
First-Order Logic
Syntax

Reading: Chapter 8, 9.1-9.2, 9.5.1-9.5.5

FOL Syntax and Semantics read: 8.1-8.2
FOL Knowledge Engineering read: 8.3-8.5

FOL Inference read: Chapter 9.1-9.2, 9.5.1-9.5.5

(Please read lecture topic material before and after each
lecture on that topic)

Common Sense Reasoning
Example, adapted from Lenat

You are told: John drove to the grocery store and bought a
pound of noodles, a pound of ground beef, and two pounds
of tomatoes.

• Is John 3 years old?
• Is John a child?
• What will John do with the purchases?
• Did John have any money?
• Does John have less money after going to the store?
• Did John buy at least two tomatoes?
• Were the tomatoes made in the supermarket?
• Did John buy any meat?
• Is John a vegetarian?
• Will the tomatoes fit in John’s car?

• Can Propositional Logic support these inferences?

Outline for First-Order Logic (FOL, also called FOPC)

• Propositional Logic is Useful --- but has Limited Expressive Power

• First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
– FOPC has greatly expanded expressive power, though still limited.

• New Ontology

– The world consists of OBJECTS (for propositional logic, the world was facts).
– OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS.

• New Syntax

– Constants, Predicates, Functions, Properties, Quantifiers.

• New Semantics
– Meaning of new syntax.

• Knowledge engineering in FOL

• Unification Inference in FOL

FOL Syntax: You will be expected to know

• FOPC syntax
– Syntax: Sentences, predicate symbols, function symbols, constant

symbols, variables, quantifiers
• De Morgan’s rules for quantifiers

– connections between ∀ and ∃
• Nested quantifiers

– Difference between “∀ x ∃ y P(x, y)” and “∃ x ∀ y P(x, y)”
– ∀ x ∃ y Likes(x, y) --- “Everybody likes somebody.”
– ∃ x ∀ y Likes(x, y) --- “Somebody likes everybody.”

• Translate simple English sentences to FOPC and back
– ∀ x ∃ y Likes(x, y) ⇔ “Everyone has someone that they like.”
– ∃ x ∀ y Likes(x, y) ⇔ “There is someone who likes every person.”

Pros and cons of propositional logic

 Propositional logic is declarative
- Knowledge and inference are separate

 Propositional logic allows partial/disjunctive/negated information

– unlike most programming languages and databases

 Propositional logic is compositional:
– meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

 Meaning in propositional logic is context-independent

– unlike natural language, where meaning depends on context

 Propositional logic has limited expressive power
– E.g., cannot say “Pits cause breezes in adjacent squares.“

• except by writing one sentence for each square
– Needs to refer to objects in the world,
– Needs to express general rules

First-Order Logic (FOL), also called
First-Order Predicate Calculus (FOPC)

• Propositional logic assumes the world contains facts.

• First-order logic (like natural language) assumes the world contains

– Objects: people, houses, numbers, colors, baseball games, wars, …
– Functions: father of, best friend, one more than, plus, …

• Function arguments are objects; function returns an object
– Objects generally correspond to English NOUNS

– Predicates/Relations/Properties: red, round, prime, brother of,

bigger than, part of, comes between, …
• Predicate arguments are objects; predicate returns a truth value

– Predicates generally correspond to English VERBS
• First argument is generally the subject, the second the object
• Hit(Bill, Ball) usually means “Bill hit the ball.”
• Likes(Bill, IceCream) usually means “Bill likes IceCream.”
• Verb(Noun1, Noun2) usually means “Noun1 verb noun2.”

Aside: First-Order Logic (FOL) vs. Second-Order Logic

• First Order Logic (FOL) allows variables and general rules
– “First order” because quantified variables represent objects.
– “Predicate Calculus” because it quantifies over predicates on objects.

• E.g., “Integral Calculus” quantifies over functions on numbers.
• Aside: Second Order logic

– “Second order” because quantified variables can also represent
predicates and functions.

