Machine Learning – Classifiers and Boosting

Reading

Ch 18.6-18.12, 20.1-20.3.2

Outline

- Different types of learning problems
- Different types of learning algorithms
- Supervised learning
 - Decision trees
 - Naïve Bayes
 - Perceptrons, Multi-layer Neural Networks
 - Boosting
- Applications: learning to detect faces in images

You will be expected to know

- Classifiers:
 - Decision trees
 - K-nearest neighbors
 - Naïve Bayes
 - Perceptrons, Support vector Machines (SVMs), Neural Networks
- Decision Boundaries for various classifiers
 - What can they represent conveniently? What not?

Inductive learning

- Let <u>x</u> represent the input vector of attributes
 - $-x_i$ is the jth component of the vector x
 - $-x_j$ is the value of the jth attribute, j = 1,...d
- Let $f(\underline{x})$ represent the value of the target variable for \underline{x}
 - The implicit mapping from x to $f(\underline{x})$ is unknown to us
 - We just have training data pairs, $D = \{\underline{x}, f(\underline{x})\}$ available
- We want to learn a mapping from <u>x</u> to f, i.e., h(<u>x</u>; θ) is "close" to f(x) for all training data points <u>x</u>

 θ are the parameters of our predictor h(..)

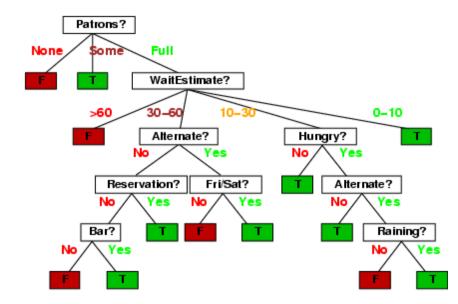
- Examples:
 - $h(\underline{x}; \theta) = sign(w_1x_1 + w_2x_2 + w_3)$

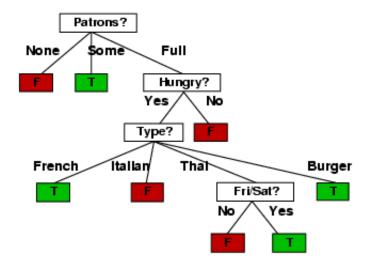
 $-h_k(\underline{x}) = (x1 \text{ OR } x2) \text{ AND } (x3 \text{ OR } NOT(x4))$

Training Data for Supervised Learning

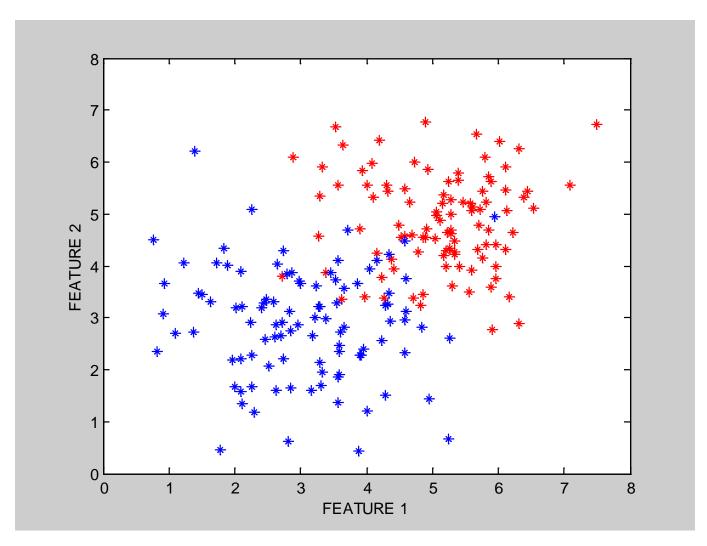
Example	Attributes										Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

True Tree (left) versus Learned Tree (right)

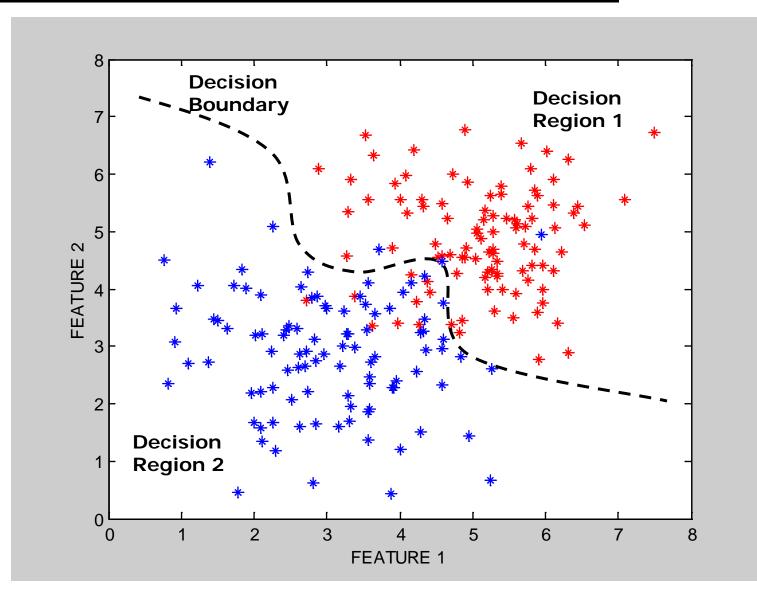




Classification Problem with Overlap



Decision Boundaries



Classification in Euclidean Space

- A classifier is a partition of the space <u>x</u> into disjoint decision regions
 - Each region has a label attached
 - Regions with the same label need not be contiguous
 - For a new test point, find what decision region it is in, and predict the corresponding label
- Decision boundaries = boundaries between decision regions
 The "dual representation" of decision regions
- We can characterize a classifier by the equations for its decision boundaries
- Learning a classifier ⇔ searching for the decision boundaries that optimize our objective function

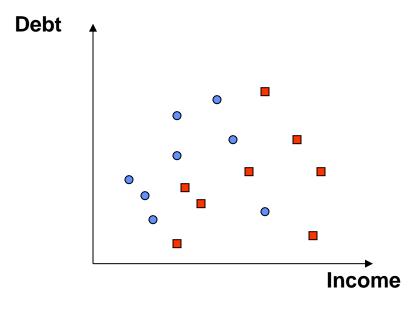
Example: Decision Trees

- When applied to real-valued attributes, decision trees produce "axis-parallel" linear decision boundaries
- Each internal node is a binary threshold of the form x_j > t ?

