A* (SMA*)
	Memory Bounded A* Search
	Heuristic functions
	Dominance
	Heuristic for “Go to Bucharest” that dominates SLD
	Effective branching factor: b*
	Effective Branching Factor�Pseudo-code (Binary search)
	Effectiveness of different heuristics
	Inventing heuristics via “relaxed problems”
	More on heuristics
	Summary