• E.g., can define “Transitive Relation,” which is beyond FOPC.
• Aside: In FOL we can state that a relationship is transitive

– E.g., BrotherOf is a transitive relationship
– ∀ x, y, z BrotherOf(x,y) ∧ BrotherOf(y,z) => BrotherOf(x,z)

• Aside: In Second Order logic we can define “Transitive”
– ∀ P, x, y, z Transitive(P)  (P(x,y) ∧ P(y,z) => P(x,z))
– Then we can state directly, Transitive(BrotherOf)

FOL (or FOPC) Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?
Objects --- with their relations, functions, predicates, properties, and general rules.

Reasoning

Representation

A Formal
Symbol System

Inference

Formal Pattern
Matching

Syntax

What is
said

Semantics

What it
means

Schema

Rules of
Inference

Execution

Search
Strategy

Syntax of FOL: Basic elements

• Constants KingJohn, 2, UCI,...

• Predicates Brother, >,...

• Functions Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Quantifiers ∀, ∃

• Connectives ¬, ∧, ∨, ⇒, ⇔ (standard)

• Equality = (but causes difficulties….)

Syntax of FOL: Basic syntax elements are symbols

• Constant Symbols (correspond to English nouns)
– Stand for objects in the world.

• E.g., KingJohn, 2, UCI, ...

• Predicate Symbols (correspond to English verbs)

– Stand for relations (maps a tuple of objects to a truth-value)
• E.g., Brother(Richard, John), greater_than(3,2), ...

– P(x, y) is usually read as “x is P of y.”
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.”

• Function Symbols (correspond to English nouns)

– Stand for functions (maps a tuple of objects to an object)
• E.g., Sqrt(3), LeftLegOf(John), ...

• Model (world) = set of domain objects, relations, functions
• Interpretation maps symbols onto the model (world)

– Very many interpretations are possible for each KB and world!
– Job of the KB is to rule out models inconsistent with our knowledge.

Syntax : Relations, Predicates, Properties, Functions

• Mathematically, all the Relations, Predicates,
Properties, and Functions CAN BE represented
simply as sets of m-tuples of objects:

• Let W be the set of objects in the world.

• Let Wm = W x W x … (m times) … x W

– The set of all possible m-tuples of objects from the world

• An m-ary Relation is a subset of Wm.
– Example: Let W = {John, Sue, Bill}
– Then W2 = {<John, John>, <John, Sue>, …, <Sue, Sue>}
– E.g., MarriedTo = {<John, Sue>, <Sue, John>}
– E.g., FatherOf = {<John, Bill>}

• Analogous to a constraint in CSPs

– The constraint lists the m-tuples that satisfy it.
– The relation lists the m-tuples that participate in it.

Syntax : Relations, Predicates, Properties, Functions

• A Predicate is a list of m-tuples making the predicate true.
– E.g., PrimeFactorOf = {<2,4>, <2,6>, <3,6>, <2,8>, <3,9>, …}
– This is the same as an m-ary Relation.
– Predicates (and properties) generally correspond to English verbs.

• A Property lists the m-tuples that have the property.

– Formally, it is a predicate that is true of tuples having that property.
– E.g., IsRed = {<Ball-5>, <Toy-7>, <Car-11>, …}
– This is the same as an m-ary Relation.

• A Function CAN BE represented as an m-ary relation

– the first (m-1) objects are the arguments and the mth is the value.
– E.g., Square = {<1, 1>, <2, 4>, <3, 9>, <4, 16>, …}

• An Object CAN BE represented as a function of zero

arguments that returns the object.
– This is just a 1-ary relationship.

Syntax of FOL: Terms

• Term = logical expression that refers to an object

• There are two kinds of terms:

– Constant Symbols stand for (or name) objects:

• E.g., KingJohn, 2, UCI, Wumpus, ...

– Function Symbols map tuples of objects to an object:
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
• This is nothing but a complicated kind of name

– No “subroutine” call, no “return value”

Syntax of FOL: Atomic Sentences

• Atomic Sentences state facts (logical truth values).
– An atomic sentence is a Predicate symbol, optionally

followed by a parenthesized list of any argument terms
– E.g., Married(Father(Richard), Mother(John))
– An atomic sentence asserts that some relationship (some

predicate) holds among the objects that are its arguments.

