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Final Catch-up, Review 
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Outline 

• Knowledge Representation using First-Order Logic 
• Unification in First-Order Logic 
• Inference in First-Order Logic 
• Probability, Bayesian Networks 
• Machine Learning 

 
• Questions on any topic 

 
• Review pre-mid-term material if time and class interest 
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Knowledge Representation using First-Order Logic 

• Propositional Logic is Useful --- but has Limited Expressive Power 
 

• First Order Predicate Calculus (FOPC), or First Order Logic (FOL). 
– FOPC has greatly expanded expressive power, though still limited. 

 
• New Ontology 

– The world consists of OBJECTS (for propositional logic, the world was facts). 
– OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS. 

 
• New Syntax 

– Constants, Predicates, Functions, Properties, Quantifiers. 
 

• New Semantics 
– Meaning of new syntax. 

 
• Knowledge engineering in FOL 
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Review: Syntax of FOL: Basic elements 

• Constants KingJohn, 2, UCI,...  
 

• Predicates Brother, >,... 
 

• Functions Sqrt, LeftLegOf,... 
 

• Variables  x, y, a, b,... 
 

• Connectives ¬, ⇒, ∧, ∨, ⇔ 
 

• Equality  =  
 

• Quantifiers   ∀, ∃   
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Syntax of FOL: Basic syntax elements are symbols 

• Constant Symbols: 
– Stand for objects in the world. 

• E.g., KingJohn, 2, UCI, ...  
 
• Predicate Symbols 

– Stand for relations (maps a tuple of objects to a truth-value) 
• E.g., Brother(Richard, John), greater_than(3,2), ... 

– P(x, y) is usually read as “x is P of y.” 
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.” 

 
• Function Symbols 

– Stand for functions (maps a tuple of objects to an object) 
• E.g., Sqrt(3), LeftLegOf(John), ... 

 
• Model (world) = set of domain objects, relations, functions 
• Interpretation maps symbols onto the model (world) 

– Very many interpretations are possible for each KB and world! 
– Job of the KB is to rule out models inconsistent with our knowledge. 
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Syntax of FOL: Terms 

• Term = logical expression that refers to an object 
 

• There are two kinds of terms: 
 
– Constant Symbols stand for (or name) objects: 

• E.g., KingJohn, 2, UCI, Wumpus, ...  
 

– Function Symbols map tuples of objects to an object: 
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x) 
• This is nothing but a complicated kind of name 

– No “subroutine” call, no “return value” 
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Syntax of FOL: Atomic Sentences 

• Atomic Sentences state facts (logical truth values). 
– An atomic sentence is a Predicate symbol, optionally 

followed by a parenthesized list of any argument terms 
– E.g., Married( Father(Richard), Mother(John) ) 
– An atomic sentence asserts that some relationship (some 

predicate) holds among the objects that are its arguments. 
 

• An Atomic Sentence is true in a given model if the 
relation referred to by the predicate symbol holds among 
the objects (terms) referred to by the arguments. 
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Syntax of FOL: Connectives & Complex Sentences 

• Complex Sentences are formed in the same way, 
and are formed using the same logical connectives, 
as we already know from propositional logic 

 
• The Logical Connectives: 

– ⇔   biconditional 
– ⇒   implication 
– ∧   and 
– ∨   or 
– ¬   negation 

 
• Semantics for these logical connectives are the same as 

we already know from propositional logic. 
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Syntax of FOL: Variables 

• Variables range over objects in the world. 
 

• A variable is like a term because it represents an object. 
 

• A variable may be used wherever a term may be used. 
– Variables may be arguments to functions and predicates. 

 
• (A term with NO variables is called a ground term.) 
• (A variable not bound by a quantifier is called free.) 
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Syntax of FOL: Logical Quantifiers 

• There are two Logical Quantifiers: 
– Universal: ∀ x P(x)   means “For all x, P(x).” 

• The “upside-down A” reminds you of “ALL.” 
– Existential: ∃ x P(x)   means “There exists x such that, P(x).” 

• The “upside-down E” reminds you of “EXISTS.” 
 

• Syntactic “sugar” --- we really only need one quantifier. 
– ∀ x P(x) ≡ ¬∃ x ¬P(x) 
– ∃ x P(x) ≡ ¬∀ x ¬P(x) 
– You can ALWAYS convert one quantifier to the other. 

 
• RULES: ∀ ≡ ¬∃¬  and  ∃ ≡ ¬∀¬ 

 
• RULE: To move negation “in” across a quantifier, 

change the quantifier to “the other quantifier” 
and negate the predicate on “the other side.” 

