
Propositional Logic: 
Methods of Proof (Part II) 

This lecture topic: 
Propositional Logic (two lectures) 

Chapter 7.1-7.4 (previous lecture, Part I) 
Chapter 7.5 (this lecture, Part II) 

(optional: 7.6-7.8) 
 

Next lecture topic: 
First-order logic (two lectures) 

Chapter 8 
(Please read lecture topic material before and after each lecture on that topic) 

 



Outline 

• Basic definitions 
– Inference, derive, sound, complete 

• Application of inference rules 
– Resolution 
– Horn clauses 
– Forward & Backward chaining 

• Model Checking 
– Complete backtracking search algorithms 

• E.g., DPLL  algorithm 

– Incomplete local search algorithms 
• E.g., WalkSAT algorithm 

 
 



You will be expected to know 

• Basic definitions 
• Conjunctive Normal Form (CNF) 

– Convert a Boolean formula to CNF 

• Do a short resolution proof 
• Do a short forward-chaining proof 
• Do a short backward-chaining proof 
• Model checking with backtracking search 
• Model checking with local search 



Inference in Formal Symbol Systems: 
Ontology, Representation, Inference 

• Formal Symbol Systems 
– Symbols correspond to things/ideas in the world 
– Pattern matching & rewrite corresponds to inference 

 
• Ontology: What exists in the world? 

– What must be represented? 
• Representation: Syntax vs. Semantics 

– What’s Said vs. What’s Meant 
• Inference: Schema vs. Mechanism 

– Proof Steps vs. Search Strategy 
 



Ontology: 
What kind of things exist in the world? 
What do we need to describe and reason about? 

Reasoning 

Representation 
------------------- 
A Formal 
Symbol System 

Inference 
--------------------- 
Formal Pattern 
Matching 

Syntax 
--------- 
What is 
said 

Semantics 
------------- 
What it 
means 

Schema 
------------- 
Rules of 
Inference 

Execution 
------------- 
Search 
Strategy 

Preceding lecture This lecture 



Review 
• Definitions: 

– Syntax, Semantics, Sentences, Propositions, Entails, Follows, 
Derives, Inference, Sound, Complete, Model, Satisfiable, 
Valid (or Tautology) 

• Syntactic Transformations: 
– E.g., (A ⇒ B) ⇔ (¬A ∨ B) 

• Semantic Transformations: 
– E.g., (KB |= α) ≡ (|= (KB ⇒ α) 

• Truth Tables 
– Negation, Conjunction, Disjunction, Implication, 

Equivalence (Biconditional) 
– Inference by Model Enumeration 



Review: Schematic perspective 

If KB is true in the real world, 
then any sentence α entailed by KB 
is also true in the  real world.  



So --- how do we keep it from 
“Just making things up.” ? 

“Einstein Simplified: 
Cartoons on Science” 
by Sydney Harris, 1992, 
Rutgers University Press 

How can we make correct inferences? 
How can we avoid incorrect inferences? 

Is this inference correct? 
 
How do you know? 
How can you tell? 



Schematic perspective 

If KB is true in the real world, 
then any sentence α derived from KB 
       by a sound inference procedure 
is also true in the  real world.  

Sentences Sentence 
Derives 

Inference 



Logical inference 
• The notion of entailment can be used for logic inference. 

– Model checking (see wumpus example): 
 enumerate all possible models and check whether α  is true. 

 
• Sound (or truth preserving): 
 The algorithm only derives entailed sentences. 

– Otherwise it just makes things up. 
i is sound iff whenever KB |-i α it is also true that KB|= α 

– E.g., model-checking is sound 
  

• Complete: 
 The algorithm can derive every entailed sentence. 
  i is complete iff whenever KB |= α it is also true that KB|-i α 
 
       

 



Proof methods 
• Proof methods divide into (roughly) two kinds: 

 
Application of inference rules: 
Legitimate (sound) generation of new sentences from old. 
– Resolution 
– Forward & Backward chaining  

 
 

Model checking 
Searching through truth assignments. 

• Improved backtracking: Davis--Putnam-Logemann-Loveland (DPLL) 
• Heuristic search in model space: Walksat. 
   



Conjunctive Normal Form 

We first rewrite                  into conjunctive normal form (CNF).   

|
:

KB
equivalent to KB unsatifiable

α
α

=

∧ ¬
We’d like to prove: 

KB α∧ ¬

A “conjunction of disjunctions” 

(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D) 

Clause Clause 

literals 

• Any KB can be converted into CNF. 
• In fact, any KB can be converted into CNF-3 using clauses with at most 3 literals. 