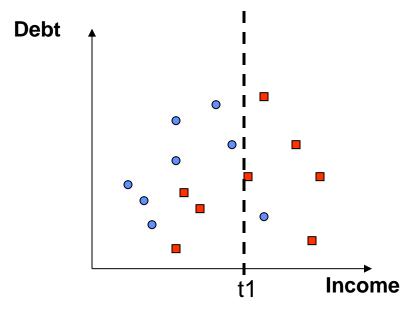
converts each real-valued feature into a binary one

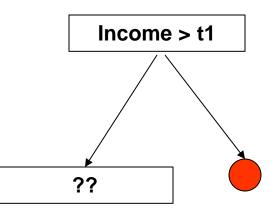
requires evaluation of N-1 possible threshold locations for N data points, for each real-valued attribute, for each internal node

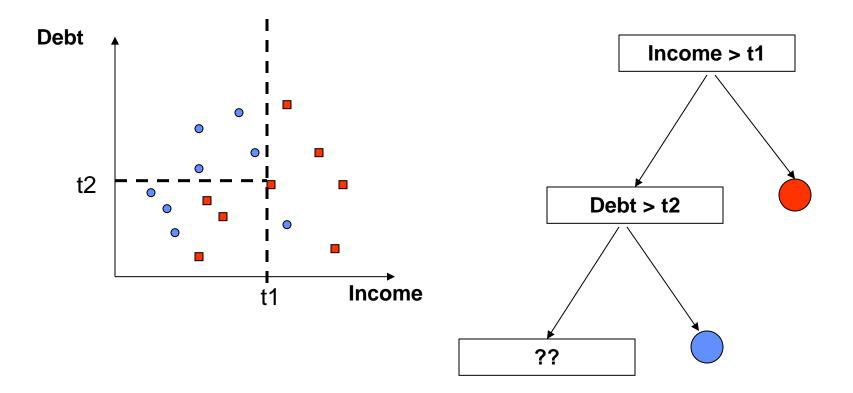
Decision Tree Example

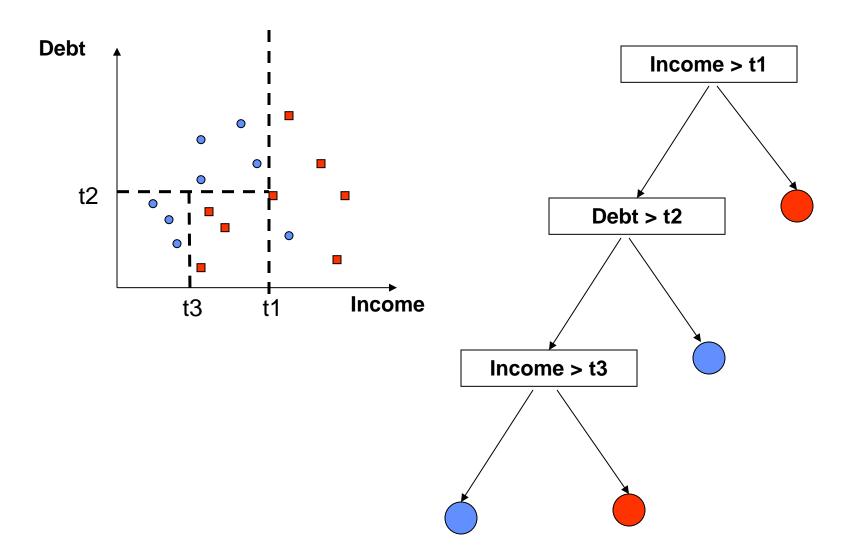


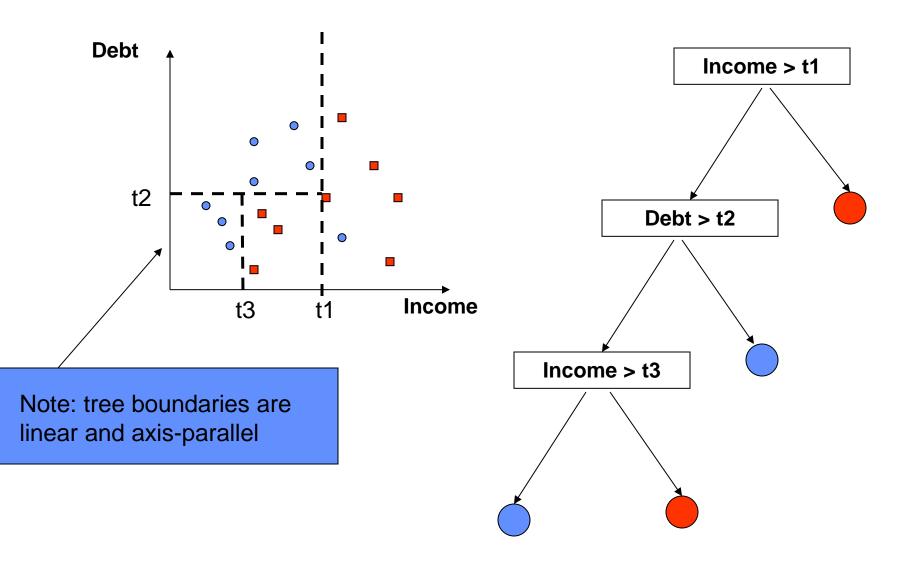
Decision Tree Example







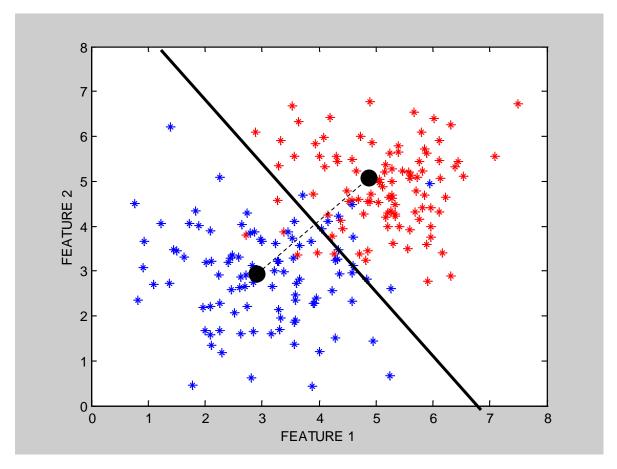




A Simple Classifier: Minimum Distance Classifier

- Training
 - Separate training vectors by class
 - Compute the mean for each class, $\underline{\mu}_{k}$, k = 1,... m
- Prediction
 - Compute the closest mean to a test vector <u>x</u>' (using Euclidean distance)
 - Predict the corresponding class
- In the 2-class case, the decision boundary is defined by the locus of the hyperplane that is halfway between the 2 means and is orthogonal to the line connecting them
- This is a very simple-minded classifier easy to think of cases where it will not work very well

