
1

Final Catch-up, Review

2

Outline

• Knowledge Representation using First-Order Logic
• Unification in First-Order Logic
• Inference in First-Order Logic
• Probability, Bayesian Networks
• Machine Learning

• Questions on any topic

• Review pre-mid-term material if time and class interest

3

Knowledge Representation using First-Order Logic

• Propositional Logic is Useful --- but has Limited Expressive Power

• First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
– FOPC has greatly expanded expressive power, though still limited.

• New Ontology

– The world consists of OBJECTS (for propositional logic, the world was facts).
– OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS.

• New Syntax

– Constants, Predicates, Functions, Properties, Quantifiers.

• New Semantics
– Meaning of new syntax.

• Knowledge engineering in FOL

4

Review: Syntax of FOL: Basic elements

• Constants KingJohn, 2, UCI,...

• Predicates Brother, >,...

• Functions Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Connectives ¬, ⇒, ∧, ∨, ⇔

• Equality =

• Quantifiers ∀, ∃

5

Syntax of FOL: Basic syntax elements are symbols

• Constant Symbols:
– Stand for objects in the world.

• E.g., KingJohn, 2, UCI, ...

• Predicate Symbols

– Stand for relations (maps a tuple of objects to a truth-value)
• E.g., Brother(Richard, John), greater_than(3,2), ...

– P(x, y) is usually read as “x is P of y.”
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.”

• Function Symbols

– Stand for functions (maps a tuple of objects to an object)
• E.g., Sqrt(3), LeftLegOf(John), ...

• Model (world) = set of domain objects, relations, functions
• Interpretation maps symbols onto the model (world)

– Very many interpretations are possible for each KB and world!
– Job of the KB is to rule out models inconsistent with our knowledge.

6

Syntax of FOL: Terms

• Term = logical expression that refers to an object

• There are two kinds of terms:

– Constant Symbols stand for (or name) objects:

• E.g., KingJohn, 2, UCI, Wumpus, ...

– Function Symbols map tuples of objects to an object:
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
• This is nothing but a complicated kind of name

– No “subroutine” call, no “return value”

7

Syntax of FOL: Atomic Sentences

• Atomic Sentences state facts (logical truth values).
– An atomic sentence is a Predicate symbol, optionally

followed by a parenthesized list of any argument terms
– E.g., Married(Father(Richard), Mother(John))
– An atomic sentence asserts that some relationship (some

predicate) holds among the objects that are its arguments.

• An Atomic Sentence is true in a given model if the
relation referred to by the predicate symbol holds among
the objects (terms) referred to by the arguments.

8

Syntax of FOL: Connectives & Complex Sentences

• Complex Sentences are formed in the same way,
and are formed using the same logical connectives,
as we already know from propositional logic

• The Logical Connectives:

– ⇔ biconditional
– ⇒ implication
– ∧ and
– ∨ or
– ¬ negation

• Semantics for these logical connectives are the same as

we already know from propositional logic.

9

Syntax of FOL: Variables

• Variables range over objects in the world.

• A variable is like a term because it represents an object.

• A variable may be used wherever a term may be used.
– Variables may be arguments to functions and predicates.

• (A term with NO variables is called a ground term.)
• (A variable not bound by a quantifier is called free.)

10

Syntax of FOL: Logical Quantifiers

• There are two Logical Quantifiers:
– Universal: ∀ x P(x) means “For all x, P(x).”

• The “upside-down A” reminds you of “ALL.”
– Existential: ∃ x P(x) means “There exists x such that, P(x).”

• The “upside-down E” reminds you of “EXISTS.”

• Syntactic “sugar” --- we really only need one quantifier.
– ∀ x P(x) ≡ ¬∃ x ¬P(x)
– ∃ x P(x) ≡ ¬∀ x ¬P(x)
– You can ALWAYS convert one quantifier to the other.

• RULES: ∀ ≡ ¬∃¬ and ∃ ≡ ¬∀¬

• RULE: To move negation “in” across a quantifier,

change the quantifier to “the other quantifier”
and negate the predicate on “the other side.”