• An Atomic Sentence is true in a given model if the
relation referred to by the predicate symbol holds among
the objects (terms) referred to by the arguments.

Syntax of FOL: Atomic Sentences

• Atomic sentences in logic state facts that are true or false.

• Properties and m-ary relations do just that:
 LargerThan(2, 3) is false.
 BrotherOf(Mary, Pete) is false.
 Married(Father(Richard), Mother(John)) could be true or false.
 Properties and m-ary relations are Predicates that are true or false.

• Note: Functions refer to objects, do not state facts, and form no sentence:

– Brother(Pete) refers to John (his brother) and is neither true nor false.
– Plus(2, 3) refers to the number 5 and is neither true nor false.

• BrotherOf(Pete, Brother(Pete)) is True.

Binary relation
is a truth value.

Function refers to John, an object in the
world, i.e., John is Pete’s brother.
(Works well iff John is Pete’s only brother.)

Syntax of FOL: Connectives & Complex Sentences

• Complex Sentences are formed in the same way,
and are formed using the same logical connectives,
as we already know from propositional logic

• The Logical Connectives:

– ⇔ biconditional
– ⇒ implication
– ∧ and
– ∨ or
– ¬ negation

• Semantics for these logical connectives are the same as

we already know from propositional logic.

Complex Sentences

• We make complex sentences with connectives (just like in
propositional logic).

((),) (())Brother LeftLeg Richard John Democrat Bush¬ ∨

binary
relation

function

property

objects

connectives

Examples

• Brother(Richard, John) ∧ Brother(John, Richard)

• King(Richard) ∨ King(John)

• King(John) => ¬ King(Richard)

• LessThan(Plus(1,2) ,4) ∧ GreaterThan(1,2)

(Semantics of complex sentences are the same as in propositional logic)

Syntax of FOL: Variables

• Variables range over objects in the world.

• A variable is like a term because it represents an object.

• A variable may be used wherever a term may be used.
– Variables may be arguments to functions and predicates.

• (A term with NO variables is called a ground term.)
• (A variable not bound by a quantifier is called free.)

Syntax of FOL: Logical Quantifiers

• There are two Logical Quantifiers:
– Universal: ∀ x P(x) means “For all x, P(x).”

• The “upside-down A” reminds you of “ALL.”
– Existential: ∃ x P(x) means “There exists x such that, P(x).”

• The “backward E” reminds you of “EXISTS.”

• Syntactic “sugar” --- we really only need one quantifier.
– ∀ x P(x) ≡ ¬∃ x ¬P(x)
– ∃ x P(x) ≡ ¬∀ x ¬P(x)
– You can ALWAYS convert one quantifier to the other.

• RULES: ∀ ≡ ¬∃¬ and ∃ ≡ ¬∀¬

• RULE: To move negation “in” across a quantifier,

change the quantifier to “the other quantifier”
and negate the predicate on “the other side.”

– ¬∀ x P(x) ≡ ∃ x ¬P(x)
– ¬∃ x P(x) ≡ ∀ x ¬P(x)

Universal Quantification ∀

• ∀ means “for all”

• Allows us to make statements about all objects that have certain
properties

• Can now state general rules:

∀ x King(x) => Person(x) “All kings are persons.”

∀ x Person(x) => HasHead(x) “Every person has a head.”

∀ i Integer(i) => Integer(plus(i,1)) “If i is an integer then i+1 is an integer.”

Note that
∀ x King(x) ∧ Person(x) is not correct!
This would imply that all objects x are Kings and are People

∀ x King(x) => Person(x) is the correct way to say this

Note that => is the natural connective to use with ∀ .

Universal Quantification ∀

• Universal quantification is equivalent to:
– Conjunction of all sentences obtained by substitution of an

object for the quantified variable.

