
Introduction to Machine Learning

Reading for today: R&N 18.1-18.4

Next lecture: R&N 18.6-18.12, 20.1-20.3.2

Outline

• The importance of a good representation
• Different types of learning problems
• Different types of learning algorithms
• Supervised learning

– Decision trees
– Naïve Bayes
– Perceptrons, Multi-layer Neural Networks
– Boosting

• Unsupervised Learning
– K-means

• Applications: learning to detect faces in images
• Reading for today’s lecture: Chapter 18.1 to 18.4 (inclusive)

You will be expected to know

 Understand Attributes, Error function, Classification,
 Regression, Hypothesis (Predictor function)

 What is Supervised Learning?

 Decision Tree Algorithm

 Entropy

 Information Gain

 Tradeoff between train and test with model complexity

 Cross validation

Complete architectures
for intelligence?

Search?
Solve the problem of what to do.

Learning?
Learn what to do.

Logic and inference?
Reason about what to do.
Encoded knowledge/”expert” systems?

Know what to do.
Modern view: It’s complex & multi-faceted.

Automated Learning

• Why is it useful for our agent to be able to learn?
– Learning is a key hallmark of intelligence
– The ability of an agent to take in real data and feedback and improve

performance over time
– Check out USC Autonomous Flying Vehicle Project!

• Types of learning
– Supervised learning

• Learning a mapping from a set of inputs to a target variable
– Classification: target variable is discrete (e.g., spam email)
– Regression: target variable is real-valued (e.g., stock market)

– Unsupervised learning
• No target variable provided

– Clustering: grouping data into K groups

– Other types of learning
• Reinforcement learning: e.g., game-playing agent
• Learning to rank, e.g., document ranking in Web search
• And many others….

The importance of a good representation

• Properties of a good representation:

• Reveals important features
• Hides irrelevant detail
• Exposes useful constraints
• Makes frequent operations easy-to-do
• Supports local inferences from local features

• Called the “soda straw” principle or “locality” principle
• Inference from features “through a soda straw”

• Rapidly or efficiently computable
• It’s nice to be fast

Reveals important features / Hides irrelevant detail

• “You can’t learn what you can’t represent.” --- G. Sussman

• In search: A man is traveling to market with a fox, a goose,

and a bag of oats. He comes to a river. The only way across
the river is a boat that can hold the man and exactly one of the
fox, goose or bag of oats. The fox will eat the goose if left alone
with it, and the goose will eat the oats if left alone with it.

• A good representation makes this problem easy:

1110
0010
1010
1111
0001
0101

0000 1101

1011

0100 1110

0010 1010 1111

0001

0101

Simple illustrative learning problem

Problem:
 decide whether to wait for a table at a restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Training Data for Supervised Learning

Terminology

• Attributes
– Also known as features, variables, independent variables,

covariates

• Target Variable
– Also known as goal predicate, dependent variable, …

• Classification
– Also known as discrimination, supervised classification, …

• Error function
– Objective function, loss function, …

Inductive learning

• Let x represent the input vector of attributes

• Let f(x) represent the value of the target variable for x

– The implicit mapping from x to f(x) is unknown to us
– We just have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f, i.e.,
 h(x; θ) is “close” to f(x) for all training data points x

 θ are the parameters of our predictor h(..)

• Examples:

– h(x; θ) = sign(w1x1 + w2x2+ w3)

– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4))

Empirical Error Functions

• Empirical error function:
 E(h) = Σx distance[h(x; θ) , f]

e.g., distance = squared error if h and f are real-valued (regression)
 distance = delta-function if h and f are categorical (classification)

Sum is over all training pairs in the training data D

In learning, we get to choose

 1. what class of functions h(..) that we want to learn
 – potentially a huge space! (“hypothesis space”)

 2. what error function/distance to use
 - should be chosen to reflect real “loss” in problem
 - but often chosen for mathematical/algorithmic convenience

Inductive Learning as Optimization or Search

• Empirical error function:
 E(h) = Σx distance[h(x; θ) , f]

• Empirical learning = finding h(x), or h(x; θ) that minimizes E(h)
– In simple problems there may be a closed form solution

• E.g., “normal equations” when h is a linear function of x, E = squared error

– If E(h) is differentiable as a function of q, then we have a continuous optimization problem
and can use gradient descent, etc