– ¬∀ x P(x) ≡ ∃ x ¬P(x) 
– ¬∃ x P(x) ≡ ∀ x ¬P(x) 
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Semantics: Interpretation 

• An interpretation of a sentence (wff) is an assignment that 
maps  
– Object constant symbols to objects in the world,  
– n-ary function symbols to n-ary functions in the world, 
– n-ary relation symbols to n-ary relations in the world 
 

• Given an interpretation, an atomic sentence has the value 
“true” if it denotes a relation that holds for those individuals 
denoted in the terms. Otherwise it has the value “false.” 
– Example: Kinship world: 

• Symbols = Ann, Bill, Sue, Married, Parent, Child, Sibling, … 
– World consists of individuals in relations: 

• Married(Ann,Bill) is false, Parent(Bill,Sue) is true, … 
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Combining Quantifiers --- Order (Scope) 

The order of “unlike” quantifiers is important. 
∀ x ∃ y  Loves(x,y)     

– For everyone (“all x”) there is someone (“exists y”) whom they love 
 

∃ y ∀ x  Loves(x,y) 
        -  there is someone (“exists y”) whom everyone loves (“all x”) 
 

Clearer with parentheses:  ∃ y ( ∀ x    Loves(x,y) ) 
 
The order of “like” quantifiers does not matter. 
  ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y) 
  ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y) 
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De Morgan’s Law for Quantifiers 

( )
( )
( )
( )

x P x P
x P x P

x P x P
x P x P

∀ ≡¬∃ ¬

∃ ≡¬∀ ¬

¬∀ ≡∃ ¬

¬∃ ≡∀ ¬

( )
( )

( )
( )

P Q P Q
P Q P Q

P Q P Q
P Q P Q

∧ ≡ ¬ ¬ ∨ ¬

∨ ≡ ¬ ¬ ∧ ¬

¬ ∧ ≡ ¬ ∨ ¬

¬ ∨ ≡ ¬ ∧ ¬

De Morgan’s Rule Generalized De Morgan’s Rule 

Rule is simple: if you bring a negation inside a disjunction or a conjunction, 
always switch between them (or and, and  or). 
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Outline 

• Knowledge Representation using First-Order Logic 
• Unification in First-Order Logic 
• Inference in First-Order Logic 
• Probability, Bayesian Networks 
• Machine Learning 

 
• Questions on any topic 

 
• Review pre-mid-term material if time and class interest 
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Inference in First-Order Logic --- Summary 

 
• FOL inference techniques 

– Unification 
– Generalized Modus Ponens 

• Forward-chaining  
• Backward-chaining 

– Resolution-based inference 
• Refutation-complete 
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Unification 

• Recall: Subst(θ, p) = result of substituting θ into sentence p 
 
 

• Unify algorithm: takes 2 sentences p and q and returns a 
unifier if one exists 
 

         Unify(p,q) = θ   where Subst(θ, p) = Subst(θ, q) 
 
 
 
• Example: 
       p = Knows(John,x) 
       q = Knows(John, Jane) 
 

           Unify(p,q) = {x/Jane} 
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Unification examples 

•  simple example: query = Knows(John,x), i.e., who does John know? 
   
 
p    q    θ   
Knows(John,x)  Knows(John,Jane)   {x/Jane} 
Knows(John,x) Knows(y,OJ)    {x/OJ,y/John} 
Knows(John,x)  Knows(y,Mother(y))  {y/John,x/Mother(John)} 
Knows(John,x) Knows(x,OJ)    {fail} 
 
 
 

 
• Last unification fails: only because x can’t take values John and OJ at 

the same time 
– But we know that if John knows x, and everyone (x) knows OJ, we should be 

able to infer that John knows OJ 
 

• Problem is due to use of same variable x in both sentences 
 

• Simple solution: Standardizing apart eliminates overlap of variables, 
e.g., Knows(z,OJ) 
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Unification 

• To unify Knows(John,x) and Knows(y,z), 
 
 θ = {y/John, x/z } or θ = {y/John, x/John, z/John} 
 

 
• The first unifier is more general than the second. 
 

 
• There is a single most general unifier (MGU) that is unique up 

to renaming of variables. 
 

MGU = { y/John, x/z } 
 
 

• General algorithm in Figure 9.1 in the text 
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Hard matching example 

• To unify the grounded propositions with premises of the implication 
you need to solve a CSP! 

