Constraint Satisfaction Problems (CSPs)
Introduction and Backtracking Search

This lecture:
CSP Introduction and Backtracking Search
Chapter 6.1 – 6.4, except 6.3.3

Next lecture:
CSP Constraint Propagation & Local Search
Chapter 6.1 – 6.4, except 6.3.3

(Please read lecture topic material before and after each lecture on that topic)
You Will Be Expected to Know

• Basic definitions (section 6.1)
 – What is a CSP?

• Backtracking search for CSPs (6.3)

• Variable ordering or selection (6.3.1)
 – Minimum Remaining Values (MRV) heuristic
 – Degree Heuristic (DH) (to unassigned variables)

• Value ordering or selection (6.3.1)
 – Least constraining value (LCV) heuristic
Constraint Satisfaction Problems

• What is a CSP?
 – Finite set of variables \(X_1, X_2, \ldots, X_n \)
 – Nonempty domain of possible values for each variable \(D_1, D_2, \ldots, D_n \)
 – Finite set of constraints \(C_1, C_2, \ldots, C_m \)
 • Each constraint \(C_i \) limits the values that variables can take,
 • e.g., \(X_1 \neq X_2 \)
 – Each constraint \(C_i \) is a pair <scope, relation>
 • Scope = Tuple of variables that participate in the constraint.
 • Relation = List of allowed combinations of variable values.
 May be an explicit list of allowed combinations.
 May be an abstract relation allowing membership testing and listing.

• CSP benefits
 – Standard representation pattern
 – Generic goal and successor functions
 – Generic heuristics (no domain specific expertise).
Sudoku as a Constraint Satisfaction Problem (CSP)

- **Variables:** 81 variables
 - $A1, A2, A3, \ldots, I7, I8, I9$
 - Letters index rows, top to bottom
 - Digits index columns, left to right

- **Domains:** The nine positive digits
 - $A1 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Etc.; all domains of all variables are $\{1,2,3,4,5,6,7,8,9\}$

- **Constraints:** 27 Alldiff constraints
 - $\text{Alldiff}(A1, A2, A3, A4, A5, A6, A7, A8, A9)$
 - Etc.; all rows, columns, and blocks contain all different digits
CSPs --- What is a solution?

• A state is an assignment of values to some or all variables.
 – An assignment is complete when every variable has an assigned value.
 – An assignment is partial when one or more variables have no assigned value.

• Consistent assignment:
 – An assignment that does not violate the constraints.

• A solution to a CSP is a complete and consistent assignment.
 – All variables are assigned, and none of the assignments violate the constraints.

• CSPs may require a solution that maximizes an objective function.
 – For simple linear cases, an optimal solution can be obtained by Linear Programming.

• Examples of Applications:
 – Scheduling the time of observations on the Hubble Space Telescope
 – Airline schedules
 – Cryptography
 – Computer vision, image interpretation
CSP example: Map coloring problem

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: $D_i = \{\text{red}, \text{green}, \text{blue}\}$
• Constraints: adjacent regions must have different colors.
 • E.g. $WA \neq NT$
CSP example: Map coloring solution

- A solution is:
 - A complete and consistent assignment.
 - All variables assigned, all constraints satisfied.

- E.g., \{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green\}
Graph coloring

• More general problem than map coloring

• Planar graph = graph in the 2d-plane with no edge crossings

• Guthrie’s conjecture (1852)

 Every planar graph can be colored with 4 colors or less

 – Proved (using a computer) in 1977 (Appel and Haken)
Constraint graphs

- Constraint graph:
 - nodes are variables
 - arcs are binary constraints

- Graph can be used to simplify search
 e.g. Tasmania is an independent subproblem

 (will return to graph structure later)
Varieties of CSPs

• Discrete variables
 – Finite domains; size \(d \Rightarrow O(d^n) \) complete assignments.
 • E.g. Boolean CSPs: Boolean satisfiability (NP-complete).
 – Infinite domains (integers, strings, etc.)
 • E.g. job scheduling, variables are start/end days for each job
 • Need a constraint language e.g. \(\text{StartJob}_1 + 5 \leq \text{StartJob}_3 \).
 • Infinitely many solutions
 • Linear constraints: solvable
 • Nonlinear: no general algorithm

• Continuous variables
 – e.g. building an airline schedule or class schedule.
 – Linear constraints solvable in polynomial time by LP methods.
Varieties of constraints

- Unary constraints involve a single variable.
 - e.g. \(SA \neq \text{green} \)

- Binary constraints involve pairs of variables.
 - e.g. \(SA \neq WA \)

- Higher-order constraints involve 3 or more variables.
 - Professors A, B, and C cannot be on a committee together
 - Can always be represented by multiple binary constraints

- Preference (soft constraints)
 - e.g. \(\text{red} \) is better than \(\text{green} \) often can be represented by a cost for each variable assignment
 - combination of optimization with CSPs
Simplify: We restrict attention to

• Discrete and finite domains
 – Variables have a discrete, finite set of values

• No objective function
 – Any complete and consistent solution is OK

• Solution
 – Find a complete and consistent assignment

• Example: Sudoku puzzles.
CSPs Only Need Binary Constraints!!