• E.g., multi-layer neural networks

– If E(h) is non-differentiable (e.g., classification), then we typically have a systematic search
problem through the space of functions h

• E.g., decision tree classifiers

• Once we decide on what the functional form of h is, and what the error function E
is, then machine learning typically reduces to a large search or optimization
problem

• Additional aspect: we really want to learn an h(..) that will generalize well to new

data, not just memorize training data – will return to this later

Our training data example (again)

• If all attributes were binary, h(..) could be any arbitrary Boolean function

• Natural error function E(h) to use is classification error, i.e., how many incorrect
predictions does a hypothesis h make

• Note an implicit assumption:
– For any set of attribute values there is a unique target value
– This in effect assumes a “no-noise” mapping from inputs to targets

• This is often not true in practice (e.g., in medicine). Will return to this later

Learning Boolean Functions

• Given examples of the function, can we learn the function?

• How many Boolean functions can be defined on d attributes?

– Boolean function = Truth table + column for target function (binary)
– Truth table has 2d rows
– So there are 2 to the power of 2d different Boolean functions we can define

(!)
– This is the size of our hypothesis space

– E.g., d = 6, there are 18.4 x 1018 possible Boolean functions

• Observations:

– Huge hypothesis spaces –> directly searching over all functions is impossible
– Given a small data (n pairs) our learning problem may be underconstrained

• Ockham’s razor: if multiple candidate functions all explain the data
equally well, pick the simplest explanation (least complex function)

• Constrain our search to classes of Boolean functions, e.g.,
– decision trees
– Weighted linear sums of inputs (e.g., perceptrons)

William of
Ockham
c. 1288-1347

Decision Tree Learning

Constrain h(..) to be a decision tree

Decision Tree Representations

Decision trees are fully expressive
can represent any Boolean function
Every path in the tree could represent 1 row in the truth table
Yields an exponentially large tree

Truth table is of size 2d, where d is the number of attributes

Decision Tree Representations

• Trees can be very inefficient for certain types of functions

– Parity function: 1 only if an even number of 1’s in the input vector
• Trees are very inefficient at representing such functions

– Majority function: 1 if more than ½ the inputs are 1’s
• Also inefficient

– Simple DNF formulae can be easily represented
• E.g., f = (A AND B) OR (NOT(A) AND D)
• DNF = disjunction of conjunctions

• Decision trees are in effect DNF representations

– often used in practice since they often result in compact approximate
representations for complex functions

– E.g., consider a truth table where most of the variables are irrelevant to the
function

Decision Tree Learning

• Find the smallest decision tree consistent with the n examples
– Unfortunately this is provably intractable to do optimally

• Greedy heuristic search used in practice:
– Select root node that is “best” in some sense
– Partition data into 2 subsets, depending on root attribute value
– Recursively grow subtrees
– Different termination criteria

• For noiseless data, if all examples at a node have the same label then
declare it a leaf and backup

• For noisy data it might not be possible to find a “pure” leaf using the
given attributes

– we’ll return to this later – but a simple approach is to have a
depth-bound on the tree (or go to max depth) and use majority
vote

• We have talked about binary variables up until now, but we can

trivially extend to multi-valued variables

Pseudocode for Decision tree learning

Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

• Patrons? is a better choice

– How can we quantify this?
– One approach would be to use the classification error E directly (greedily)

• Empirically it is found that this works poorly
– Much better is to use information gain (next slides)

Entropy

H(p) = entropy of distribution p = {pi}
 (called “information” in text)

 = E [pi log (1/pi)] = - p log p - (1-p) log (1-p)

 Entropy is the expected amount of information we gain, given a

probability distribution – its our average uncertainty

In general, H(p) is maximized when all pi are equal and minimized

(=0) when one of the pi’s is 1 and all others zero.