• Colorable() is inferred iff the CSP has a solution 
• CSPs include 3SAT as a special case, hence matching is NP-hard 

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧ 
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧ 
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒ 
Colorable() 
 
Diff(Red,Blue)    Diff (Red,Green) 
Diff(Green,Red)  Diff(Green,Blue) 
Diff(Blue,Red)    Diff(Blue,Green) 
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Inference appoaches in FOL 

• Forward-chaining 
– Uses GMP to add new atomic sentences   
– Useful for systems that make inferences as information streams in 
– Requires KB to be in form of first-order definite clauses 

 
• Backward-chaining 

– Works backwards from a query to try to construct a proof 
– Can suffer from repeated states and incompleteness 
– Useful for query-driven inference 
– Requires KB to be in form of first-order definite clauses 

 
• Resolution-based inference (FOL) 

– Refutation-complete for general KB 
• Can be used to confirm or refute a sentence p (but not to 

generate all entailed sentences) 
– Requires FOL KB to be reduced to CNF 
– Uses generalized version of propositional inference rule 

 
 

• Note that all of these methods are generalizations of their 
propositional equivalents 
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Generalized Modus Ponens (GMP) 

  p1', p2', … , pn', ( p1 ∧ p2 ∧ … ∧ pn ⇒q) 
                          
                     Subst(θ,q) 
 
 
Example: 
p1' is King(John)   p1 is King(x)  
p2' is Greedy(y)   p2 is Greedy(x)  
θ is {x/John,y/John}  q is Evil(x)  
Subst(θ,q) is Evil(John) 
 
 

 
• Implicit assumption that all variables universally quantified 

 

where  we can unify pi‘ and pi  for all i 
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Completeness and Soundness of GMP 

• GMP is sound 
– Only derives sentences that are logically entailed 
– See proof in text on p. 326 (3rd ed.; p. 276, 2nd ed.) 

 
 

• GMP is complete for a KB consisting of definite clauses 
– Complete: derives all sentences that are entailed 
– OR…answers every query whose answers are entailed by such a KB  
 
– Definite clause: disjunction of literals of which exactly 1 is positive, 
             e.g., King(x) AND Greedy(x) -> Evil(x) 
           NOT(King(x)) OR NOT(Greedy(x)) OR Evil(x) 
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Properties of forward chaining 

• Sound and complete for first-order definite clauses 
 

• Datalog = first-order definite clauses + no functions 
 
 

• FC terminates for Datalog in finite number of iterations 
 

• May not terminate in general if α is not entailed 
 
 

• Incremental forward chaining: no need to match a rule on iteration k if 
a premise wasn't added on iteration k-1 

⇒ match each rule whose premise contains a newly added positive literal 
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Properties of backward chaining 

• Depth-first recursive proof search: 
– Space is linear in size of proof. 

 
• Incomplete due to infinite loops 

– ⇒ fix by checking current goal against every goal on stack 
 

• Inefficient due to repeated subgoals (both success and failure) 
– ⇒ fix using caching of previous results (memoization) 
 

• Widely used for logic programming 
 

• PROLOG: 
 backward chaining with Horn clauses + bells & whistles. 
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Resolution in FOL 

• Full first-order version: 
l1 ∨ ··· ∨ lk,          m1 ∨ ··· ∨ mn 

 
 

Subst(θ , l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn) 
  
  where Unify(li, ¬mj) = θ. 
 

 
• The two clauses are assumed to be standardized apart so that they 

share no variables. 
 

• For example, 
 

¬Rich(x) ∨ Unhappy(x),    Rich(Ken) 
Unhappy(Ken) 

 
 with θ = {x/Ken} 
 
• Apply resolution steps to CNF(KB ∧ ¬α); complete for FOL 
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Resolution proof 

¬ 
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Converting FOL sentences to CNF 

Original sentence: 
    Everyone who loves all animals is loved by someone: 

∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)] 
 
 

 
1. Eliminate biconditionals and implications 
 

∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)] 
 
 

 
2. Move ¬ inwards:  
      Recall: ¬∀x p ≡ ∃x ¬p,  ¬ ∃x p ≡ ∀x ¬p 
 
 

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]  
 
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
 
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
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Conversion to CNF contd. 

3. Standardize variables: 
 each quantifier should use a different one 
 

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)] 
 

  
 

4.     Skolemize: a more general form of existential instantiation. 
       Each existential variable is replaced by a Skolem function of the 

enclosing universally quantified variables: 
 
 
 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x) 
 
 
(reason: animal y could be a different animal for each x.) 
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Conversion to CNF contd. 

 
5. Drop universal quantifiers: 
 
  [Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x) 

 
 (all remaining variables assumed to be universally quantified) 
 

 
6.   Distribute ∨ over ∧ : 
 

 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)] 
 
 
Original sentence is now in CNF form – can apply same ideas to all 

sentences in KB to convert into CNF 
 
Also need to include negated query  
 
Then use resolution to attempt to derive the empty clause 
 which show that the query is entailed by the KB 



30 

Outline 

• Knowledge Representation using First-Order Logic 
• Unification in First-Order Logic 
• Inference in First-Order Logic 
• Probability, Bayesian Networks 
• Machine Learning 

 
• Questions on any topic 

 
• Review pre-mid-term material if time and class interest 
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Syntax 

 

•Basic element: random variable 
•Similar to propositional logic: possible worlds defined by 

assignment of values to random variables. 
 