– ¬∀ x P(x) ≡ ∃ x ¬P(x)
– ¬∃ x P(x) ≡ ∀ x ¬P(x)

11

Semantics: Interpretation

• An interpretation of a sentence (wff) is an assignment that
maps
– Object constant symbols to objects in the world,
– n-ary function symbols to n-ary functions in the world,
– n-ary relation symbols to n-ary relations in the world

• Given an interpretation, an atomic sentence has the value
“true” if it denotes a relation that holds for those individuals
denoted in the terms. Otherwise it has the value “false.”
– Example: Kinship world:

• Symbols = Ann, Bill, Sue, Married, Parent, Child, Sibling, …
– World consists of individuals in relations:

• Married(Ann,Bill) is false, Parent(Bill,Sue) is true, …

12

Combining Quantifiers --- Order (Scope)

The order of “unlike” quantifiers is important.
∀ x ∃ y Loves(x,y)

– For everyone (“all x”) there is someone (“exists y”) whom they love

∃ y ∀ x Loves(x,y)
 - there is someone (“exists y”) whom everyone loves (“all x”)

Clearer with parentheses: ∃ y (∀ x Loves(x,y))

The order of “like” quantifiers does not matter.
 ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y)
 ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y)

13

De Morgan’s Law for Quantifiers

()
()
()
()

x P x P
x P x P

x P x P
x P x P

∀ ≡¬∃ ¬

∃ ≡¬∀ ¬

¬∀ ≡∃ ¬

¬∃ ≡∀ ¬

()
()

()
()

P Q P Q
P Q P Q

P Q P Q
P Q P Q

∧ ≡ ¬ ¬ ∨ ¬

∨ ≡ ¬ ¬ ∧ ¬

¬ ∧ ≡ ¬ ∨ ¬

¬ ∨ ≡ ¬ ∧ ¬

De Morgan’s Rule Generalized De Morgan’s Rule

Rule is simple: if you bring a negation inside a disjunction or a conjunction,
always switch between them (or and, and  or).

14

Outline

• Knowledge Representation using First-Order Logic
• Unification in First-Order Logic
• Inference in First-Order Logic
• Probability, Bayesian Networks
• Machine Learning

• Questions on any topic

• Review pre-mid-term material if time and class interest

15

Inference in First-Order Logic --- Summary

• FOL inference techniques

– Unification
– Generalized Modus Ponens

• Forward-chaining
• Backward-chaining

– Resolution-based inference
• Refutation-complete

16

Unification

• Recall: Subst(θ, p) = result of substituting θ into sentence p

• Unify algorithm: takes 2 sentences p and q and returns a
unifier if one exists

 Unify(p,q) = θ where Subst(θ, p) = Subst(θ, q)

• Example:
 p = Knows(John,x)
 q = Knows(John, Jane)

 Unify(p,q) = {x/Jane}

17

Unification examples

• simple example: query = Knows(John,x), i.e., who does John know?

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) Knows(x,OJ) {fail}

• Last unification fails: only because x can’t take values John and OJ at

the same time
– But we know that if John knows x, and everyone (x) knows OJ, we should be

able to infer that John knows OJ

• Problem is due to use of same variable x in both sentences

• Simple solution: Standardizing apart eliminates overlap of variables,
e.g., Knows(z,OJ)

18

Unification

• To unify Knows(John,x) and Knows(y,z),

 θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

• The first unifier is more general than the second.

• There is a single most general unifier (MGU) that is unique up

to renaming of variables.

MGU = { y/John, x/z }

• General algorithm in Figure 9.1 in the text

19

Hard matching example

• To unify the grounded propositions with premises of the implication
you need to solve a CSP!

• Colorable() is inferred iff the CSP has a solution
• CSPs include 3SAT as a special case, hence matching is NP-hard

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒
Colorable()

Diff(Red,Blue) Diff (Red,Green)
Diff(Green,Red) Diff(Green,Blue)
Diff(Blue,Red) Diff(Blue,Green)

20

Inference appoaches in FOL

• Forward-chaining
– Uses GMP to add new atomic sentences
– Useful for systems that make inferences as information streams in
– Requires KB to be in form of first-order definite clauses

• Backward-chaining

– Works backwards from a query to try to construct a proof
– Can suffer from repeated states and incompleteness
– Useful for query-driven inference
– Requires KB to be in form of first-order definite clauses

• Resolution-based inference (FOL)

– Refutation-complete for general KB
• Can be used to confirm or refute a sentence p (but not to

generate all entailed sentences)
– Requires FOL KB to be reduced to CNF
– Uses generalized version of propositional inference rule

• Note that all of these methods are generalizations of their
propositional equivalents

21

Generalized Modus Ponens (GMP)

 p1', p2', … , pn', (p1 ∧ p2 ∧ … ∧ pn ⇒q)

 Subst(θ,q)

Example:
p1' is King(John) p1 is King(x)
p2' is Greedy(y) p2 is Greedy(x)
θ is {x/John,y/John} q is Evil(x)
Subst(θ,q) is Evil(John)

• Implicit assumption that all variables universally quantified

where we can unify pi‘ and pi for all i

22

Completeness and Soundness of GMP

• GMP is sound
– Only derives sentences that are logically entailed
– See proof in text on p. 326 (3rd ed.; p. 276, 2nd ed.)