Example: Conversion to CNF 
B1,1  ⇔ (P1,2 ∨ P2,1) 
 
1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α). 

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) 
 

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β. 
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1) 

 

3. Move ¬ inwards using de Morgan's rules and double-
negation: 
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1) 

 

4. Apply distributive law (∧ over ∨) and flatten: 
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) 

( )α β α β¬ ∨ = ¬ ∧ ¬



Example: Conversion to CNF 
B1,1  ⇔ (P1,2 ∨ P2,1) 
 
5. KB is the conjunction of all of its sentences (all are true), 
 so write each clause (disjunct) as a sentence in KB: 
 
 … 

(¬B1,1 ∨ P1,2 ∨ P2,1)  
 (¬P1,2 ∨ B1,1)  
 (¬P2,1 ∨ B1,1) 
… 
 



Resolution 
 

• Resolution: inference rule for CNF: sound and complete! * 
( )
( )

( )

A B C
A

B C

∨ ∨

¬
− − − − − − − − − − − −

∴ ∨

“If A or B or C is true, but not A, then B or C must be true.” 

( )
( )

( )

A B C
A D E

B C D E

∨ ∨

¬ ∨ ∨
− − − − − − − − − − −

∴ ∨ ∨ ∨

“If A is false then B or C must be true, or if A is true 
then D or E must be true, hence since A is either true or  
false, B or C or D or E must be true.”  

( )
( )

( )

A B
A B

B B B

∨

¬ ∨
− − − − − − − −

∴ ∨ ≡

Simplification 

* Resolution is “refutation complete” 
in that it can prove the truth of any 
entailed sentence by refutation. 



Review:  Resolution as Efficient 
Implication 

(OR    A  B  C  D) 
(OR  ¬A  E  F  G) 
----------------------------- 
(OR  B  C  D  E  F  G) 

(NOT (OR  B  C  D))  =>  A 
A  =>  (OR  E  F  G) 
---------------------------------------------------- 
(NOT (OR  B  C  D))  => (OR  E  F  G) 
---------------------------------------------------- 
(OR  B  C  D  E  F  G) 

->Same -> 
->Same -> 



•  The resolution algorithm tries to prove: 
 
 

•  Generate all new sentences from KB and the (negated) query. 
•  One of two things can happen: 

 
1. We find                         which is unsatisfiable. I.e. we can entail the query. 

 
2. We find no contradiction: there is a model that satisfies the sentence 
                        (non-trivial) and hence we cannot entail the query. 

Resolution Algorithm 

|KB equivalent to
KB unsatisfiable

α
α

=

∧ ¬

P P∧ ¬

KB α∧ ¬



Resolution example 

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1  

• α = ¬P1,2 
KB α∧ ¬

False in 
all worlds 

True! 

¬P2,1 



Try it Yourselves 

• 7.9 page 238: (Adapted from Barwise and 
Etchemendy (1993).) If the unicorn is 
mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the 
unicorn is either immortal or a mammal, 
then it is horned. The unicorn is magical if 
it is horned. 
 

• Derive the KB in normal form. 
• Prove: Horned, Prove: Magical. 



Exposes useful constraints 

• “You can’t learn what you can’t represent.” --- G. Sussman 
 
• In logic: If the unicorn is mythical, then it is immortal, but if it 

is not mythical, then it is a mortal mammal. If the unicorn is 
either immortal or a mammal, then it is horned. The unicorn is 
magical if it is horned. 
 Prove that the unicorn is both magical and horned. 

• A good representation makes this problem easy: 
 
 

 ( ¬ Y ˅ ¬ R ) ^ ( Y ˅ R ) ^ ( Y ˅ M ) ^ ( R ˅ H ) ^ ( ¬ M ˅ H ) ^ ( ¬ H ˅ G ) 
 

• Problem #11, Mid-term Exam, WQ’2012 
•Resolution proof that the unicorn is magical. 

 
1010 
1111 
0001 
0101 

 
 



Horn Clauses 

• Resolution can be exponential in space and time. 
 
• If we can reduce all clauses to “Horn clauses” resolution is linear in space and time 

A clause with at most 1 positive literal. 
e.g.  
• Every Horn clause can be rewritten as an implication with 
  a conjunction of positive literals in the premises and a single 
  positive literal as a conclusion. 
e.g. 
• 1 positive literal: definite clause 
• 0 positive literals: integrity constraint: 
•   e.g.   
• 0 negative literals: fact 
• Forward Chaining and Backward chaining are sound and complete 
  with Horn clauses and run linear in space and time. 