Entropy with only 2 outcomes

Consider 2 class problem: p = probability of class 1, 1 – p =

probability of class 2

In binary case, H(p) = - p log p - (1-p) log (1-p)

H(p)

0.5 1 0

1

p

Information Gain

• H(p) = entropy of class distribution at a particular node

• H(p | A) = conditional entropy = average entropy of

conditional class distribution, after we have partitioned the
data according to the values in A

• Gain(A) = H(p) – H(p | A)

• Simple rule in decision tree learning

– At each internal node, split on the node with the largest
information gain (or equivalently, with smallest H(p|A))

• Note that by definition, conditional entropy can’t be greater

than the entropy

Root Node Example
For the training set, 6 positives, 6 negatives, H(6/12, 6/12) = 1 bit

>> H(6/12,6/12) = -(6/12)*log2(6/12)-(6/12)*log2(6/12)

Consider the attributes Patrons and Type:

Patrons has the highest IG of all attributes and so is chosen by the learning

algorithm as the root

Information gain is then repeatedly applied at internal nodes until all leaves contain

only examples from one class or the other

b 0)]
4
2,

4
2(

1 2
4)

4
2,

4
2(

1 2
4)

2
1,

2
1(

1 2
2)

2
1,

2
1(

1 2
2[1)(

b i t s 0 5 4 1.)]
6
4,

6
2(

1 2
6)0,1(

1 2
4)1,0(

1 2
2[1)(

=+++−=

=++−=

HHHHT y p eI G

HHHP a t r o n sI G

positive (p) negative (1-p)

Choosing an attribute

Decision Tree Learned

• Decision tree learned from the 12 examples:

True Tree (left) versus Learned Tree (right)

Assessing Performance

Training data performance is typically optimistic
 e.g., error rate on training data

Reasons?
 - classifier may not have enough data to fully learn the concept (but
 on training data we don’t know this)
 - for noisy data, the classifier may overfit the training data

In practice we want to assess performance “out of sample”
 how well will the classifier do on new unseen data? This is the
 true test of what we have learned (just like a classroom)

With large data sets we can partition our data into 2 subsets, train and test
 - build a model on the training data
 - assess performance on the test data

Example of Test Performance

Restaurant problem
 - simulate 100 data sets of different sizes
 - train on this data, and assess performance on an independent test set
 - learning curve = plotting accuracy as a function of training set size
 - typical “diminishing returns” effect (some nice theory to explain this)

Overfitting and Underfitting

X

Y

A Complex Model

X

Y

Y = high-order polynomial in X

A Much Simpler Model

X

Y

Y = a X + b + noise

Example 2

Example 2

Example 2

Example 2

Example 2

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

Overfitting Underfitting

Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each
model on the
“training data”

and then test
each model’s
accuracy on
the validation data

 The k-fold Cross-Validation Method

• Why just choose one particular 90/10 “split” of the data?
– In principle we could do this multiple times

• “k-fold Cross-Validation” (e.g., k=10)
– randomly partition our full data set into k disjoint subsets (each

roughly of size n/k, n = total number of training data points)
• for i = 1:10 (here k = 10)

– train on 90% of data,
– Acc(i) = accuracy on other 10%

• end

• Cross-Validation-Accuracy = 1/k Σi Acc(i)
– choose the method with the highest cross-validation accuracy
– common values for k are 5 and 10
– Can also do “leave-one-out” where k = n

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

1st partition

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

1st partition 2nd partition

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

Validation
Data

1st partition 2nd partition

3rd partition 4th partition 5th partition

More on Cross-Validation

• Notes
– cross-validation generates an approximate estimate of how well

the learned model will do on “unseen” data

– by averaging over different partitions it is more robust than just a

single train/validate partition of the data

– “k-fold” cross-validation is a generalization

• partition data into disjoint validation subsets of size n/k
• train, validate, and average over the v partitions
• e.g., k=10 is commonly used

– k-fold cross-validation is approximately k times computationally
more expensive than just fitting a model to all of the data

Summary

• Inductive learning
– Error function, class of hypothesis/models {h}
– Want to minimize E on our training data
– Example: decision tree learning

• Generalization
– Training data error is over-optimistic
– We want to see performance on test data
– Cross-validation is a useful practical approach

• Learning to recognize faces
– Viola-Jones algorithm: state-of-the-art face detector, entirely

learned from data, using boosting+decision-stumps

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Complete architectures for intelligence?
	Slide Number 5
	The importance of a good representation
	Slide Number 7
	Slide Number 8
	Training Data for Supervised Learning
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Our training data example (again)
	Slide Number 15
	Decision Tree Learning
	Decision Tree Representations
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	True Tree (left) versus Learned Tree (right)
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