• GMP is complete for a KB consisting of definite clauses
– Complete: derives all sentences that are entailed
– OR…answers every query whose answers are entailed by such a KB

– Definite clause: disjunction of literals of which exactly 1 is positive,
 e.g., King(x) AND Greedy(x) -> Evil(x)
 NOT(King(x)) OR NOT(Greedy(x)) OR Evil(x)

23

Properties of forward chaining

• Sound and complete for first-order definite clauses

• Datalog = first-order definite clauses + no functions

• FC terminates for Datalog in finite number of iterations

• May not terminate in general if α is not entailed

• Incremental forward chaining: no need to match a rule on iteration k if
a premise wasn't added on iteration k-1

⇒ match each rule whose premise contains a newly added positive literal

24

Properties of backward chaining

• Depth-first recursive proof search:
– Space is linear in size of proof.

• Incomplete due to infinite loops

– ⇒ fix by checking current goal against every goal on stack

• Inefficient due to repeated subgoals (both success and failure)
– ⇒ fix using caching of previous results (memoization)

• Widely used for logic programming

• PROLOG:
 backward chaining with Horn clauses + bells & whistles.

25

Resolution in FOL

• Full first-order version:
l1 ∨ ··· ∨ lk, m1 ∨ ··· ∨ mn

Subst(θ , l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)

 where Unify(li, ¬mj) = θ.

• The two clauses are assumed to be standardized apart so that they

share no variables.

• For example,

¬Rich(x) ∨ Unhappy(x), Rich(Ken)
Unhappy(Ken)

 with θ = {x/Ken}

• Apply resolution steps to CNF(KB ∧ ¬α); complete for FOL

26

Resolution proof

¬

27

Converting FOL sentences to CNF

Original sentence:
 Everyone who loves all animals is loved by someone:

∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

1. Eliminate biconditionals and implications

∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]

2. Move ¬ inwards:
 Recall: ¬∀x p ≡ ∃x ¬p, ¬ ∃x p ≡ ∀x ¬p

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]

∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]

28

Conversion to CNF contd.

3. Standardize variables:
 each quantifier should use a different one

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation.
 Each existential variable is replaced by a Skolem function of the

enclosing universally quantified variables:

 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

(reason: animal y could be a different animal for each x.)

29

Conversion to CNF contd.

5. Drop universal quantifiers:

 [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

 (all remaining variables assumed to be universally quantified)

6. Distribute ∨ over ∧ :

 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

Original sentence is now in CNF form – can apply same ideas to all

sentences in KB to convert into CNF

Also need to include negated query

Then use resolution to attempt to derive the empty clause
 which show that the query is entailed by the KB

30

Outline

• Knowledge Representation using First-Order Logic
• Unification in First-Order Logic
• Inference in First-Order Logic
• Probability, Bayesian Networks
• Machine Learning

• Questions on any topic

• Review pre-mid-term material if time and class interest

31

Syntax

•Basic element: random variable
•Similar to propositional logic: possible worlds defined by

assignment of values to random variables.

•Booleanrandom variables
 e.g., Cavity (= do I have a cavity?)
•Discreterandom variables
 e.g., Weather is one of <sunny,rainy,cloudy,snow>
•Domain values must be exhaustive and mutually exclusive

•Elementary proposition is an assignment of a value to a

random variable:
 e.g., Weather = sunny; Cavity = false(abbreviated as

¬cavity)

•Complex propositions formed from elementary propositions
and standard logical connectives :

 e.g., Weather = sunny ∨ Cavity = false

32

Probability

• P(a) is the probability of proposition “a”
– E.g., P(it will rain in London tomorrow)
– The proposition a is actually true or false in the real-world
– P(a) = “prior” or marginal or unconditional probability
– Assumes no other information is available

• Axioms:
– 0 <= P(a) <= 1
– P(NOT(a)) = 1 – P(a)
– P(true) = 1
– P(false) = 0
– P(A OR B) = P(A) + P(B) – P(A AND B)

• An agent that holds degrees of beliefs that contradict these axioms

will act sub-optimally in some cases
– e.g., de Finetti proved that there will be some combination of bets that

forces such an unhappy agent to lose money every time.
– No rational agent can have axioms that violate probability theory.