Minimum Distance Classifier



Another Example: Nearest Neighbor Classifier

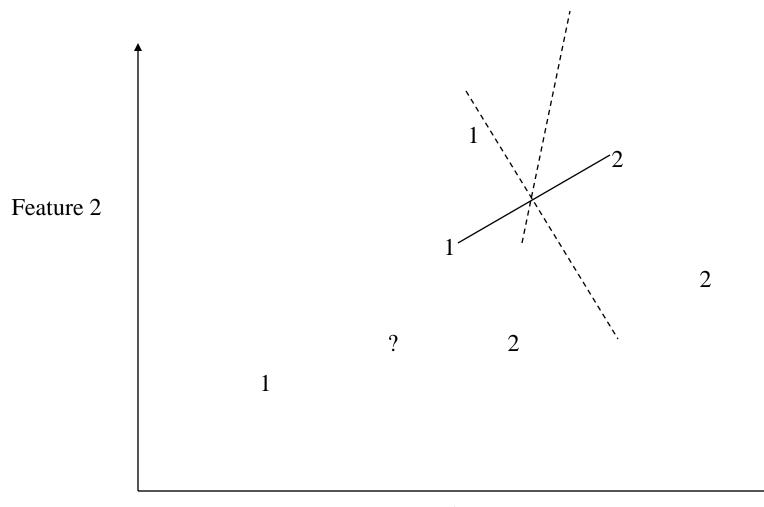
- The nearest-neighbor classifier
 - Given a test point <u>x</u>', compute the distance between <u>x</u>' and each input data point
 - Find the closest neighbor in the training data
 - Assign <u>x</u>' the class label of this neighbor
 - (sort of generalizes minimum distance classifier to exemplars)
- If Euclidean distance is used as the distance measure (the most common choice), the nearest neighbor classifier results in piecewise linear decision boundaries
- Many extensions
 - e.g., kNN, vote based on k-nearest neighbors
 - k can be chosen by cross-validation

Local Decision Boundaries

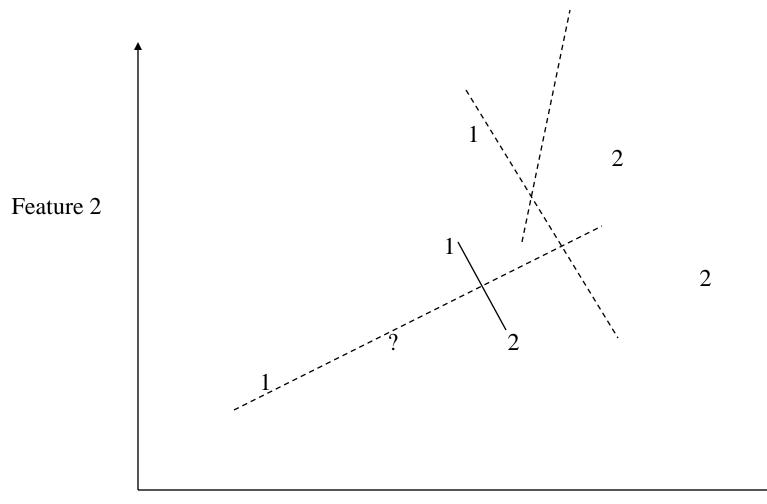
Boundary? Points that are equidistant between points of class 1 and 2 Note: locally the boundary is linear