•Booleanrandom variables 
 e.g., Cavity (= do I have a cavity?) 
•Discreterandom variables 
 e.g., Weather is one of <sunny,rainy,cloudy,snow> 
•Domain values must be exhaustive and mutually exclusive 

 
•Elementary proposition is an assignment of a value to a 

random variable: 
 e.g., Weather = sunny; Cavity = false(abbreviated as 

¬cavity) 
 

•Complex propositions formed from elementary propositions 
and standard logical connectives : 

 e.g., Weather = sunny ∨  Cavity = false 
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Probability 

• P(a) is the probability of proposition “a” 
– E.g., P(it will rain in London tomorrow) 
– The proposition a is actually true or false in the real-world 
– P(a) = “prior” or marginal or unconditional probability 
– Assumes no other information is available 
 

• Axioms: 
– 0  <= P(a)  <= 1 
– P(NOT(a))  = 1 – P(a) 
– P(true)  =  1 
– P(false) =  0 
– P(A OR B) = P(A) + P(B) – P(A AND B) 

 
• An agent that holds degrees of beliefs that contradict these axioms 

will act sub-optimally in some cases 
– e.g., de Finetti proved that there will be some combination of bets that 

forces such an unhappy agent to lose money every time. 
– No rational agent can have axioms that violate probability theory. 
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Conditional Probability 

• P(a|b) is the conditional probability of proposition a, conditioned 
on knowing that b is true, 
– E.g., P(rain in London tomorrow | raining in London today) 
– P(a|b) is a “posterior” or conditional probability 
– The updated probability that a is true, now that we know b 
– P(a|b) = P(a AND b) / P(b) 
– Syntax:  P(a | b) is the probability of a given that b is true 

• a and b can be any propositional sentences 
• e.g., p( John wins OR Mary wins | Bob wins AND Jack loses) 

 
• P(a|b) obeys the same rules as probabilities, 

– E.g., P(a | b)  + P(NOT(a) | b) = 1 
– All probabilities in effect are conditional probabilities 

• E.g., P(a) = P(a | our background knowledge) 
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Random Variables 

• A is a random variable taking values a1, a2, … am 
– Events are A= a1, A= a2, …. 
– We will focus on discrete random variables 

 
• Mutual exclusion 
          P(A = ai AND A = aj) = 0 

 
• Exhaustive 

 Σ  P(ai) = 1 
  

 MEE (Mutually Exclusive and Exhaustive) assumption is often 
useful 
 (but not always appropriate, e.g., disease-state for a patient) 
  

 For finite m, can represent P(A) as a table of m probabilities 
  
 For infinite m (e.g., number of tosses before “heads”) we can 

represent P(A) by a function (e.g., geometric) 
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Joint Distributions 

• Consider 2 random variables: A, B 
– P(a, b) is shorthand for P(A = a AND B=b) 

−    Σa Σb P(a, b) = 1 

– Can represent P(A, B) as a table of m2 numbers 
 

• Generalize to more than 2 random variables 
– E.g., A, B, C, … Z 
−   Σa Σb… Σz P(a, b, …, z)  = 1 

– P(A, B, …. Z) is a table of mK numbers, K = # variables 
• This is a potential problem in practice, e.g., m=2, K = 20 
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Linking Joint and Conditional Probabilities 

• Basic fact: 
      P(a, b) = P(a | b) P(b) 

 
– Why? Probability of a and b occurring is the same as probability of a 

occurring given b is true, times the probability of b occurring 
 

• Bayes rule: 
       P(a, b) = P(a | b) P(b) 
                  = P(b | a) P(a)   by definition 
 
    => P(b | a) =  P(a | b) P(b)  / P(a)       [Bayes rule] 
 
Why is this useful? 
 
  Often much more natural to express knowledge in a particular 

“direction”, e.g., in the causal direction  
 
      e.g., b = disease, a = symptoms 
      More natural to encode knowledge as P(a|b) than as P(b|a) 
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Sequential Bayesian Reasoning 

• h = hypothesis, e1, e2, .. en = evidence 
 

• P(h)  = prior 
 

• P(h | e1)  proportional to P(e1 | h) P(h) 
                                    =  likelihood of e1  x  prior(h) 
 
• P(h | e1, e2)  proportional to P(e1, e2 | h) P(h) 
             in turn can be written as P(e2| h, e1) P(e1|h) P(h) 
                 ~ likelihood of e2 x “prior”(h given e1) 
 