33

Conditional Probability

• P(a|b) is the conditional probability of proposition a, conditioned
on knowing that b is true,
– E.g., P(rain in London tomorrow | raining in London today)
– P(a|b) is a “posterior” or conditional probability
– The updated probability that a is true, now that we know b
– P(a|b) = P(a AND b) / P(b)
– Syntax: P(a | b) is the probability of a given that b is true

• a and b can be any propositional sentences
• e.g., p(John wins OR Mary wins | Bob wins AND Jack loses)

• P(a|b) obeys the same rules as probabilities,

– E.g., P(a | b) + P(NOT(a) | b) = 1
– All probabilities in effect are conditional probabilities

• E.g., P(a) = P(a | our background knowledge)

34

Random Variables

• A is a random variable taking values a1, a2, … am
– Events are A= a1, A= a2, ….
– We will focus on discrete random variables

• Mutual exclusion
 P(A = ai AND A = aj) = 0

• Exhaustive

 Σ P(ai) = 1

 MEE (Mutually Exclusive and Exhaustive) assumption is often
useful
 (but not always appropriate, e.g., disease-state for a patient)

 For finite m, can represent P(A) as a table of m probabilities

 For infinite m (e.g., number of tosses before “heads”) we can

represent P(A) by a function (e.g., geometric)

35

Joint Distributions

• Consider 2 random variables: A, B
– P(a, b) is shorthand for P(A = a AND B=b)

− Σa Σb P(a, b) = 1

– Can represent P(A, B) as a table of m2 numbers

• Generalize to more than 2 random variables
– E.g., A, B, C, … Z
− Σa Σb… Σz P(a, b, …, z) = 1

– P(A, B, …. Z) is a table of mK numbers, K = # variables
• This is a potential problem in practice, e.g., m=2, K = 20

36

Linking Joint and Conditional Probabilities

• Basic fact:
 P(a, b) = P(a | b) P(b)

– Why? Probability of a and b occurring is the same as probability of a

occurring given b is true, times the probability of b occurring

• Bayes rule:
 P(a, b) = P(a | b) P(b)
 = P(b | a) P(a) by definition

 => P(b | a) = P(a | b) P(b) / P(a) [Bayes rule]

Why is this useful?

 Often much more natural to express knowledge in a particular

“direction”, e.g., in the causal direction

 e.g., b = disease, a = symptoms
 More natural to encode knowledge as P(a|b) than as P(b|a)

37

Sequential Bayesian Reasoning

• h = hypothesis, e1, e2, .. en = evidence

• P(h) = prior

• P(h | e1) proportional to P(e1 | h) P(h)
 = likelihood of e1 x prior(h)

• P(h | e1, e2) proportional to P(e1, e2 | h) P(h)
 in turn can be written as P(e2| h, e1) P(e1|h) P(h)
 ~ likelihood of e2 x “prior”(h given e1)

• Bayes rule supports sequential reasoning

– Start with prior P(h)
– New belief (posterior) = P(h | e1)
– This becomes the “new prior”
– Can use this to update to P(h | e1, e2), and so on…..

38

Computing with Probabilities: Law of Total Probability

Law of Total Probability (aka “summing out” or marginalization)
 P(a) = Σb P(a, b)
 = Σb P(a | b) P(b) where B is any random

variable

Why is this useful?
 Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any

“marginal” probability (e.g., P(b)) by summing out the other
variables, e.g.,

 P(b) = Σa Σc Σd P(a, b, c, d)

We can compute any conditional probability given a joint

distribution, e.g.,

 P(c | b) = Σa Σd P(a, c, d | b)
 = Σa Σd P(a, c, d, b) / P(b)
 where P(b) can be computed as above

39

Computing with Probabilities:
The Chain Rule or Factoring

We can always write
 P(a, b, c, … z) = P(a | b, c, …. z) P(b, c, … z)
 (by definition of joint probability)

Repeatedly applying this idea, we can write
 P(a, b, c, … z) = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z)

This factorization holds for any ordering of the variables

This is the chain rule for probabilities

40

Independence

• 2 random variables A and B are independent iff
 P(a, b) = P(a) P(b) for all values a, b

• More intuitive (equivalent) conditional formulation

– A and B are independent iff
 P(a | b) = P(a) OR P(b | a) P(b), for all values a, b

– Intuitive interpretation:
 P(a | b) = P(a) tells us that knowing b provides no change in our

probability for a, i.e., b contains no information about a

• Can generalize to more than 2 random variables

• In practice true independence is very rare
– “butterfly in China” effect
– Weather and dental example in the text
– Conditional independence is much more common and useful