• All Cats are Mammals.
– ∀x Cat(x) ⇒ Mammal(x)

• Conjunction of all sentences obtained by substitution of

an object for the quantified variable:
 Cat(Spot) ⇒ Mammal(Spot) ∧
 Cat(Rick) ⇒ Mammal(Rick) ∧
 Cat(LAX) ⇒ Mammal(LAX) ∧
 Cat(Shayama) ⇒ Mammal(Shayama) ∧
 Cat(France) ⇒ Mammal(France) ∧
 Cat(Felix) ⇒ Mammal(Felix) ∧
 …

Existential Quantification ∃

• ∃ x means “there exists an x such that….” (at least one object x)

• Allows us to make statements about some object without naming it

• Examples:

∃ x King(x) “Some object is a king.”

∃ x Lives_in(John, Castle(x)) “John lives in somebody’s castle.”

∃ i Integer(i) ∧ GreaterThan(i,0) “Some integer is greater than zero.”

Note that ∧ is the natural connective to use with ∃

(And note that => is the natural connective to use with ∀)

Existential Quantification ∃

• Existential quantification is equivalent to:
– Disjunction of all sentences obtained by substitution of an

object for the quantified variable.

• Spot has a sister who is a cat.
– ∃x Sister(x, Spot) ∧ Cat(x)

• Disjunction of all sentences obtained by substitution of

an object for the quantified variable:
 Sister(Spot, Spot) ∧ Cat(Spot) ∨
 Sister(Rick, Spot) ∧ Cat(Rick) ∨
 Sister(LAX, Spot) ∧ Cat(LAX) ∨
 Sister(Shayama, Spot) ∧ Cat(Shayama) ∨
 Sister(France, Spot) ∧ Cat(France) ∨
 Sister(Felix, Spot) ∧ Cat(Felix) ∨
 …

Combining Quantifiers --- Order (Scope)

The order of “unlike” quantifiers is important.
 Like nested variable scopes in a programming language
 Like nested ANDs and ORs in a logical sentence

∀ x ∃ y Loves(x,y)

– For everyone (“all x”) there is someone (“exists y”) whom they love.
– There might be a different y for each x (y is inside the scope of x)

∃ y ∀ x Loves(x,y)
– There is someone (“exists y”) whom everyone loves (“all x”).
– Every x loves the same y (x is inside the scope of y)

Clearer with parentheses: ∃ y (∀ x Loves(x,y))

The order of “like” quantifiers does not matter.
 Like nested ANDs and ANDs in a logical sentence
 ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y)
 ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y)

Connections between Quantifiers

• Asserting that all x have property P is the same as asserting
that does not exist any x that does not have the property P

 ∀ x Likes(x, CS-171 class)  ¬ ∃ x ¬ Likes(x, CS-171 class)

• Asserting that there exists an x with property P is the same as

asserting that not all x do not have the property P

 ∃ x Likes(x, IceCream)  ¬ ∀ x ¬ Likes(x, IceCream)

In effect:
 - ∀ is a conjunction over the universe of objects
 - ∃ is a disjunction over the universe of objects
 Thus, DeMorgan’s rules can be applied

De Morgan’s Law for Quantifiers

()
()
()
()

x P x P
x P x P

x P x P
x P x P

∀ ≡¬∃ ¬

∃ ≡¬∀ ¬

¬∀ ≡∃ ¬

¬∃ ≡∀ ¬

()
()

()
()

P Q P Q
P Q P Q

P Q P Q
P Q P Q

∧ ≡ ¬ ¬ ∨ ¬

∨ ≡ ¬ ¬ ∧ ¬

¬ ∧ ≡ ¬ ∨ ¬

¬ ∨ ≡ ¬ ∧ ¬

De Morgan’s Rule Generalized De Morgan’s Rule

Rule is simple: if you bring a negation inside a disjunction or a conjunction,
always switch between them (or and, and  or).

Aside: More syntactic sugar --- uniqueness

• ∃! x is “syntactic sugar” for “There exists a unique x”
– “There exists one and only one x”
– “There exists exactly one x”
– Sometimes ∃! is written as ∃1

• For example, ∃! x PresidentOfTheUSA(x)

– “There is exactly one PresidentOfTheUSA.”