Feature 2 1 2 ? 2 1

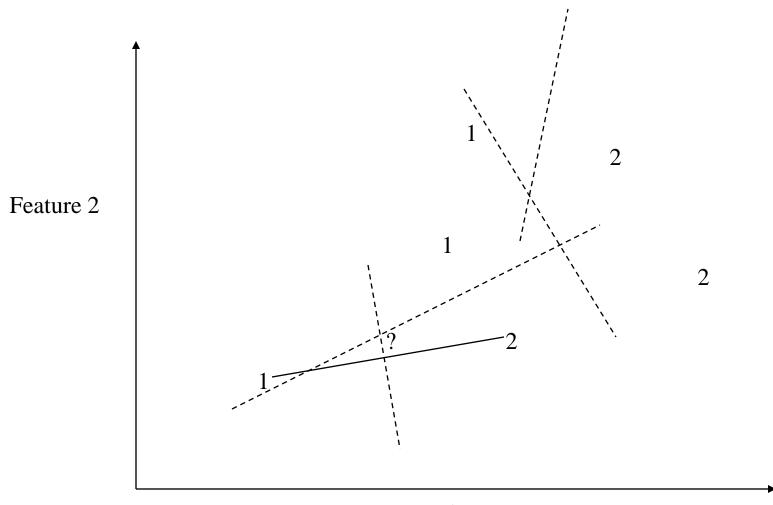
Finding the Decision Boundaries

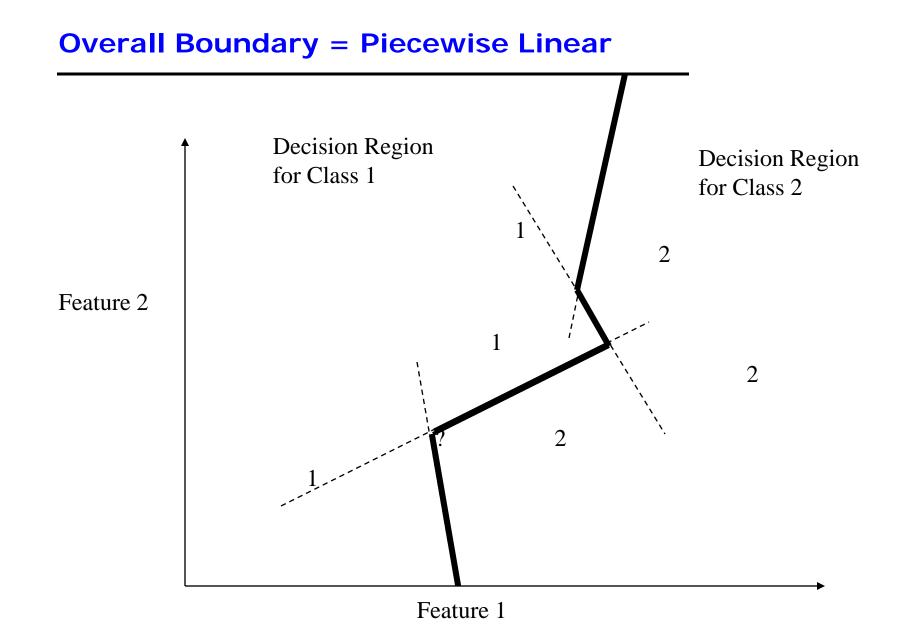


Finding the Decision Boundaries

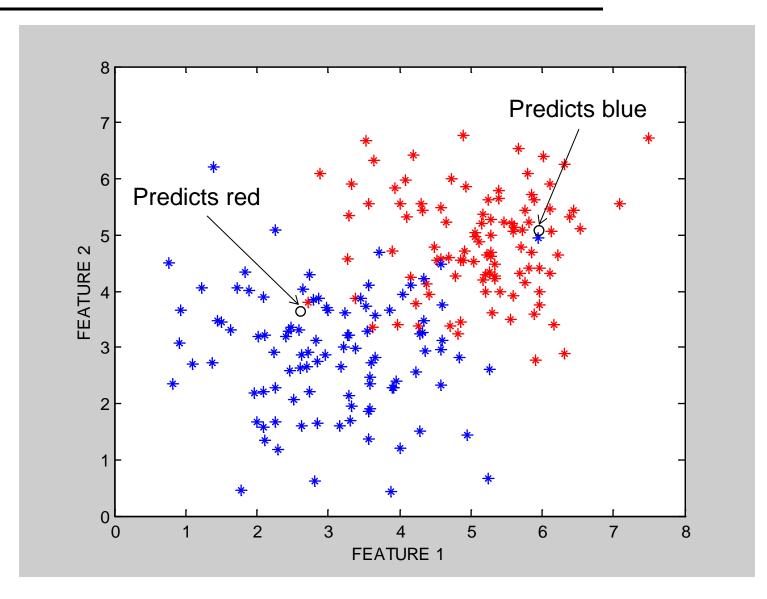


Finding the Decision Boundaries



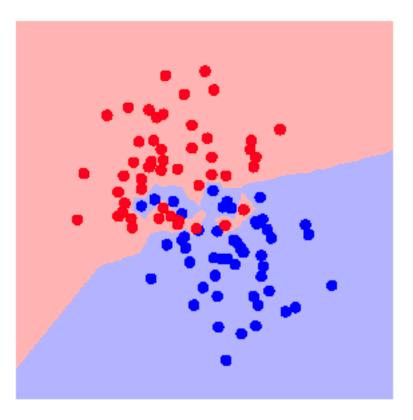


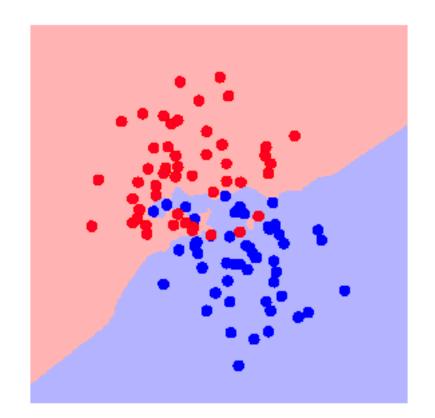
Nearest-Neighbor Boundaries on this data set?



kNN Decision Boundary

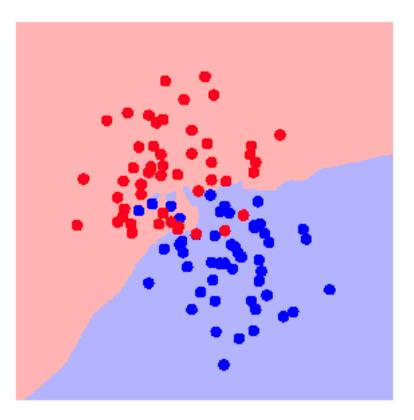
- piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points

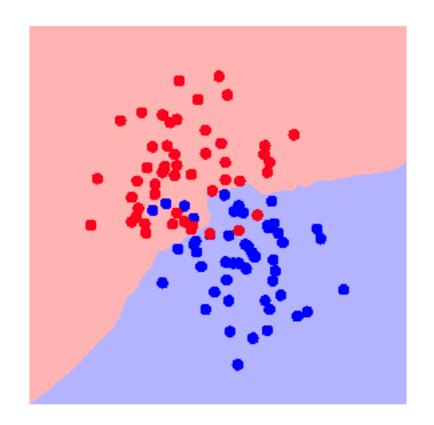




kNN Decision Boundary

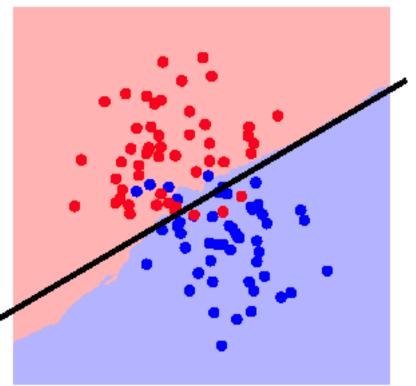
- piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points





kNN Decision Boundary

- piecewise linear decision boundary
- Increasing k "simplifies" decision boundary
 - Majority voting means less emphasis on individual points
- True ("best") decision boundary
 - In this case is linear
 - Compared to kNN: not bad!