A B C∨ ¬ ∨ ¬

B C A∧ ⇒

( ) ( )A B A B False¬ ∨ ¬ ≡ ∧ ⇒



Forward chaining (FC) 

• Forward chaining is sound and complete for Horn KB 

AND gate 

OR gate 

• Idea: fire any rule whose premises are satisfied in the KB, add its 
conclusion to the KB, until query is found. 
 

• This proves that                 is true in all possible worlds (i.e. trivial), 
      and hence it proves entailment. 

 

KB ⇒ Q



Forward chaining example 

“AND” gate 

“OR” Gate 



Forward chaining example 



Forward chaining example 



Forward chaining example 



Forward chaining example 



Forward chaining example 



Forward chaining example 



Backward chaining (BC) 
Idea: work backwards from the query q 

• check if q is known already, or 
• prove by BC all premises of some rule concluding q 
• Hence BC maintains a stack of sub-goals that need to be 

proved to get to q. 
 

Avoid loops: check if new sub-goal is already on the goal 
stack 

 
Avoid repeated work: check if new sub-goal 

1. has already been proved true, or 
2. has already failed 



Backward chaining example 



Backward chaining example 



Backward chaining example 



Backward chaining example 

we need P to prove 
L and L to prove P. 



Backward chaining example 

As soon as you can move 
forward, do so.  



Backward chaining example 



Backward chaining example 



Backward chaining example 



Backward chaining example 



Backward chaining example 



Forward vs. backward chaining 
• FC is data-driven, automatic, unconscious processing, 

– e.g., object recognition, routine decisions 
 

• May do lots of work that is irrelevant to the goal  
 

• BC is goal-driven, appropriate for problem-solving, 
– e.g., Where are my keys? How do I get into a PhD program? 

 

• Complexity of BC can be much less than linear in size of 
KB 



Model Checking 
Two families of efficient algorithms: 
 
• Complete backtracking search algorithms: 

– E.g., DPLL  algorithm 

 
• Incomplete local search algorithms 

– E.g., WalkSAT algorithm 



The DPLL algorithm 
Determine if an input propositional logic sentence (in CNF) is 
satisfiable. This is just backtracking search for a CSP. 

 
Improvements: 

1. Early termination 
A clause is true if any literal is true. 
A sentence is false if any clause is false. 

 
2. Pure symbol heuristic 

Pure symbol: always appears with the same "sign" in all clauses.  
e.g., In the three clauses (A ∨ ¬B), (¬B ∨  ¬C), (C ∨ A), A and B are pure, C is 

impure.  
Make a pure symbol literal true. (if there is a model for S, then making a pure 

symbol true is also a model). 
 

3      Unit clause heuristic 
Unit clause: only one literal in the clause 
The only literal in a unit clause must be true. 
 
Note: literals can become a pure symbol or a  
unit clause when other literals obtain truth values.  e.g.                               

( ) ( )A True A B
A pure

∨ ∧ ¬ ∨
=



The WalkSAT algorithm 
• Incomplete, local search algorithm 

 
• Evaluation function: The min-conflict heuristic of 

minimizing the number of unsatisfied clauses 
 

• Balance between greediness and randomness 



Hard satisfiability problems 

• Consider random 3-CNF sentences. e.g., 
 (¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨  

¬B ∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C) 
 

m = number of clauses (5)  
n = number of symbols (5) 

 

– Hard problems seem to cluster near m/n = 4.3 
(critical point) 



Hard satisfiability problems 



Hard satisfiability problems 

• Median runtime for 100 satisfiable random 3-
CNF sentences, n = 50 



Common Sense Reasoning 
Example, adapted from Lenat 

You are told:  John drove to the grocery store and bought a pound of 
noodles, a pound of ground beef, and two pounds of tomatoes. 
 

• Is John 3 years old? 
• Is John a child? 
• What will John do with the purchases? 
• Did John have any money? 
• Does John have less money after going to the store? 
• Did John buy at least two tomatoes? 
• Were the tomatoes made in the supermarket? 
• Did John buy any meat? 
• Is John a vegetarian? 
• Will the tomatoes fit in John’s car? 

 
• Can Propositional Logic support these inferences? 



Summary 
• Logical agents apply inference to a knowledge base to derive new 

information and make decisions 
 

• Basic concepts of logic: 
– syntax: formal structure of sentences 
– semantics: truth of sentences wrt models 
– entailment: necessary truth of one sentence given another 
– inference: deriving sentences from other sentences 
– soundness: derivations produce only entailed sentences 
– completeness: derivations can produce all entailed sentences 

 
• Resolution is complete for propositional logic. 

Forward and backward chaining are linear-time, complete for Horn 
clauses 
 

• Propositional logic lacks expressive power 
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