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Linear regression

“Predictor”:
Evaluate line:

r =0y + 6121

returnr

0 1'0 2'0
Feature X

Define form of function f(x) explicitly
Find a good f(x) within that family
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Imensions?

‘ More d

0 =6y 61 02
x = |1 z1 2]
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‘ Notation

I
y(x) =0 + 0121 + 0220 + . ..

Define “feature” x, =1 (constant)
Then

@(I):Q,’ET Q:[Q():'--agn]

L = [173317---93771]
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Measuring error

Observation Y

Prediction g

Error or “residual”
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J
20



‘ Mean squared error

How can we quantn‘y the error?

MSE, J(0) = — Z(y(j) — j(z)))?

1 . .
= — Z(y(J) 'y g(J)T)2

J

Could choose something else, of course...
Computationally convenient (more later)
Measures the variance of the residuals
Corresponds to likelihood under Gaussian model of “noise”

1 1
N(ya ‘LL,O'Q): Wexp{w(yu)Q}
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MSE cost function

MSE, J(0) = — 3 (5 — g(a))?

T —
J
1 () ()T\2
= %Z(y —0-2V")
;

Rewrite using matrix form

0= [0, ...,00] 7y
T X = :
y = [yu) 3 ,7y<m>} )
| Lo
1

JO) = —(y" —0X") (g —0X")"

(Matlab) >> e =y’ — th*X'; J = e*e’ /m;
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| Visualizing the cost function
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| Finding good parameters

Want to find parameters which minimize our error...

Think of a cost “surface”: error residual for that 9...

0o
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Machine Learning and Data Mining

Linear regression: direct minimization

(adapted from) Prof. Alexander Ihler
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MSE Minimum

Consider a simple problem
One feature, two data points
Two unknowns: W, K4
Two equations:

y(l) — @0 + le(l)

y? =0y + 0127

Can solve this system directly:
QT _ QKT - QA: yT(iT)_l
However, most of the time, m >n
There may be no linear function that hits all the data exactly
Instead, solve directly for minimum of MSE function

(c) Alexander Ihler



SSE Minimum

|

VI =@y —6X")- X =

Reordering, we have ®
yTX-0Xx" X =

|1

yTX=0X" X
Q yT X(XT X)—]_

X (XT X)1is called the “pseudo-inverse”

If XT is square and independent, this is the inverse
If m > n: overdetermined; gives minimum MSE fit
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‘ Matlab SSE

« This Is easy to solve in Matlab..

6 = y X(X"X)T
% y =10yl ; . ; ym]
% X =[x10 . xI. m; x20 . x2m; .]

% Solution 1: “manual”
th = y*> * X * inv(X’ * X);

% Solution 2: “mrdivide”
th =y* /7 X ; % th*X’ =y => th = y/X

(c) Alexander Ihler



Effects of MSE choice

Sensitivity to outliers

18

16 2 cost for this one datum

Heavy penalty for large errors

-10
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L1 error

18

(c) Alexander lhler

— | 2 original data
— | 1, original data

L1, outlier data



Cost functions for regression

Something else entirely...

¢ — log(exp(—(y — §)°) + ¢)

(22?)

“Arbitrary” functions can’ t be —(y—19) —
solved in closed form...
- use gradient descent

(c) Alexander lhler
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Linear regression: nonlinear features

(adapted from) Prof. Alexander Ihler
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Nonlinear functions

What if our hypotheses are not lines?
Ex: higher-order polynomials

Order 1 polynomiial Order 3 polynomial

18

18

1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
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‘ Nonlinear functions
I

Single feature X, predict target y:

D = {(zD,yd)} g(x) =0y + 01 ¢ + Oy 2% + 03 2°

\U, Add features: \U,

D = {([CUU), (x(j))za (x(j))g]ay(j))} y(x) = o + 0121 + B0 + 323

Linear regression in new features

Sometimes useful to think of “feature transform”
®($):[17$7$275C37"'} :g(ZU)ZQ(I)(ZU)
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| Higher-order polynomials

Fit in the same way
More “features”




Features

In general, can use any features we think are useful

Other information about the problem
Sq. footage, location, age, ...
Polynomial functions
Features [1, x, x?, x3, ...]

Other functions
1/X, sqrt(x), X, * X,, ...

“Linear regression” = linear in the parameters
Features we can make as complex as we want!
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‘ Higher-order polynomials

Are more features better?

“Nested” hypotheses

2"d order more general than 15t

3rd order “ “ than 2n9, ...

Fits the observed data better

Q.57

1_

0.57

0.5

0.5




Overfitting and complexity

More complex models will always fit the training data
better

But they may “overfit” the training data, learning
complex relationships that are not really present

Simple model omplex model

X X
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‘ Test data
I

After training the model

Go out and get more data from the world
New observations (X,y)

How well does our model perform? Training data

N

0.5

0 0.5 1 (c) Alexander Ihler 0 0.5 1



| Training versus test error

I Plot MSE as a function

of model complexity 30

Polynomial order Training data

25
Decreases

More complex function 2o}
fits training data better

15

What about new data?
10+

Oth to 1st order
Error decreases 5

Underfitting
Higher order 0 ' ' ' ' ‘ ' ' ‘

Mean squared error

o

0.5 1 1.5 2 2.5 3 3.5 4 45
Overfitting
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