• This is just syntactic sugar:
– ∃! x P(x) is the same as ∃ x P(x) ∧ (∀ y P(y) => (x = y))

Equality

• term1 = term2 is true under a given interpretation if and only if
term1 and term2 refer to the same object

• E.g., definition of Sibling in terms of Parent:

∀x,y Sibling(x,y) ⇔
 [¬(x = y) ∧
 ∃m,f ¬ (m = f) ∧ Parent(m,x) ∧ Parent(f,x)
 ∧ Parent(m,y) ∧ Parent(f,y)]

Equality can make reasoning much more difficult!
 (See R&N, section 9.5.5, page 353)
You may not know when two objects are equal.
 E.g., Ancients did not know (MorningStar = EveningStar = Venus)
You may have to prove x = y before proceeding
 E.g., a resolution prover may not know 2+1 is the same as 1+2

Syntactic Ambiguity

• FOPC provides many ways to represent the same thing.
• E.g., “Ball-5 is red.”

– HasColor(Ball-5, Red)
• Ball-5 and Red are objects related by HasColor.

– Red(Ball-5)
• Red is a unary predicate applied to the Ball-5 object.

– HasProperty(Ball-5, Color, Red)
• Ball-5, Color, and Red are objects related by HasProperty.

– ColorOf(Ball-5) = Red
• Ball-5 and Red are objects, and ColorOf() is a function.

– HasColor(Ball-5(), Red())
• Ball-5() and Red() are functions of zero arguments that both

return an object, which objects are related by HasColor.
– …

• This can GREATLY confuse a pattern-matching reasoner.

– Especially if multiple people collaborate to build the KB, and they
all have different representational conventions.

Syntactic Ambiguity --- Partial Solution

• FOL can be TOO expressive, can offer TOO MANY choices

• Likely confusion, especially for teams of Knowledge Engineers

• Different team members can make different representation
choices
– E.g., represent “Ball43 is Red.” as:

• a predicate (= verb)? E.g., “Red(Ball43)” ?
• an object (= noun)? E.g., “Red = Color(Ball43))” ?
• a property (= adjective)? E.g., “HasProperty(Ball43, Red)” ?

• PARTIAL SOLUTION:

– An upon-agreed ontology that settles these questions
– Ontology = what exists in the world & how it is represented
– The Knowledge Engineering teams agrees upon an ontology

BEFORE they begin encoding knowledge

Summary

• First-order logic:
– Much more expressive than propositional logic
– Allows objects and relations as semantic primitives
– Universal and existential quantifiers

• Syntax: constants, functions, predicates, equality, quantifiers

• Nested quantifiers

– Order of unlike quantifiers matters (the outer scopes the inner)
• Like nested ANDs and ORs

– Order of like quantifiers does not matter
• like nested ANDS and ANDs

• Translate simple English sentences to FOPC and back

	First-Order Logic�Syntax
	Common Sense Reasoning�Example, adapted from Lenat
	Outline for First-Order Logic (FOL, also called FOPC)
	FOL Syntax: You will be expected to know
	Pros and cons of propositional logic
	First-Order Logic (FOL), also called�First-Order Predicate Calculus (FOPC)
	Aside: First-Order Logic (FOL) vs. Second-Order Logic
	Slide Number 8
	Syntax of FOL: Basic elements
	Syntax of FOL: Basic syntax elements are symbols
	Syntax : Relations, Predicates, Properties, Functions
	Syntax : Relations, Predicates, Properties, Functions
	Syntax of FOL: Terms
	Syntax of FOL: Atomic Sentences
	Syntax of FOL: Atomic Sentences
	Syntax of FOL: Connectives & Complex Sentences
	Complex Sentences
	Examples
	Syntax of FOL: Variables
	Syntax of FOL: Logical Quantifiers
	Universal Quantification 
	Universal Quantification 
	Existential Quantification 
	Existential Quantification 
	Combining Quantifiers --- Order (Scope)
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Connections between Quantifiers
	De Morgan’s Law for Quantifiers
	Aside: More syntactic sugar --- uniqueness
	Equality
	Syntactic Ambiguity
	Syntactic Ambiguity --- Partial Solution
	Summary