• Bayes rule supports sequential reasoning 

– Start with prior P(h) 
– New belief (posterior) = P(h | e1) 
– This becomes the “new prior” 
– Can use this to update to P(h | e1, e2), and so on….. 
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Computing with Probabilities: Law of Total Probability 

Law of Total Probability (aka “summing out” or marginalization) 
             P(a)  = Σb  P(a, b)  
                     = Σb  P(a | b) P(b)        where B is any random 

variable 
 
  

Why is this useful? 
  Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any 

“marginal” probability (e.g., P(b)) by summing out the other 
variables, e.g., 

                   

                 P(b)  = Σa Σc Σd P(a, b, c, d)  
 
We can compute any conditional probability given a joint 

distribution, e.g., 
                

              P(c | b)  = Σa Σd P(a, c, d | b)  
                        =  Σa Σd P(a, c, d, b) / P(b)   
                          where P(b) can be computed as above 
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Computing with Probabilities: 
The Chain Rule or Factoring 

We can always write 
      P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z) 
                                       (by definition of joint probability) 
 
 
Repeatedly applying this idea, we can write 
       P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z) 
 
 
This factorization holds for any ordering of the variables 
 
This is the chain rule for probabilities 
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Independence 

• 2 random variables A and B are independent iff 
                     P(a, b) = P(a) P(b)     for all values a, b 
 
• More intuitive (equivalent) conditional formulation 

– A and B are independent iff 
             P(a | b) = P(a)     OR   P(b | a) P(b),   for all values a, b 
 
– Intuitive interpretation: 
             P(a | b) = P(a) tells us that knowing b provides no change in our 

probability for a, i.e., b contains no information about a 
 

• Can generalize to more than 2 random variables 
 

• In practice true independence is very rare 
– “butterfly in China” effect 
– Weather and dental example in the text 
– Conditional independence is much more common and useful   

 
• Note: independence is an assumption we impose on our model of the 

world - it does not follow from basic axioms 
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Conditional Independence 

• 2 random variables A and B are conditionally independent given C iff 
                     P(a, b | c) = P(a | c) P(b | c)     for all values a, b, c 
 
• More intuitive (equivalent) conditional formulation 

– A and B are conditionally independent given C iff 
             P(a | b, c) = P(a | c)     OR   P(b | a, c) P(b | c),   for all values a, b, c 
 
– Intuitive interpretation: 
             P(a | b, c) = P(a | c) tells us that learning about b, given that we 

already know c, provides no change in our probability for a,  
    i.e., b contains no information about a beyond what c provides 
 

• Can generalize to more than 2 random variables 
– E.g., K different symptom variables X1, X2, … XK, and C = disease 

– P(X1, X2,…. XK | C) = Π  P(Xi | C) 
– Also known as the naïve Bayes assumption 
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Bayesian Networks 
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Your 1st Bayesian Network 

 
 

• Each node represents a random variable 
• Arrows indicate cause-effect relationship 
• Shaded nodes represent observed 

variables 
 

• Whodunit model in “words”: 
– Culprit chooses a weapon; 
– You observe the weapon and infer the culprit 

Culprit Weapon 
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Bayesian Networks 

• Represent dependence/independence via a directed graph   
– Nodes = random variables 
– Edges = direct dependence 

• Structure of the graph  Conditional independence 
relations 

• Recall the chain rule of repeated conditioning: 
 
 

 
 

• Requires that graph is acyclic (no directed cycles) 
• 2 components to a Bayesian network 

– The graph structure (conditional independence assumptions) 
– The numerical probabilities (for each variable given its 

parents) 
 

The full joint distribution The graph-structured approximation 
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Example of a simple 
Bayesian network 

A B 

C 

  

Probability model has simple factored form 

Directed edges =>  direct dependence  

Absence of an edge  => conditional independence 

Also known as belief networks, graphical models, causal networks 

Other formulations, e.g., undirected graphical models 

p(A,B,C) = p(C|A,B)p(A|B)p(B) 
             = p(C|A,B)p(A)p(B) 
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Examples of 3-way Bayesian 
Networks 

A C B Marginal Independence: 
p(A,B,C) = p(A) p(B) p(C) 
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Examples of 3-way Bayesian 
Networks 

A 

C B 

Conditionally independent effects: 
p(A,B,C) = p(B|A)p(C|A)p(A) 
 
B and C are conditionally independent 
Given A 
 
e.g., A is a disease, and we model  
B and C as conditionally independent 
symptoms given A 
 
e.g. A is culprit, B is murder weapon 
and C is fingerprints on door to the  
guest’s room 
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Examples of 3-way Bayesian 
Networks 

A B 

C 

Independent Causes: 
p(A,B,C) = p(C|A,B)p(A)p(B) 
 
 
“Explaining away” effect: 
Given C, observing A makes B less likely 
e.g., earthquake/burglary/alarm example 
 