• Note: independence is an assumption we impose on our model of the

world - it does not follow from basic axioms

41

Conditional Independence

• 2 random variables A and B are conditionally independent given C iff
 P(a, b | c) = P(a | c) P(b | c) for all values a, b, c

• More intuitive (equivalent) conditional formulation

– A and B are conditionally independent given C iff
 P(a | b, c) = P(a | c) OR P(b | a, c) P(b | c), for all values a, b, c

– Intuitive interpretation:
 P(a | b, c) = P(a | c) tells us that learning about b, given that we

already know c, provides no change in our probability for a,
 i.e., b contains no information about a beyond what c provides

• Can generalize to more than 2 random variables
– E.g., K different symptom variables X1, X2, … XK, and C = disease

– P(X1, X2,…. XK | C) = Π P(Xi | C)
– Also known as the naïve Bayes assumption

42

Bayesian Networks

43

Your 1st Bayesian Network

• Each node represents a random variable
• Arrows indicate cause-effect relationship
• Shaded nodes represent observed

variables

• Whodunit model in “words”:
– Culprit chooses a weapon;
– You observe the weapon and infer the culprit

Culprit Weapon

44

Bayesian Networks

• Represent dependence/independence via a directed graph
– Nodes = random variables
– Edges = direct dependence

• Structure of the graph  Conditional independence
relations

• Recall the chain rule of repeated conditioning:

• Requires that graph is acyclic (no directed cycles)
• 2 components to a Bayesian network

– The graph structure (conditional independence assumptions)
– The numerical probabilities (for each variable given its

parents)

The full joint distribution The graph-structured approximation

45

Example of a simple
Bayesian network

A B

C

Probability model has simple factored form

Directed edges => direct dependence

Absence of an edge => conditional independence

Also known as belief networks, graphical models, causal networks

Other formulations, e.g., undirected graphical models

p(A,B,C) = p(C|A,B)p(A|B)p(B)
 = p(C|A,B)p(A)p(B)

46

Examples of 3-way Bayesian
Networks

A C B Marginal Independence:
p(A,B,C) = p(A) p(B) p(C)

47

Examples of 3-way Bayesian
Networks

A

C B

Conditionally independent effects:
p(A,B,C) = p(B|A)p(C|A)p(A)

B and C are conditionally independent
Given A

e.g., A is a disease, and we model
B and C as conditionally independent
symptoms given A

e.g. A is culprit, B is murder weapon
and C is fingerprints on door to the
guest’s room

48

Examples of 3-way Bayesian
Networks

A B

C

Independent Causes:
p(A,B,C) = p(C|A,B)p(A)p(B)

“Explaining away” effect:
Given C, observing A makes B less likely
e.g., earthquake/burglary/alarm example

A and B are (marginally) independent
but become dependent once C is known

49

Examples of 3-way Bayesian
Networks

A C B Markov chain dependence:
p(A,B,C) = p(C|B) p(B|A)p(A)

e.g. If Prof. Lathrop goes to
party, then I might go to party.
If I go to party, then my wife
might go to party.

50

Bigger Example

• Consider the following 5 binary variables:
– B = a burglary occurs at your house
– E = an earthquake occurs at your house
– A = the alarm goes off
– J = John calls to report the alarm
– M = Mary calls to report the alarm

• Sample Query: What is P(B|M, J) ?
• Using full joint distribution to answer this

question requires
– 25 - 1= 31 parameters

• Can we use prior domain knowledge to come up
with a Bayesian network that requires fewer
probabilities?

51

Constructing a Bayesian Network

• Order variables in terms of causality (may be a partial
order)

 e.g., {E, B} -> {A} -> {J, M}

• P(J, M, A, E, B) = P(J, M | A, E, B) P(A| E, B) P(E, B)
 ≈ P(J, M | A) P(A| E, B) P(E) P(B)
 ≈ P(J | A) P(M | A) P(A| E, B) P(E) P(B)

• These conditional independence assumptions are reflected in

the graph structure of the Bayesian network

52

The Resulting Bayesian Network

53

The Bayesian Network from a different
Variable Ordering

{M} -> {J} -> {A} -> {B} -> {E}

P(J, M, A, E, B) =
 P(M) P(J|M) P(A|M,J) P(B|A)
P(E|A,B)

54

Inference by Variable Elimination

• Say that query is P(B|j,m)
– P(B|j,m) = P(B,j,m) / P(j,m) = α P(B,j,m)