The kNN Classifier

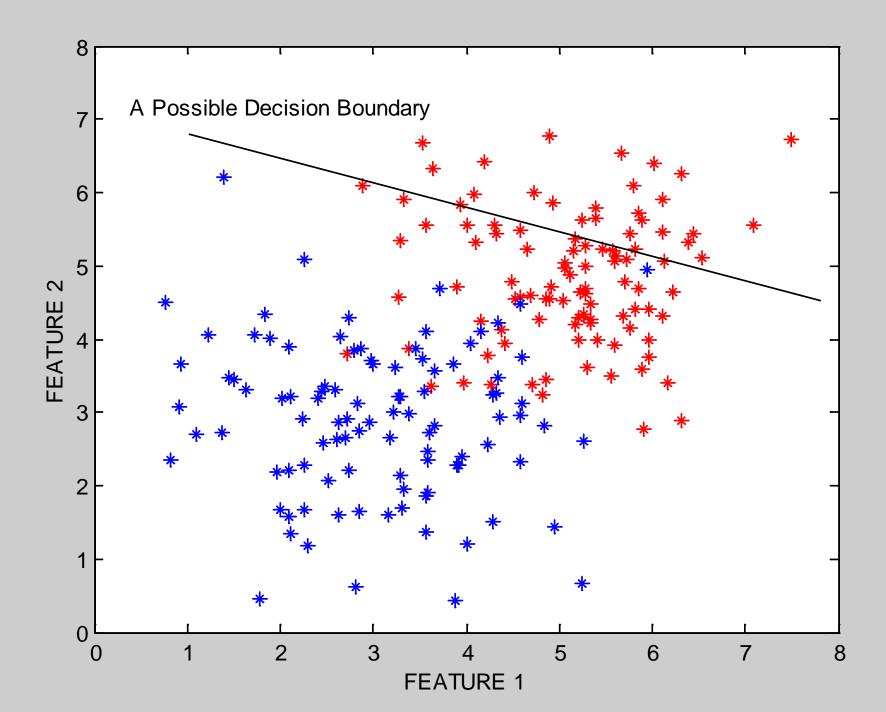
- The kNN classifier often works very well.
- Easy to implement.
- Easy choice if characteristics of your problem are unknown.
- Can be sensitive to the choice of distance metric.
 - Often normalize feature axis values, e.g., z-score or [0, 1]
 - Categorical feature axes are difficult, e.g., Color as Red/Blue/Green
- Can encounter problems with sparse training data.
- Can encounter problems in very high dimensional spaces.
 - Most points are corners.
 - Most points are at the edge of the space.
 - Most points are neighbors of most other points.

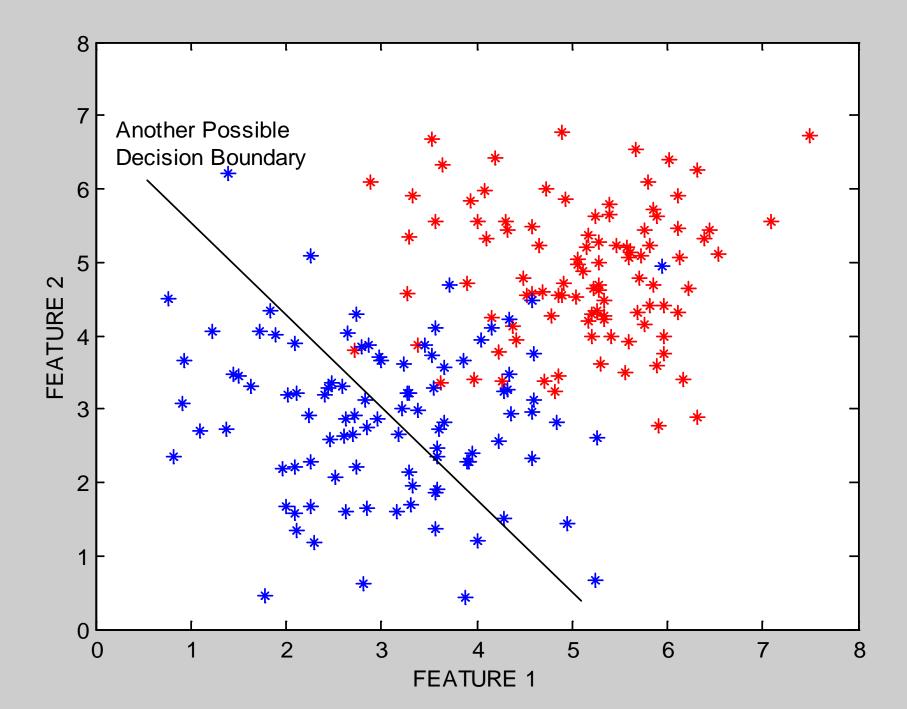
Linear Classifiers

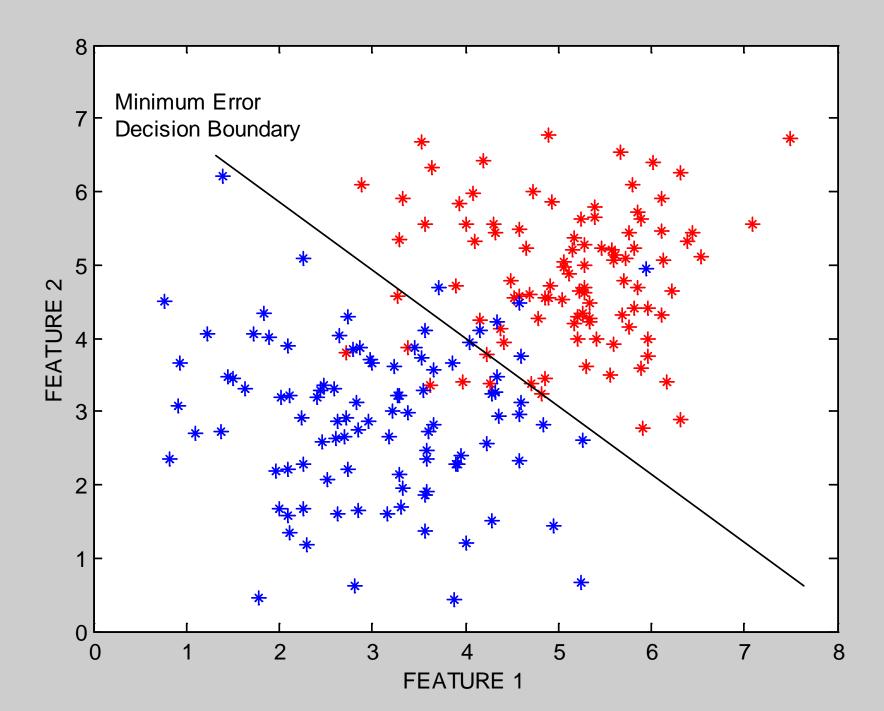
- Linear classifier ⇔ single linear decision boundary (for 2-class case)
- We can always represent a linear decision boundary by a linear equation:

 $w_1 x_1 + w_2 x_2 + \dots + w_d x_d = \Sigma w_j x_j = \underline{w}^t \underline{x} = 0$

- In d dimensions, this defines a (d-1) dimensional hyperplane
 - d=3, we get a plane; d=2, we get a line
- For prediction we simply see if $\Sigma w_i x_i > 0$
- The w_i are the weights (parameters)
 - Learning consists of searching in the d-dimensional weight space for the set of weights (the linear boundary) that minimizes an error measure
 - A threshold can be introduced by a "dummy" feature that is always one; its weight corresponds to (the negative of) the threshold
- Note that a minimum distance classifier is a special (restricted) case of a linear classifier





