Propositional Logic: Methods of Proof (Part II)

This lecture topic:
Propositional Logic (two lectures)
Chapter 7.1-7.4 (previous lecture, Part I)
Chapter 7.5 (this lecture, Part II)
(optional: 7.6-7.8)

Next lecture topic:
First-order logic (two lectures)
Chapter 8
(Please read lecture topic material before and after each lecture on that topic)
Outline

• Basic definitions
 – Inference, derive, sound, complete

• Application of inference rules
 – Resolution
 – Horn clauses
 – Forward & Backward chaining

• Model Checking
 – Complete backtracking search algorithms
 • E.g., DPLL algorithm
 – Incomplete local search algorithms
 • E.g., WalkSAT algorithm
You will be expected to know

• Basic definitions
• Conjunctive Normal Form (CNF)
 – Convert a Boolean formula to CNF
• Do a short resolution proof
• Do a short forward-chaining proof
• Do a short backward-chaining proof
• Model checking with backtracking search
• Model checking with local search
Inference in Formal Symbol Systems: Ontology, Representation, Inference

• **Formal Symbol Systems**
 – **Symbols** correspond to **things/ideas** in the world
 – **Pattern matching & rewrite** corresponds to **inference**

• **Ontology:** What exists in the world?
 – What must be represented?

• **Representation:** Syntax vs. Semantics
 – What’s Said vs. What’s Meant

• **Inference:** Schema vs. Mechanism
 – Proof Steps vs. Search Strategy
Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?
Review

• Definitions:
 – Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology)

• Syntactic Transformations:
 – E.g., \((A \Rightarrow B) \iff (\neg A \lor B)\)

• Semantic Transformations:
 – E.g., \((KB \models \alpha) \equiv (\models (KB \Rightarrow \alpha))\)

• Truth Tables
 – Negation, Conjunction, Disjunction, Implication, Equivalence (Biconditional)
 – Inference by Model Enumeration
If KB is true in the real world,
then any sentence α entailed by KB
is also true in the real world.
So --- how do we keep it from “Just making things up.”?

Is this inference correct?
How do you know?
How can you tell?

All cats have four legs.
I have four legs.
Therefore, I am a cat.

How can we make correct inferences?
How can we avoid incorrect inferences?

“Einstein Simplified: Cartoons on Science” by Sydney Harris, 1992, Rutgers University Press
If KB is true in the real world, then any sentence \(\alpha \) derived from KB by a sound inference procedure is also true in the real world.
Logical inference

• The notion of entailment can be used for logic inference.
 – Model checking (see wumpus example):
 enumerate all possible models and check whether α is true.

• **Sound** (or truth preserving):
 The algorithm **only** derives entailed sentences.
 – Otherwise it just makes things up.

 i is sound iff whenever $KB \models_i \alpha$ it is also true that $KB \models \alpha$
 – E.g., model-checking is sound

• **Complete**:
 The algorithm can derive **every** entailed sentence.

 i is complete iff whenever $KB \models \alpha$ it is also true that $KB \models \neg_i \alpha$
Proof methods

- Proof methods divide into (roughly) two kinds:

 Application of inference rules:
 Legitimate (sound) generation of new sentences from old.
 - Resolution
 - Forward & Backward chaining

 Model checking
 Searching through truth assignments.
 - Improved backtracking: Davis--Putnam-Logemann-Loveland (DPLL)
 - Heuristic search in model space: Walksat.
Conjunctive Normal Form

We’d like to prove: \(KB \models \alpha \)

equivalent to: \(KB \land \neg \alpha \) unsatisfiable

We first rewrite \(KB \land \neg \alpha \) into conjunctive normal form (CNF).