• Apply evidence to expression for joint
distribution
– P(j,m,A,E,B) = P(j|A)P(m|A)P(A|E,B)P(E)P(B)

• Marginalize out A and E

Sum is over states
of variable A – i.e.
{a,¬a}

Distribution
over variable B
– i.e. over
states {b,¬b}

55

Naïve Bayes Model

X1 X2 X3

C

Xn

 P(C | X1,…Xn) = α Π P(Xi | C) P (C)

Features X are conditionally independent given the class variable C

Widely used in machine learning
 e.g., spam email classification: X’s = counts of words in emails

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

56

Outline

• Knowledge Representation using First-Order Logic
• Unification in First-Order Logic
• Inference in First-Order Logic
• Probability, Bayesian Networks
• Machine Learning

• Questions on any topic

• Review pre-mid-term material if time and class interest

57

The importance of a good representation

• Properties of a good representation:

• Reveals important features
• Hides irrelevant detail
• Exposes useful constraints
• Makes frequent operations easy-to-do
• Supports local inferences from local features

• Called the “soda straw” principle or “locality” principle
• Inference from features “through a soda straw”

• Rapidly or efficiently computable
• It’s nice to be fast

58

Reveals important features / Hides irrelevant detail

• “You can’t learn what you can’t represent.” --- G. Sussman

• In search: A man is traveling to market with a fox, a goose,

and a bag of oats. He comes to a river. The only way across
the river is a boat that can hold the man and exactly one of the
fox, goose or bag of oats. The fox will eat the goose if left alone
with it, and the goose will eat the oats if left alone with it.

• A good representation makes this problem easy:

1110
0010
1010
1111
0001
0101

0000 1101

1011

0100 1110

0010 1010 1111

0001

0101

59

Exposes useful constraints

• “You can’t learn what you can’t represent.” --- G. Sussman

• In logic: If the unicorn is mythical, then it is immortal, but if it

is not mythical, then it is a mortal mammal. If the unicorn is
either immortal or a mammal, then it is horned. The unicorn is
magical if it is horned.

• A good representation makes this problem easy:

 (¬ Y ˅ ¬ R) ^ (Y ˅ R) ^ (Y ˅ M) ^ (R ˅ H) ^ (¬ M ˅ H) ^ (¬ H ˅ G)

1010
1111
0001
0101

60

Makes frequent operations easy-to-do

•Roman numerals
• M=1000, D=500, C=100, L=50, X=10, V=5, I=1
• 2011 = MXI; 1776 = MDCCLXXVI

• Long division is very tedious (try MDCCLXXVI / XVI)
• Testing for N < 1000 is very easy (first letter is not “M”)

•Arabic numerals

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, “.”

• Long division is much easier (try 1776 / 16)
• Testing for N < 1000 is slightly harder (have to scan the string)

61

Supports local inferences from local features

• Linear vector of pixels = highly non-local inference for vision

• Rectangular array of pixels = local inference for vision

0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Corner!!

… 0 1 0 … 0 1 1 … 0 0 0 …

Corner??

62

Terminology

• Attributes
– Also known as features, variables, independent variables,

covariates

• Target Variable
– Also known as goal predicate, dependent variable, …

• Classification
– Also known as discrimination, supervised classification, …

• Error function

– Objective function, loss function, …

63

Inductive learning

• Let x represent the input vector of attributes

• Let f(x) represent the value of the target variable for x
– The implicit mapping from x to f(x) is unknown to us
– We just have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f, i.e.,
 h(x; θ) is “close” to f(x) for all training data points x

 θ are the parameters of our predictor h(..)

• Examples:

– h(x; θ) = sign(w1x1 + w2x2+ w3)

– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4))

64

Decision Tree Representations

• Decision trees are fully expressive
– can represent any Boolean function
– Every path in the tree could represent 1 row in the truth table
– Yields an exponentially large tree

• Truth table is of size 2d, where d is the number of attributes

65

Pseudocode for Decision tree learning

66

Information Gain

• H(p) = entropy of class distribution at a particular node

• H(p | A) = conditional entropy = average entropy of
conditional class distribution, after we have partitioned the
data according to the values in A

• Gain(A) = H(p) – H(p | A)

• Simple rule in decision tree learning
– At each internal node, split on the node with the largest

information gain (or equivalently, with smallest H(p|A))