A and B are (marginally) independent  
but become dependent once C is known 
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Examples of 3-way Bayesian 
Networks 

A C B Markov chain dependence: 
p(A,B,C) = p(C|B) p(B|A)p(A) 
 
e.g. If Prof. Lathrop goes to 
party, then I might go to party. 
If I go to party, then my wife  
might go to party. 
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Bigger Example 

• Consider the following 5 binary variables: 
– B = a burglary occurs at your house 
– E = an earthquake occurs at your house 
– A = the alarm goes off 
– J  = John calls to report the alarm 
– M = Mary calls to report the alarm 

 

• Sample Query: What is P(B|M, J) ? 
• Using full joint distribution to answer this 

question requires  
– 25 - 1= 31 parameters 

•  Can we use prior domain knowledge to come up 
with a Bayesian network that requires fewer 
probabilities? 
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Constructing a Bayesian Network 

• Order variables in terms of causality (may be a partial 
order) 

            e.g., {E, B} -> {A} -> {J, M} 
 

• P(J, M, A, E, B) =  P(J, M | A, E, B)   P(A| E, B) P(E, B) 
                           ≈  P(J, M | A)            P(A| E, B) P(E) P(B) 
          ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) 

 
• These conditional independence assumptions are reflected in 

the graph structure of the Bayesian network 
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The Resulting Bayesian Network 
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The Bayesian Network from a different 
Variable Ordering 

{M} -> {J} -> {A} -> {B} -> {E} 

P(J, M, A, E, B) =  
 P(M) P(J|M) P(A|M,J)  P(B|A) 
P(E|A,B) 
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Inference by Variable Elimination 

• Say that query is P(B|j,m) 
– P(B|j,m) = P(B,j,m) / P(j,m) = α P(B,j,m) 

 

• Apply evidence to expression for joint 
distribution 
– P(j,m,A,E,B) = P(j|A)P(m|A)P(A|E,B)P(E)P(B) 

 

• Marginalize out A and E 
 
 

Sum is over states 
of variable A – i.e. 
{a,¬a} 

Distribution 
over variable B 
– i.e. over 
states {b,¬b} 
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Naïve Bayes Model 

X1 X2 X3 

C 

Xn 

                 P(C | X1,…Xn)  =  α  Π  P(Xi | C)  P (C) 
 
Features X are conditionally independent given the class variable C 
 
Widely used in machine learning 
 e.g., spam email classification: X’s = counts of words in emails 
 
Probabilities P(C) and  P(Xi | C) can easily be estimated from labeled data 
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Outline 

• Knowledge Representation using First-Order Logic 
• Unification in First-Order Logic 
• Inference in First-Order Logic 
• Probability, Bayesian Networks 
• Machine Learning 

 
• Questions on any topic 

 
• Review pre-mid-term material if time and class interest 
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The importance of a good representation 

• Properties of a good representation: 
 

• Reveals important features  
• Hides irrelevant detail 
• Exposes useful constraints 
• Makes frequent operations easy-to-do 
• Supports local inferences from local features 

• Called the “soda straw” principle or “locality” principle 
• Inference from features “through a soda straw” 

• Rapidly or efficiently computable 
• It’s nice to be fast 
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Reveals important features / Hides irrelevant detail 

• “You can’t learn what you can’t represent.” --- G. Sussman 
 
• In search:  A man is traveling to market with a fox, a goose, 

and a bag of oats.  He comes to a river.  The only way across 
the river is a boat that can hold the man and exactly one of the 
fox, goose or bag of oats.  The fox will eat the goose if left alone 
with it, and the goose will eat the oats if left alone with it. 
 

• A good representation makes this problem easy: 
 
1110 
0010 
1010 
1111 
0001 
0101 

 
  

0000 1101 

1011 

0100 1110 

0010 1010 1111 

0001 

0101 
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Exposes useful constraints 

• “You can’t learn what you can’t represent.” --- G. Sussman 
 
• In logic: If the unicorn is mythical, then it is immortal, but if it 

is not mythical, then it is a mortal mammal. If the unicorn is 
either immortal or a mammal, then it is horned. The unicorn is 
magical if it is horned. 
 

• A good representation makes this problem easy: 
 

 ( ¬ Y ˅ ¬ R ) ^ ( Y ˅ R ) ^ ( Y ˅ M ) ^ ( R ˅ H ) ^ ( ¬ M ˅ H ) ^ ( ¬ H ˅ G ) 
 

 
1010 
1111 
0001 
0101 
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Makes frequent operations easy-to-do 

•Roman numerals  
• M=1000, D=500, C=100, L=50, X=10, V=5, I=1 
• 2011 = MXI;  1776 = MDCCLXXVI 

 
• Long division is very tedious (try MDCCLXXVI / XVI) 
• Testing for N < 1000 is very easy (first letter is not “M”) 

 
•Arabic numerals 

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, “.” 
 