• Unary constraints: Just delete values from variable’s domain.
• Higher order (3 variables or more): reduce to binary constraints.
• Simple example:
 – Three example variables, X, Y, Z.
 – Domains Dx={1,2,3}, Dy={1,2,3}, Dz={1,2,3}.
 – Constraint C[X,Y,Z] = \{X+Y=Z\} = \{(1,1,2), (1,2,3), (2,1,3)\}.
 – Plus many other variables and constraints elsewhere in the CSP.

 – Create a new variable, W, taking values as triples (3-tuples).
 – Domain of W is Dw = \{(1,1,2), (1,2,3), (2,1,3)\}.
 • Dw is exactly the tuples that satisfy the higher order constraint.
 – Create three new constraints:
 • C[X,W] = \{ [1, (1,1,2)], [1, (1,2,3)], [2, (2,1,3)] \}.
 • C[Y,W] = \{ [1, (1,1,2)], [2, (1,2,3)], [1, (2,1,3)] \}.
 • C[Z,W] = \{ [2, (1,1,2)], [3, (1,2,3)], [3, (2,1,3)] \}.
 – Other constraints elsewhere involving X, Y, or Z are unaffected.
CSP Example: Cryptarithmetic puzzle

\[
\begin{array}{c}
T \ W \ O \\
+ \ T \ W \ O \\
\hline
F \ O \ U \ R
\end{array}
\]

Variables: $F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3$

Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints

\[\text{alldiff}(F, T, U, W, R, O)\]

\[O + O = R + 10 \cdot X_1, \text{ etc.}\]
CSP Example: Cryptarithmetical puzzle

Variables: $F, T, U, W, R, O, X_1, X_2, X_3$

Domains: \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

Constraints

- \text{alldiff}(F, T, U, W, R, O)
- \text{O} + \text{O} = \text{R} + 10 \cdot X_1$, etc.
CSP Example: Cryptarithmetic puzzle

Variables: $F, T, U, W, R, O, X_1, X_2, X_3$
Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
Constraints

\[\text{alldiff}(F, T, U, W, R, O) \]
\[O + O = R + 10 \cdot X_1, \text{ etc.} \]

A Solution:
$F=1, \ T=7, \ U=6, \ W=3, \ R=8, \ O=4, \ X1=0, \ X2=0, \ X3=1$

\[
\begin{array}{c}
7 & 3 & 4 \\
+ & 7 & 3 & 4 \\
\hline
1 & 4 & 6 & 8
\end{array}
\]
CSP Example: Cryptharithmetic puzzle

• Try it yourself at home:

\[
\begin{align*}
\text{S E N D} \\
\text{+ M O R E} \\
\text{--- M O N E Y}
\end{align*}
\]

• (A frequent request from college students to parents!)
Random Binary CSP
(adapted from http://www.unitime.org/csp.php)

• A random binary CSP is defined by a four-tuple \((n, d, p_1, p_2)\)
 – \(n\) = the number of variables.
 – \(d\) = the domain size of each variable.
 – \(p_1\) = probability a constraint exists between two variables.
 – \(p_2\) = probability a pair of values in the domains of two variables connected by a constraint is incompatible.
 • Note that R&N lists compatible pairs of values instead.
 • Equivalent formulations; just take the set complement.

• \((n, d, p_1, p_2)\) generate random binary constraints

• The so-called model B of Random CSP \((n, d, n_1, n_2)\)
 – \(n_1 = p_1n(n-1)/2\) pairs of variables are randomly and uniformly selected and binary constraints are posted between them.
 – For each constraint, \(n_2 = p_2d^2\) randomly and uniformly selected pairs of values are picked as incompatible.

• The random CSP as an optimization problem (\(\text{minCSP}\)).
 – Goal is to minimize the total sum of values for all variables.
CSP as a standard search problem

• A CSP can easily be expressed as a standard search problem.

• Incremental formulation

 – *Initial State*: the empty assignment {}

 – *Actions*: Assign a value to an unassigned variable provided that it does not violate a constraint

 – *Goal test*: the current assignment is complete
 (by construction it is consistent)

 – *Path cost*: constant cost for every step (not really relevant)

• Can also use complete-state formulation

 – Local search techniques (Chapter 4) tend to work well
CSP as a standard search problem

• Solution is found at depth n (if there are n variables).