A “conjunction of disjunctions”

\[(A \lor \neg B) \land (B \lor \neg C \lor \neg D)\]

- Any KB can be converted into CNF.
- In fact, any KB can be converted into CNF-3 using clauses with at most 3 literals.
Example: Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha) \).
 \[(B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1}) \]

2. Eliminate \(\implies \), replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).
 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \]

3. Move \(\neg \) inwards using de Morgan's rules and double-negation:
 \[\neg (\alpha \lor \beta) = \neg \alpha \land \neg \beta \]
 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}) \]

4. Apply distributive law (\(\land \) over \(\lor \)) and flatten:
 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \]
Example: Conversion to CNF

\(B_{1,1} \iff (P_{1,2} \lor P_{2,1})\)

5. KB is the conjunction of all of its sentences (all are true), so write each clause (disjunct) as a sentence in KB:

\[
\ldots \\
(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \\
(\neg P_{1,2} \lor B_{1,1}) \\
(\neg P_{2,1} \lor B_{1,1}) \\
\ldots
\]
Resolution

- Resolution: inference rule for CNF: sound and complete!

$(A \lor B \lor C)$
$(\neg A)$

$\therefore (B \lor C)$

“If A or B or C is true, but not A, then B or C must be true.”

$(A \lor B \lor C)$
$(\neg A \lor D \lor E)$

$\therefore (B \lor C \lor D \lor E)$

“If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true.”

$(A \lor B)$
$(\neg A \lor B)$

$\therefore (B \lor B) \equiv B$

Simplification

* Resolution is “refutation complete” in that it can prove the truth of any entailed sentence by refutation.
Review: Resolution as Efficient Implication

\[(\text{OR } A \ B \ C \ D) \rightarrow \text{Same } \rightarrow \ (\text{NOT } (\text{OR } B \ C \ D)) \Rightarrow A\]

\[(\text{OR } \neg A \ E \ F \ G) \rightarrow \text{Same } \rightarrow \ A \Rightarrow (\text{OR } E \ F \ G)\]

\[\text{---}\]

\[(\text{OR } B \ C \ D \ E \ F \ G)\]

\[\text{---}\]

\[(\text{NOT } (\text{OR } B \ C \ D)) \Rightarrow (\text{OR } E \ F \ G)\]

\[\text{---}\]

\[(\text{OR } B \ C \ D \ E \ F \ G)\]
Resolution Algorithm

- The resolution algorithm tries to prove: \(KB \models \alpha \) equivalent to \(KB \land \neg \alpha \) unsatisfiable

- Generate all new sentences from KB and the (negated) query.
- One of two things can happen:

1. We find \(P \land \neg P \) which is unsatisfiable. I.e. we can entail the query.

2. We find no contradiction: there is a model that satisfies the sentence \(KB \land \neg \alpha \) (non-trivial) and hence we cannot entail the query.
Resolution example

- $KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
- $\alpha = \neg P_{1,2}$

$KB \land \neg \alpha$

$\neg P_{2,1} \lor B_{1,1}$

$\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}$

$\neg P_{1,2} \lor B_{1,1}$

$\neg B_{1,1}$

$P_{1,2}$

$\neg B_{1,1} \lor P_{1,2} \lor B_{1,1}$

$P_{2,1} \lor P_{2,1} \lor \neg P_{2,1}$

$\neg P_{2,1}$

$\neg P_{1,2}$

True!

False in all worlds
Try it Yourselves

7.9 page 238: (Adapted from Barwise and Etchemendy (1993).) If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

• Derive the KB in normal form.
• Prove: Horned, Prove: Magical.
Exposes useful constraints

- “You can’t learn what you can’t represent.” --- G. Sussman

- **In logic:** *If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.*

 Prove that the unicorn is both magical and horned.

- A good representation makes this problem easy:

 \[(\neg Y \lor \neg R) \land (Y \lor R) \land (Y \lor M) \land (R \lor H) \land (\neg M \lor H) \land (\neg H \lor G)\]

- Problem #11, Mid-term Exam, WQ’2012
 - Resolution proof that the unicorn is magical.
Horn Clauses

• Resolution can be exponential in space and time.

• If we can reduce all clauses to “Horn clauses” resolution is linear in space and time.