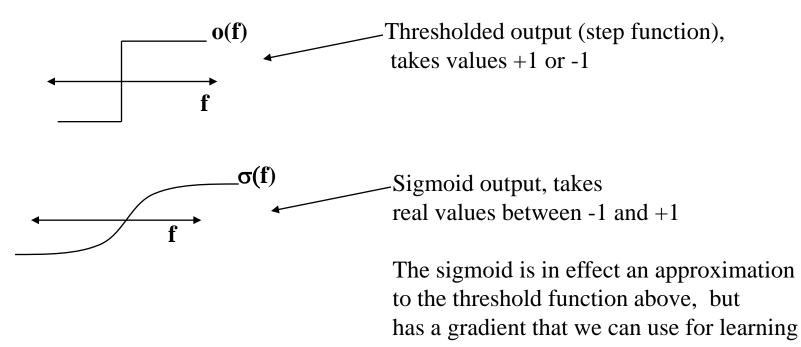


The Perceptron Classifier (pages 729-731 in text)

- The perceptron classifier is just another name for a linear classifier for 2-class data, i.e., output(<u>x</u>) = sign(Σw_i x_i)
- Loosely motivated by a simple model of how neurons fire
- For mathematical convenience, class labels are +1 for one class and -1 for the other
- Two major types of algorithms for training perceptrons
 - Objective function = classification accuracy ("error correcting")
 - Objective function = squared error (use gradient descent)
 - Gradient descent is generally faster and more efficient but there is a problem! No gradient!

Two different types of perceptron output

x-axis below is $f(\underline{x}) = f$ = weighted sum of inputs y-axis is the perceptron output



• Sigmoid function is defined as

 $\sigma[f] = [2/(1 + exp[-f])] - 1$

• Derivative of sigmoid

 $\partial \sigma / \delta f [f] = .5 * (\sigma [f] + 1) * (1 - \sigma [f])$

Squared Error for Perceptron with Sigmoidal Output

• Squared error = $E[\underline{w}] = \sum_{i} [\sigma(f[\underline{x}(i)]) - y(i)]^2$

where $\underline{x}(i)$ is the ith input vector in the training data, i=1,..Ny(i) is the ith target value (-1 or 1)

 $f[\underline{x}(i)] = \Sigma w_j x_j$ is the weighted sum of inputs $\sigma(f[\underline{x}(i)])$ is the sigmoid of the weighted sum

- Note that everything is fixed (once we have the training data) except for the weights <u>w</u>
- So we want to minimize $E[\underline{w}]$ as a function of \underline{w}

Gradient Descent Rule:

$$\underline{\mathbf{w}}_{new} = \underline{\mathbf{w}}_{old} - \eta \Delta (\mathbf{E}[\underline{\mathbf{w}}])$$

where

 Δ (E[w]) is the gradient of the error function E wrt weights, and η is the learning rate (small, positive)

Notes:

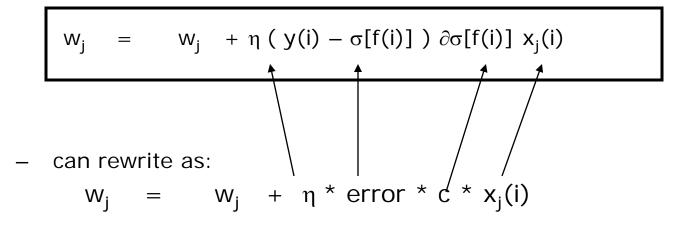
- 1. This moves us downhill in direction $\Delta (E[w])$ (steepest downhill)
- 2. How far we go is determined by the value of $\boldsymbol{\eta}$

Gradient Descent Update Equation

 From basic calculus, for perceptron with sigmoid, and squared error objective function, gradient for a single input <u>x(i)</u> is

 Δ (E[w]) = - (y(i) - \sigma[f(i)]) $\partial \sigma[f(i)] x_j(i)$

• Gradient descent weight update rule:



- Inputs: N features, N targets (class labels), learning rate η
- Outputs: a set of learned weights

Comments on Perceptron Learning

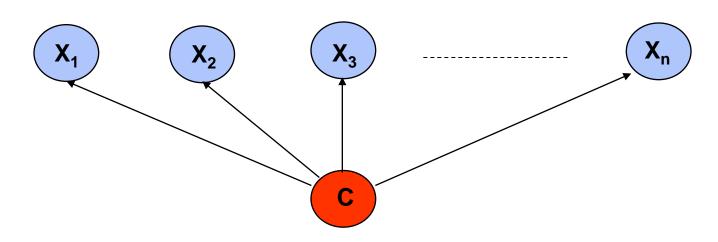
- Iteration = one pass through all of the data
- Algorithm presented = incremental gradient descent
 - Weights are updated after visiting each input example
 - Alternatives
 - Batch: update weights after each iteration (typically slower)
 - Stochastic: randomly select examples and then do weight updates
- A similar iterative algorithm learns weights for thresholded output (step function) perceptrons
- Rate of convergence
 - $E[\underline{w}]$ is convex as a function of \underline{w} , so no local minima
 - So convergence is guaranteed as long as learning rate is small enough
 - But if we make it too small, learning will be *very* slow
 - But if learning rate is too large, we move further, but can overshoot the solution and oscillate, and not converge at all

Support Vector Machines (SVM): "Modern perceptrons" (section 18.9, R&N)

- A modern linear separator classifier
 - Essentially, a perceptron with a few extra wrinkles
- Constructs a "maximum margin separator"
 - A linear decision boundary with the largest possible distance from the decision boundary to the example points it separates
 - "Margin" = Distance from decision boundary to closest example
 - The "maximum margin" helps SVMs to generalize well
- Can embed the data in a non-linear higher dimension space
 - Constructs a linear separating hyperplane in that space
 - This can be a non-linear boundary in the original space
 - Algorithmic advantages and simplicity of linear classifiers
 - Representational advantages of non-linear decision boundaries
- Currently most popular "off-the shelf" supervised classifier.