• Note that by definition, conditional entropy can’t be greater
than the entropy

67

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

Overfitting Underfitting

68

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data

1st partition

69

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data
Validation
Data

1st partition 2nd partition

70

Classification in Euclidean Space

• A classifier is a partition of the space x into disjoint decision
regions
– Each region has a label attached
– Regions with the same label need not be contiguous
– For a new test point, find what decision region it is in, and predict

the corresponding label

• Decision boundaries = boundaries between decision regions
– The “dual representation” of decision regions

• We can characterize a classifier by the equations for its

decision boundaries

• Learning a classifier  searching for the decision boundaries
that optimize our objective function

71

Decision Tree Example

t1 t3

t2

Income

Debt
Income > t1

Debt > t2

Income > t3
Note: tree boundaries are
linear and axis-parallel

72

Another Example: Nearest Neighbor Classifier

• The nearest-neighbor classifier
– Given a test point x’, compute the distance between x’ and each

input data point
– Find the closest neighbor in the training data
– Assign x’ the class label of this neighbor
– (sort of generalizes minimum distance classifier to exemplars)

• If Euclidean distance is used as the distance measure (the

most common choice), the nearest neighbor classifier results
in piecewise linear decision boundaries

• Many extensions
– e.g., kNN, vote based on k-nearest neighbors
– k can be chosen by cross-validation

73

74

75

76

Linear Classifiers

• Linear classifier  single linear decision boundary
 (for 2-class case)

• We can always represent a linear decision boundary by a linear equation:
 w1 x1 + w2 x2 + … + wd xd = Σ wj xj = wt x = 0

• In d dimensions, this defines a (d-1) dimensional hyperplane

– d=3, we get a plane; d=2, we get a line

• For prediction we simply see if Σ wj xj > 0

• The wi are the weights (parameters)
– Learning consists of searching in the d-dimensional weight space for the set of weights

(the linear boundary) that minimizes an error measure
– A threshold can be introduced by a “dummy” feature that is always one; it weight

corresponds to (the negative of) the threshold

• Note that a minimum distance classifier is a special (restricted) case of a linear
classifier

77

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

FEATURE 1

FE
A

TU
R

E
 2

Minimum Error
Decision Boundary

78

The Perceptron Classifier (pages 740-743 in text)

• The perceptron classifier is just another name for a linear
classifier for 2-class data, i.e.,

 output(x) = sign(Σ wj xj)

• Loosely motivated by a simple model of how neurons fire

• For mathematical convenience, class labels are +1 for one
class and -1 for the other

• Two major types of algorithms for training perceptrons
– Objective function = classification accuracy (“error correcting”)
– Objective function = squared error (use gradient descent)

– Gradient descent is generally faster and more efficient – but there

is a problem! No gradient!

79

Two different types of perceptron output

o(f)

f

x-axis below is f(x) = f = weighted sum of inputs
y-axis is the perceptron output

σ(f)

Thresholded output,
 takes values +1 or -1

Sigmoid output, takes
real values between -1 and +1

The sigmoid is in effect an approximation
to the threshold function above, but
has a gradient that we can use for learning

f

80

Gradient Descent Update Equation

• From basic calculus, for perceptron with sigmoid, and squared

error objective function, gradient for a single input x(i) is
 ∆ (E[w]) = - (y(i) – σ[f(i)]) ∂σ[f(i)] xj(i)

• Gradient descent weight update rule:

 wj = wj + η (y(i) – σ[f(i)]) ∂σ[f(i)] xj(i)

– can rewrite as:
 wj = wj + η * error * c * xj(i)

81

Pseudo-code for Perceptron Training

• Inputs: N features, N targets (class labels), learning rate η
• Outputs: a set of learned weights

Initialize each wj (e.g.,randomly)

While (termination condition not satisfied)

for i = 1: N % loop over data points (an iteration)
for j= 1 : d % loop over weights

 deltawj = η (y(i) – σ[f(i)]) ∂σ[f(i)] xj(i)
 wj = wj + deltawj

end
calculate termination condition
end

82

Multi-Layer Perceptrons (p744-747 in text)

• What if we took K perceptrons and trained them in parallel and
then took a weighted sum of their sigmoidal outputs?
– This is a multi-layer neural network with a single “hidden” layer

(the outputs of the first set of perceptrons)
– If we train them jointly in parallel, then intuitively different

perceptrons could learn different parts of the solution
• Mathematically, they define different local decision boundaries

in the input space, giving us a more powerful model

• How would we train such a model?
– Backpropagation algorithm = clever way to do gradient descent
– Bad news: many local minima and many parameters

• training is hard and slow
– Neural networks generated much excitement in AI research in the

late 1980’s and 1990’s
• But now techniques like boosting and support vector machines

are often preferred

83

Naïve Bayes Model (p. 808 R&N 3rd ed., 718 2nd ed.)