A clause with at most 1 positive literal.

e.g. \(A \lor \lnot B \lor \lnot C \)

• Every Horn clause can be rewritten as an implication with a conjunction of positive literals in the premises and a single positive literal as a conclusion.

e.g. \(B \land C \Rightarrow A \)

• 1 positive literal: definite clause
• 0 positive literals: integrity constraint:
 • e.g. \((\lnot A \lor \lnot B) \equiv (A \land B \Rightarrow False)\)
• 0 negative literals: fact
• Forward Chaining and Backward chaining are sound and complete with Horn clauses and run linear in space and time.
Forward chaining (FC)

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.

- This proves that $KB \Rightarrow Q$ is true in all possible worlds (i.e. trivial), and hence it proves entailment.

- Forward chaining is sound and complete for Horn KB
Forward chaining example
Backward chaining (BC)

Idea: work backwards from the query q
- check if q is known already, or
- prove by BC all premises of some rule concluding q
- Hence BC maintains a stack of sub-goals that need to be proved to get to q.

Avoid loops: check if new sub-goal is already on the goal stack

Avoid repeated work: check if new sub-goal
1. has already been proved true, or
2. has already failed
Backward chaining example
Backward chaining example
Backward chaining example
Backward chaining example

we need P to prove L and L to prove P.
Backward chaining example

As soon as you can move forward, do so.
Backward chaining example
Forward vs. backward chaining

- FC is **data-driven**, automatic, unconscious processing,
 - e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- BC is **goal-driven**, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be **much less** than linear in size of KB
Model Checking

Two families of efficient algorithms:

• Complete backtracking search algorithms:
 – E.g., DPLL algorithm

• Incomplete local search algorithms
 – E.g., WalkSAT algorithm
The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable. This is just backtracking search for a CSP.

Improvements:

1. Early termination
 A clause is true if any literal is true.
 A sentence is false if any clause is false.

2. Pure symbol heuristic
 Pure symbol: always appears with the same "sign" in all clauses.
 e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure, C is impure.
 Make a pure symbol literal true. (if there is a model for S, then making a pure symbol true is also a model).

3. Unit clause heuristic
 Unit clause: only one literal in the clause
 The only literal in a unit clause must be true.

Note: literals can become a pure symbol or a unit clause when other literals obtain truth values. e.g.
The WalkSAT algorithm

• Incomplete, local search algorithm

• Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses

• Balance between greediness and randomness

Walksat Procedure

Start with random initial assignment.
Pick a random unsatisfied clause.
Select and flip a variable from that clause:
 - With probability p, pick a random variable.
 - With probability $1-p$, pick greedily a variable that minimizes the number of unsatisfied clauses
Repeat to predefined maximum number flips; if no solution found, restart.
Hard satisfiability problems

• Consider *random* 3-CNF sentences. e.g.,

\[(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)\]

\[m = \text{number of clauses (5)}\]
\[n = \text{number of symbols (5)}\]

– Hard problems seem to cluster near \(m/n = 4.3\) (critical point)
Hard satisfiability problems
Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n = 50$
Common Sense Reasoning
Example, adapted from Lenat

You are told: John drove to the grocery store and bought a pound of noodles, a pound of ground beef, and two pounds of tomatoes.

- Is John 3 years old?
- Is John a child?
- What will John do with the purchases?
- Did John have any money?
- Does John have less money after going to the store?
- Did John buy at least two tomatoes?
- Were the tomatoes made in the supermarket?
- Did John buy any meat?
- Is John a vegetarian?
- Will the tomatoes fit in John’s car?

- Can Propositional Logic support these inferences?
Summary

• Logical agents apply inference to a knowledge base to derive new information and make decisions

• Basic concepts of logic:
 – syntax: formal structure of sentences
 – semantics: truth of sentences wrt models
 – entailment: necessary truth of one sentence given another
 – inference: deriving sentences from other sentences
 – soundness: derivations produce only entailed sentences
 – completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic. Forward and backward chaining are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power