Multi-Layer Perceptrons (Artificial Neural Networks) (sections 18.7.3-18.7.4 in textbook)

- What if we took K perceptrons and trained them in parallel and then took a weighted sum of their sigmoidal outputs?
 - This is a multi-layer neural network with a single "hidden" layer (the outputs of the first set of perceptrons)
 - If we train them jointly in parallel, then intuitively different perceptrons could learn different parts of the solution
 - They define different local decision boundaries in the input space
- What if we hooked them up into a general Directed Acyclic Graph?
 - Can create simple "neural circuits" (but no feedback; not fully general)
 - Often called neural networks with hidden units
- How would we train such a model?
 - Backpropagation algorithm = clever way to do gradient descent
 - Bad news: many local minima and many parameters
 - training is hard and slow
 - Good news: can learn general non-linear decision boundaries
 - Generated much excitement in AI in the late 1980's and 1990's
 - Techniques like boosting, support vector machines, are often preferred



Bayes Rule: $P(C | X_1,...,X_n)$ is proportional to $P(C) \prod_i P(X_i | C)$ [note: denominator $P(X_1,...,X_n)$ is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C

- choose the class value c_i with the highest $P(c_i | x_1, ..., x_n)$
- simple to implement, often works very well
- e.g., spam email classification: X's = counts of words in emails

Conditional probabilities $P(X_i | C)$ can easily be estimated from labeled date

- Problem: Need to avoid zeroes, e.g., from limited training data
- Solutions: Pseudo-counts, beta[a,b] distribution, etc.

 $\mathsf{P}(\mathsf{C} \mid \mathsf{X}_1, \dots, \mathsf{X}_n) = \alpha \Pi \mathsf{P}(\mathsf{X}_i \mid \mathsf{C}) \mathsf{P}(\mathsf{C})$

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

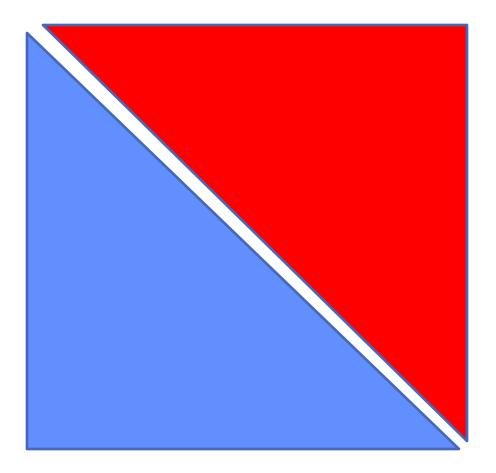
 $P(C = cj) \approx #(Examples with class label cj) / #(Examples)$

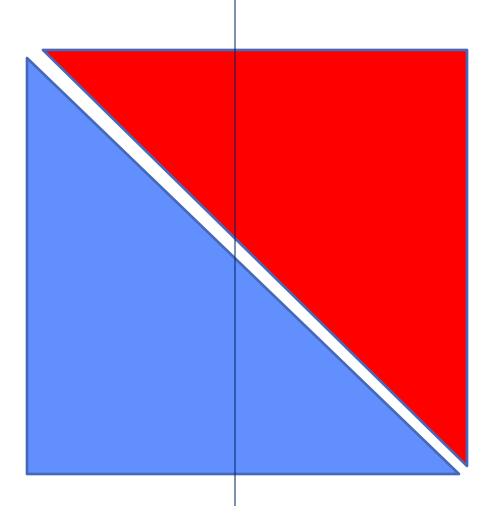
P(Xi = xik | C = cj) ≈ #(Examples with Xi value xik and class label cj) / #(Examples with class label cj)

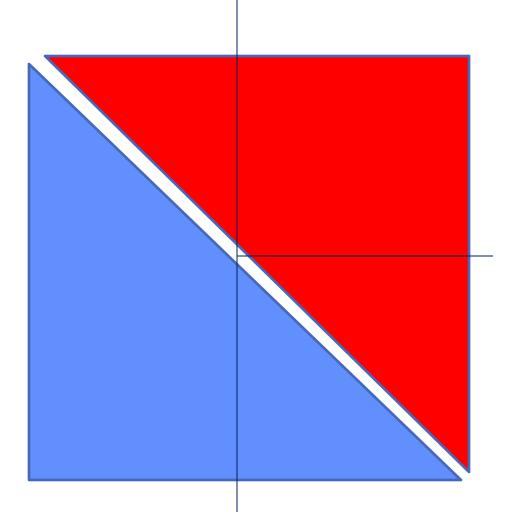
```
Usually easiest to work with logs
log [ P(C | X_1,...,X_n) ]
= log \alpha + \Sigma [ log P(X<sub>i</sub> | C) + log P (C) ]
```

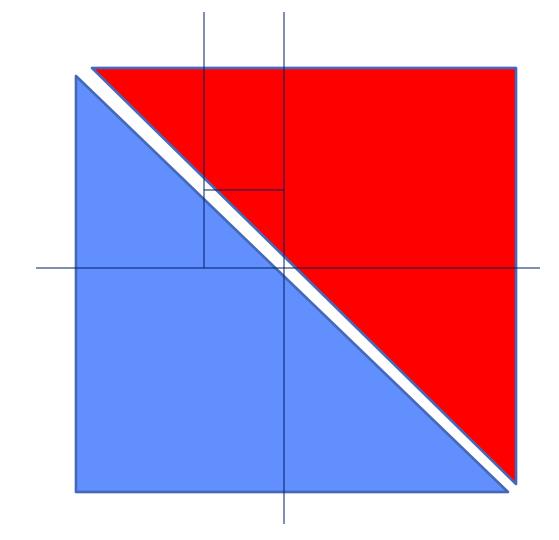
DANGER: Suppose ZERO examples with Xi value xik and class label cj? An unseen example with Xi value xik will NEVER predict class label cj !

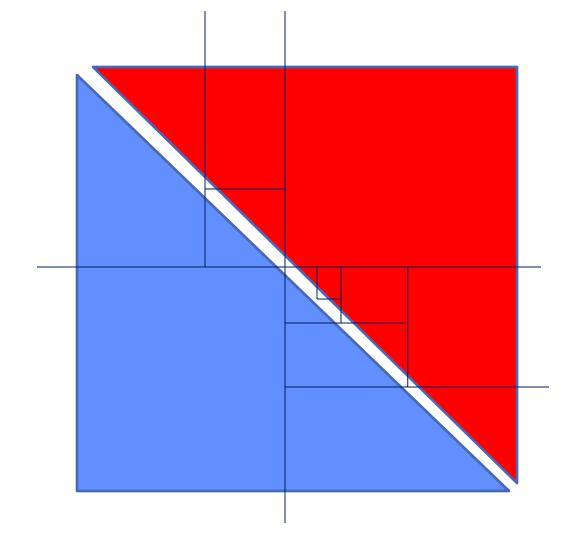
Practical solutions: Pseudocounts, e.g., add 1 to every #(), etc. Theoretical solutions: Bayesian inference, beta distribution, etc.