• Consider using BFS
 – Branching factor b at the top level is nd
 – At next level is $(n-1)d$
 –

• End up with $n!d^n$ leaves!
 – There are only d^n complete assignments!
Commutativity

• CSPs are commutative.
 – Order of any given set of actions has no effect on the outcome.
 – Example: choose colors for Australian territories, one at a time.
 • \([\text{WA}=\text{red} \text{ then NT}=\text{green}] \) same as \([\text{NT}=\text{green} \text{ then WA}=\text{red}] \)

• All CSP search algorithms can generate successors by considering assignments for only a single variable at each node in the search tree
 \(\Rightarrow \) there are \(d^n \) irredundant leaves

• (Figure out later to which variable to assign which value.)
Backtracking search

• Similar to Depth-first search
 – At each level, picks a single variable to explore
 – Iterates over the domain values of that variable

• Generates kids one at a time, one per value

• Backtracks when a variable has no legal values left

• Uninformed algorithm
 – No good general performance
Backtracking search (Figure 6.5)

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure
Backtracking search

- Expand *deepest* unexpanded node
- Generate *only one* child at a time.
- *Goal-Test* when inserted.
 - For CSP, Goal-test at bottom

Future= green dotted circles
Frontier= white nodes
Expanded/active= gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

- Expand *deepest* unexpanded node
- Generate *only one* child at a time.
- *Goal-Test* when inserted.
 - For CSP, Goal-test at bottom

Diagram:

- Future= green dotted circles
- Frontier=white nodes
- Expanded/active=gray nodes
- Forgotten/reclaimed= black nodes
Backtracking search

- Expand *deepest* unexpanded node
- Generate *only one* child at a time.
- *Goal-Test* when inserted.
 - For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

- Expand *deepest* unexpanded node
- Generate *only one* child at a time.
- *Goal-Test* when inserted.
 - For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

- Expand *deepest* unexpanded node
- Generate *only one* child at a time.
- *Goal-Test* when inserted.
 - For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

• Expand *deepest* unexpanded node

• Generate *only one* child at a time.

• *Goal-Test* when inserted.
 – For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

- Expand *deepest* unexpanded node
- Generate *only one* child at a time.
- *Goal-Test* when inserted.
 - For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

- Expand *deepest* unexpanded node
- Generate *only one* child at a time.
- *Goal-Test* when inserted.
 - For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

- Expand *deepest* unexpanded node
- Generate *only one* child at a time.
- *Goal-Test* when inserted.
 - For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

- Expand *deepest* unexpanded node
- Generate *only one* child at a time.
- *Goal-Test* when inserted.
 - For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

• Expand *deepest* unexpanded node
• Generate *only one* child at a time.
• *Goal-Test* when inserted.
 – For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search

• Expand *deepest* unexpanded node

• Generate *only one* child at a time.

• *Goal-Test* when inserted.

 – For CSP, Goal-test at bottom

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes
Backtracking search (Figure 6.5)

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure
Improving CSP efficiency

• Previous improvements on uninformed search
 → introduce heuristics

• For CSPS, general-purpose methods can give large gains in speed, e.g.,
 – Which variable should be assigned next?
 – In what order should its values be tried?
 – Can we detect inevitable failure early?
 – Can we take advantage of problem structure?

Note: CSPs are somewhat generic in their formulation, and so the heuristics are more general compared to methods in Chapter 4
function BACKTRACKING-SEARCH(csp) return a solution or failure

 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure

 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure
Minimum remaining values (MRV) for next variable

\[var \leftarrow \text{SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)} \]

- A.k.a. most constrained variable heuristic

- **Heuristic Rule**: choose variable with the fewest legal moves
 - e.g., will immediately detect failure if X has no legal values
• **Heuristic Rule**: select variable that is involved in the largest number of constraints on other unassigned variables.

• Degree heuristic can be useful as a tie breaker after MRV.

• *In what order should a variable’s values be tried?*
function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure
Least constraining value (LCV) for next value

- Least constraining value heuristic

- Heuristic Rule: given a variable choose the least constraining value
 - leaves the maximum flexibility for subsequent variable assignments
Minimum remaining values (MRV) vs. Least constraining value (LCV)

• Why do we want the MRV (minimum values, most constraining) for variable selection --- but the LCV (maximum values, least constraining) for value selection?

• Isn’t there a contradiction here?

• MRV for variable selection to reduces the branching factor.
 – Smaller branching factors lead to faster search.
 – Hopefully, when we get to variables with currently many values, constraint propagation (next lecture) will have removed some of their values and they’ll have small branching factors by then too.

• LCV for value selection increases the chance of early success.
 – If we are going to fail at this node, then we have to examine every value anyway, and their order makes no difference at all.
 – If we are going to succeed, then the earlier we succeed the sooner we can stop searching, so we want to succeed early.
 – LCV rules out the fewest possible solutions below this node, so we have the most chances for early success.
Summary

• CSPs
 – special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values

• Backtracking=depth-first search with one variable assigned per node

• Heuristics
 – Variable ordering and value selection heuristics help significantly

• Variable ordering (selection) heuristics
 – Choose variable with Minimum Remaining Values (MRV)
 – Degree Heuristic --- break ties after applying MRV

• Value ordering (selection) heuristic
 – Choose Least Constraining Value