Y1 Y2 Y3

C

Yn

 P(C | Y1,…Yn) = α Π P(Yi | C) P (C)

Features Y are conditionally independent given the class variable C

Widely used in machine learning
 e.g., spam email classification: Y’s = counts of words in emails

Conditional probabilities P(Yi | C) can easily be estimated from labeled data
 Problem: Need to avoid zeroes, e.g., from limited training data
 Solutions: Pseudo-counts, beta[a,b] distribution, etc.

84

Naïve Bayes Model (2)

 P(C | X1,…Xn) = α Π P(Xi | C) P (C)

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

P(C = cj) ≈ #(Examples with class label cj) / #(Examples)

P(Xi = xik | C = cj)
 ≈ #(Examples with Xi value xik and class label cj)
 / #(Examples with class label cj)

Usually easiest to work with logs
 log [P(C | X1,…Xn)]
 = log α + Σ [log P(Xi | C) + log P (C)]

DANGER: Suppose ZERO examples with Xi value xik and class label cj ?
An unseen example with Xi value xik will NEVER predict class label cj !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

85

Classifier Bias — Decision Tree or Linear Perceptron?

86

Classifier Bias — Decision Tree or Linear Perceptron?

87

Classifier Bias — Decision Tree or Linear Perceptron?

88

Classifier Bias — Decision Tree or Linear Perceptron?

89

Outline

• Knowledge Representation using First-Order Logic
• Unification in First-Order Logic
• Inference in First-Order Logic
• Probability, Bayesian Networks
• Machine Learning

• Questions on any topic

• Review pre-mid-term material if time and class interest

	Final Catch-up, Review
	Outline
	Knowledge Representation using First-Order Logic
	Review: Syntax of FOL: Basic elements
	Syntax of FOL: Basic syntax elements are symbols
	Syntax of FOL: Terms
	Syntax of FOL: Atomic Sentences
	Syntax of FOL: Connectives & Complex Sentences
	Syntax of FOL: Variables
	Syntax of FOL: Logical Quantifiers
	Semantics: Interpretation
	Combining Quantifiers --- Order (Scope)
	De Morgan’s Law for Quantifiers
	Outline
	Inference in First-Order Logic --- Summary
	Unification
	Unification examples
	Unification
	Hard matching example
	Inference appoaches in FOL
	Generalized Modus Ponens (GMP)
	Completeness and Soundness of GMP
	Properties of forward chaining
	Properties of backward chaining
	Resolution in FOL
	Resolution proof
	Converting FOL sentences to CNF
	Conversion to CNF contd.
	Conversion to CNF contd.
	Outline
	Syntax
	Probability
	Conditional Probability
	Random Variables
	Joint Distributions
	Linking Joint and Conditional Probabilities
	Sequential Bayesian Reasoning
	Computing with Probabilities: Law of Total Probability
	Computing with Probabilities:�The Chain Rule or Factoring
	Independence
	Conditional Independence
	Bayesian Networks
	Your 1st Bayesian Network
	Bayesian Networks
	Example of a simple Bayesian network
	Examples of 3-way Bayesian Networks
	Examples of 3-way Bayesian Networks
	Examples of 3-way Bayesian Networks
	Examples of 3-way Bayesian Networks
	Bigger Example
	Constructing a Bayesian Network
	The Resulting Bayesian Network
	The Bayesian Network from a different Variable Ordering
	Inference by Variable Elimination
	Naïve Bayes Model
	Outline
	The importance of a good representation
	Slide Number 58
	Slide Number 59
	Makes frequent operations easy-to-do
	Supports local inferences from local features
	Terminology
	Inductive learning
	Decision Tree Representations
	Pseudocode for Decision tree learning
	Information Gain
	How Overfitting affects Prediction
	Disjoint Validation Data Sets
	Disjoint Validation Data Sets
	Classification in Euclidean Space
	Decision Tree Example
	Another Example: Nearest Neighbor Classifier
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Linear Classifiers
	Slide Number 77
	The Perceptron Classifier (pages 740-743 in text)
	Two different types of perceptron output
	Gradient Descent Update Equation
	Pseudo-code for Perceptron Training
	Multi-Layer Perceptrons (p744-747 in text)
	Naïve Bayes Model (p. 808 R&N 3rd ed., 718 2nd ed.)
	Naïve Bayes Model (2)
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Classifier Bias — Decision Tree or Linear Perceptron?
	Outline