• Long division is much easier (try 1776 / 16) 
• Testing for N < 1000 is slightly harder (have to scan the string) 
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Supports local inferences from local features 

• Linear vector of pixels = highly non-local inference for vision 
 
 
 

• Rectangular array of pixels = local inference for vision 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

Corner!! 

… 0 1 0 … 0 1 1 … 0 0 0 … 

Corner?? 
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Terminology 

• Attributes 
– Also known as features, variables, independent variables, 

covariates 
 

• Target Variable 
– Also known as goal predicate, dependent variable, … 

 
 

• Classification 
– Also known as discrimination, supervised classification, … 

 
• Error function 

– Objective function, loss function, … 
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Inductive learning 

• Let x represent the input vector of attributes 
 

• Let f(x) represent the value of the target variable for x 
– The implicit mapping from x to f(x) is unknown to us 
– We just have training data pairs, D = {x, f(x)} available 

 
• We want to learn a mapping from x to f, i.e.,  
            h(x; θ) is “close” to f(x) for all training data points x           
 
            θ are the parameters of our predictor h(..) 

 
• Examples: 

– h(x; θ) = sign(w1x1 + w2x2+ w3) 
 

– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4)) 
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Decision Tree Representations 

• Decision trees are fully expressive 
– can represent any Boolean function 
– Every path in the tree could represent 1 row in the truth table 
– Yields an exponentially large tree 

• Truth table is of size 2d, where d is the number of attributes 
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Pseudocode for Decision tree learning 
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Information Gain 

• H(p) = entropy of class distribution at a particular node 
 

• H(p | A) = conditional entropy = average entropy of 
conditional class distribution, after we have partitioned the 
data according to the values in A 
 

• Gain(A) = H(p) – H(p | A) 
 

• Simple rule in decision tree learning 
– At each internal node, split on the node with the largest 

information gain (or equivalently, with smallest H(p|A)) 
 

• Note that by definition, conditional entropy can’t be greater 
than the entropy 
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How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 

Error on Test Data 

Ideal Range 
for Model Complexity 

Overfitting Underfitting 
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Disjoint Validation Data Sets 

Full Data Set 

Training Data 

Validation Data 

1st partition 
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Disjoint Validation Data Sets 

Full Data Set 

Training Data 

Validation Data 
Validation  
Data 

1st partition 2nd partition 
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Classification in Euclidean Space 

• A classifier is a partition of the space x into disjoint decision 
regions 
– Each region has a label attached  
– Regions with the same label need not be contiguous 
– For a new test point, find what decision region it is in, and predict 

the corresponding label 
 

• Decision boundaries = boundaries between decision regions 
– The “dual representation” of decision regions 

 
• We can characterize a classifier by the equations for its 

decision boundaries 
 

• Learning a classifier  searching for the decision boundaries 
that optimize our objective function  
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Decision Tree Example 

t1 t3 

t2 

Income 

Debt 
Income > t1 

Debt > t2 

Income > t3 
Note: tree boundaries are   
linear and axis-parallel 
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Another Example: Nearest Neighbor Classifier 

• The nearest-neighbor classifier 
– Given a test point x’, compute the distance between x’ and each 

input data point  
– Find the closest neighbor in the training data 
– Assign x’ the class label of this neighbor 
– (sort of generalizes minimum distance classifier to exemplars) 

 
• If Euclidean distance is used as the distance measure (the 

most common choice), the nearest neighbor classifier results 
in piecewise linear decision boundaries 
 

• Many extensions 
– e.g., kNN, vote based on k-nearest neighbors 
– k can be chosen by cross-validation 
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75 
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Linear Classifiers 

• Linear classifier  single linear decision boundary 
   (for 2-class case)  
 

• We can always represent a linear decision boundary by a linear equation: 
           w1 x1 + w2 x2 + … + wd xd    =  Σ wj xj  =  wt x = 0 
 
• In d dimensions, this defines a (d-1) dimensional hyperplane 

– d=3, we get a plane;  d=2, we get a line 
 

• For prediction we simply see if Σ wj xj > 0   
 

• The wi are the weights (parameters) 
– Learning consists of searching in the d-dimensional weight space for the set of weights 

(the linear boundary) that minimizes an error measure 
– A threshold can be introduced by a “dummy” feature that is always one; it weight 

corresponds to (the negative of) the threshold 
 
 

• Note that a minimum distance classifier is a special (restricted) case of a linear 
classifier 
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The Perceptron Classifier  (pages 740-743 in text) 