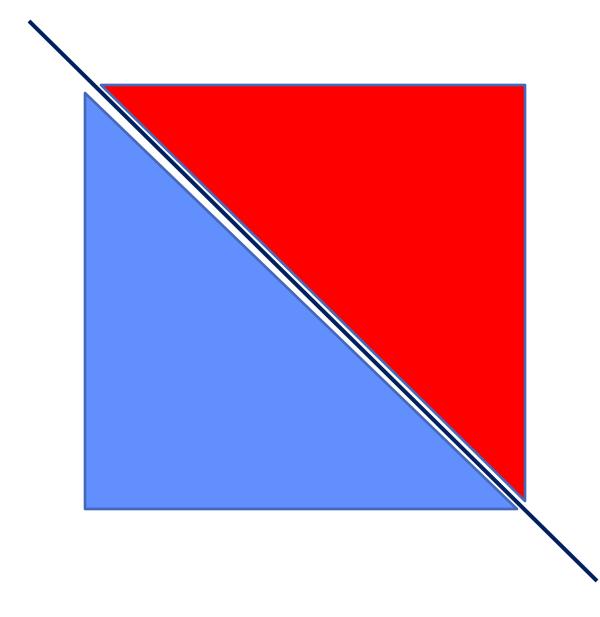


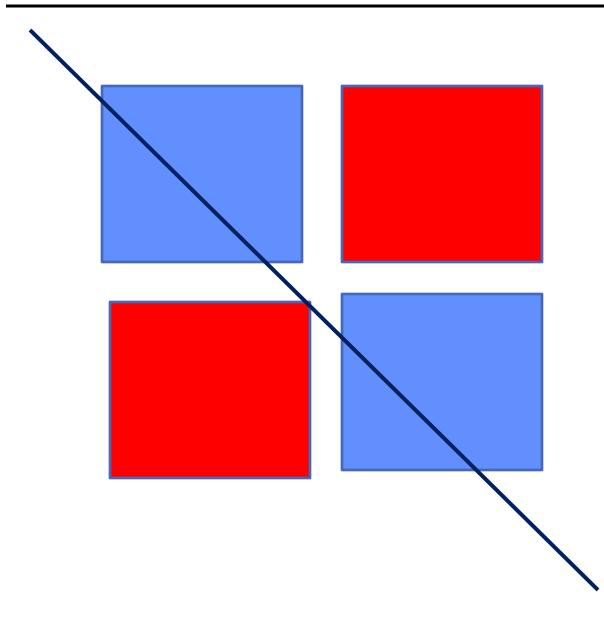


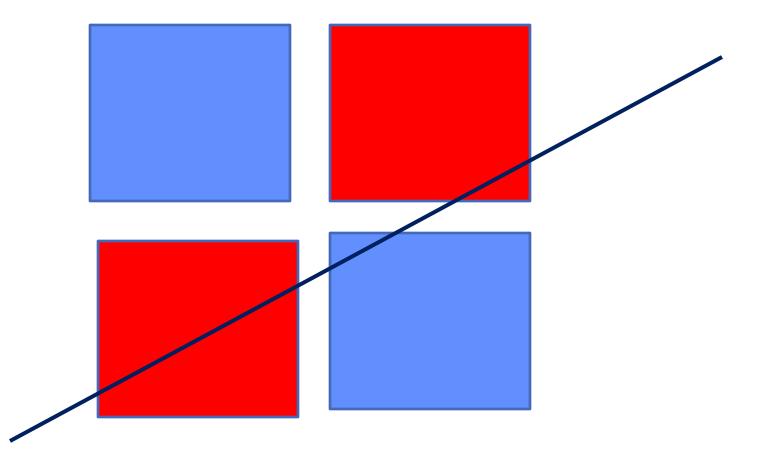


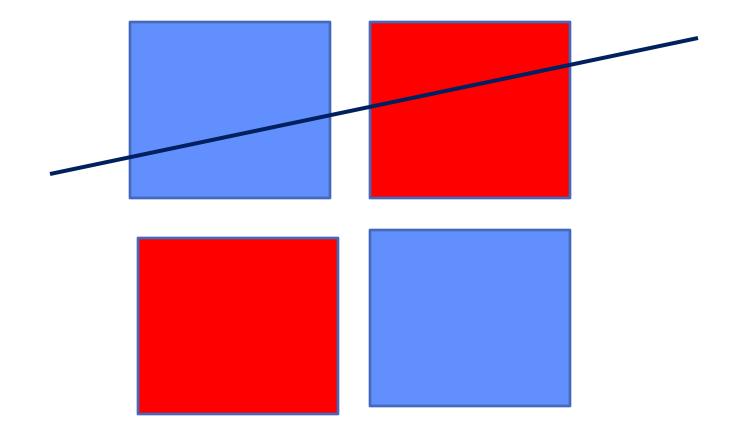


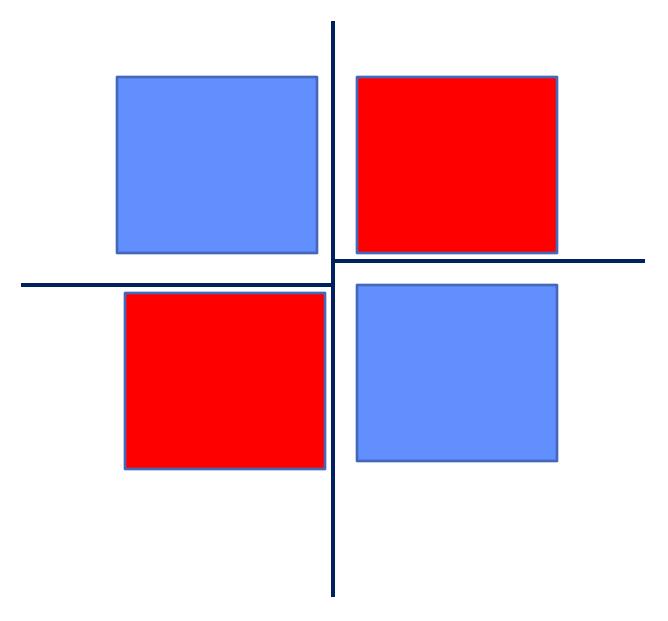












Summary

- Learning
 - Given a training data set, a class of models, and an error function, this is essentially a search or optimization problem
- Different approaches to learning
 - Divide-and-conquer: decision trees
 - Global decision boundary learning: perceptrons
 - Constructing classifiers incrementally: boosting
- Learning to recognize faces
 - Viola-Jones algorithm: state-of-the-art face detector, entirely learned from data, using boosting+decision-stumps