• The perceptron classifier is just another name for a linear 
classifier for 2-class data, i.e., 

       output(x) = sign( Σ wj xj ) 
 

• Loosely motivated by a simple model of how neurons fire 
 

• For mathematical convenience, class labels are +1 for one 
class and -1 for the other 
 

• Two major types of algorithms for training perceptrons 
– Objective function = classification accuracy (“error correcting”) 
– Objective function = squared error (use gradient descent) 

 
– Gradient descent is generally faster and more efficient – but there 

is a problem!  No gradient! 
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Two different types of perceptron output 

o(f) 

f 

x-axis below is f(x) = f  = weighted sum of inputs 
y-axis is the perceptron output 

σ(f) 

Thresholded output, 
 takes values +1 or -1 
 
  

Sigmoid output, takes 
real values between -1 and +1 
 
The sigmoid is in effect an approximation 
to the threshold function above,  but 
has a gradient that we can use for learning  

f 
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Gradient Descent Update Equation 

 
• From basic calculus, for perceptron with sigmoid, and squared 

error objective function, gradient for a single input x(i) is 
 ∆ ( E[w] )  =   - ( y(i) – σ[f(i)] ) ∂σ[f(i)] xj(i) 

 
• Gradient descent weight update rule: 

          
  wj    =      wj   + η ( y(i) – σ[f(i)] ) ∂σ[f(i)] xj(i) 

 
 
 

–  can rewrite as: 
             wj    =      wj   +  η * error * c * xj(i) 
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Pseudo-code for Perceptron Training   

• Inputs:  N features, N targets (class labels), learning rate  η  
• Outputs: a set of learned weights 

Initialize each wj   (e.g.,randomly)  
 
While (termination condition not satisfied) 

for i = 1: N   % loop over data points (an iteration) 
for j= 1 : d    % loop over weights 

   deltawj = η ( y(i) – σ[f(i)] ) ∂σ[f(i)] xj(i) 
   wj   = wj   +  deltawj 

end 
calculate termination condition 
end 
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Multi-Layer Perceptrons  (p744-747 in text) 

• What if we took K perceptrons and trained them in parallel and 
then took a weighted sum of their sigmoidal outputs? 
– This is a multi-layer neural network with a single “hidden” layer 

(the outputs of the first set of perceptrons) 
– If we train them jointly in parallel, then intuitively different 

perceptrons could learn different parts of the solution 
• Mathematically, they define different local decision boundaries 

in the input space, giving us a more powerful model 
 

• How would we train such a model? 
– Backpropagation algorithm = clever way to do gradient descent 
– Bad news: many local minima and many parameters 

•  training is hard and slow 
– Neural networks generated much excitement in AI research in the 

late 1980’s and 1990’s 
• But now techniques like boosting and support vector machines 

are often preferred 
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Naïve Bayes Model                  (p. 808 R&N 3rd ed., 718 2nd ed.) 

Y1 Y2 Y3 

C 

Yn 

                 P(C | Y1,…Yn)  =  α  Π  P(Yi | C)  P (C) 
 
Features Y are conditionally independent given the class variable C 
 
Widely used in machine learning 
 e.g., spam email classification: Y’s = counts of words in emails 
 
Conditional probabilities P(Yi | C) can easily be estimated from labeled data 
 Problem:  Need to avoid zeroes, e.g., from limited training data 
 Solutions: Pseudo-counts, beta[a,b] distribution, etc. 
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Naïve Bayes Model (2) 

                 P(C | X1,…Xn)  =  α  Π  P(Xi | C)  P (C) 
 
Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data 
 
P(C = cj)  ≈ #(Examples with class label cj)  /  #(Examples) 
 
P(Xi = xik | C = cj) 
      ≈ #(Examples with Xi value xik and class label cj)  
  /  #(Examples with class label cj) 
 
Usually easiest to work with logs 
 log [ P(C | X1,…Xn) ] 
   =  log α +   Σ  [ log P(Xi | C)  + log P (C) ] 
 
DANGER: Suppose ZERO examples with Xi value xik and class label cj ? 
An unseen example with Xi value xik will NEVER predict class label cj ! 
 
Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc. 
Theoretical solutions: Bayesian inference, beta distribution, etc. 
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Classifier Bias — Decision Tree or Linear Perceptron? 
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Classifier Bias — Decision Tree or Linear Perceptron? 
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Classifier Bias — Decision Tree or Linear Perceptron? 
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Classifier Bias — Decision Tree or Linear Perceptron? 
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Outline 

• Knowledge Representation using First-Order Logic 
• Unification in First-Order Logic 
• Inference in First-Order Logic 
• Probability, Bayesian Networks 
• Machine Learning 

 
• Questions on any topic 

 
• Review pre-mid-term material if time and class interest 
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