Propositional Logic: Methods of Proof (Part II)

First Lecture Today (Thu 23 Jun)
Read Chapter 7.5 (optional: 7.6-7.8)

Second Lecture Today (Thu 23 Jun)
Read Chapter 8.1-8.5

Next Lecture (Tue 28 Jun)
Review Chapters 8.3-8.5

(Please read lecture topic material before and after each lecture on that topic)
You will be expected to know

• Basic definitions
 – Inference, derive, sound, complete

• Conjunctive Normal Form (CNF)
 – Convert a Boolean formula to CNF

• Do a short resolution proof

• Horn Clauses

• Do a short forward-chaining proof

• Do a short backward-chaining proof

• Model checking with backtracking search

• Model checking with local search
Review: Inference in Formal Symbol Systems
Ontology, Representation, Inference

• **Formal Symbol Systems**
 – **Symbols** correspond to **things/ideas** in the world
 – **Pattern matching & rewrite** corresponds to **inference**

• **Ontology:** What exists in the world?
 – What must be represented?

• **Representation:** Syntax vs. Semantics
 – What’s Said vs. What’s Meant

• **Inference:** Schema vs. Mechanism
 – Proof Steps vs. Search Strategy
Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?

Review

Reasoning

Representation

A Formal Symbol System

Inference

Formal Pattern Matching

Syntax

What is said

Semantics

What it means

Schema

Rules of Inference

Execution

Search Strategy

Preceding lecture

This lecture
Review

• Definitions:
 – Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology)

• Syntactic Transformations:
 – E.g., \((A \Rightarrow B) \Leftrightarrow (\neg A \lor B) \)

• Semantic Transformations:
 – E.g., \((KB \models \alpha) \equiv (\models (KB \Rightarrow \alpha))\)

• Truth Tables
 – Negation, Conjunction, Disjunction, Implication, Equivalence (Biconditional)
 – Inference by Model Enumeration
Review: Schematic perspective

If KB is true in the real world,
then any sentence α entailed by KB
is also true in the real world.
So --- how do we keep it from “Just making things up.”?

Is this inference correct?
How do you know?
How can you tell?

All cats have four legs.
I have four legs.
Therefore, I am a cat.

How can we make correct inferences?
How can we avoid incorrect inferences?

“Einstein Simplified: Cartoons on Science” by Sydney Harris, 1992, Rutgers University Press
So --- how do we keep it from “Just making things up.”?

- All men are people;
 Half of all people are women;
 Therefore, half of all men are women.

- Penguins are black and white;
 Some old TV shows are black and white;
 Therefore, some penguins are old TV shows.

Is this inference correct?
How do you know?
How can you tell?
If KB is true in the real world, then any sentence α derived from KB by a sound inference procedure is also true in the real world.
Logical inference

• The notion of entailment can be used for logic inference.
 – Model checking (see wumpus example):
 enumerate all possible models and check whether α is true.

• **Sound** (or *truth preserving*):
 The algorithm **only** derives entailed sentences.
 – Otherwise it just makes things up.

 i is sound iff whenever $KB \models_i \alpha$ it is also true that $KB \models \alpha$
 – E.g., model-checking is sound
 Refusing to infer any sentence is Sound; so, Sound is weak alone.

• **Complete**:
 The algorithm can derive **every** entailed sentence.

 i is complete iff whenever $KB \models \alpha$ it is also true that $KB \models_i \alpha$
 Deriving every sentence is Complete; so, Complete is weak alone.
Proof methods

• Proof methods divide into (roughly) two kinds:

 Application of inference rules:
 Legitimate (sound) generation of new sentences from old.
 – Resolution --- KB is in Conjunctive Normal Form (CNF)
 – Forward & Backward chaining

 Model checking
 Searching through truth assignments.
 • Improved backtracking: Davis–Putnam Logemann Loveland (DPLL)
 • Heuristic search in model space: Walksat
Examples of Sound Inference Patterns

Classical Syllogism (due to Aristotle)

<table>
<thead>
<tr>
<th>All Ps are Qs</th>
<th>All Men are Mortal</th>
</tr>
</thead>
<tbody>
<tr>
<td>X is a P</td>
<td>Socrates is a Man</td>
</tr>
<tr>
<td>Therefore, X is a Q</td>
<td>Therefore, Socrates is Mortal</td>
</tr>
</tbody>
</table>

Implication (Modus Ponens)

<table>
<thead>
<tr>
<th>P implies Q</th>
<th>Smoke implies Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Smoke</td>
</tr>
<tr>
<td>Therefore, Q</td>
<td>Therefore, Fire</td>
</tr>
</tbody>
</table>

Contrapositive (Modus Tollens)

<table>
<thead>
<tr>
<th>P implies Q</th>
<th>Smoke implies Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Q</td>
<td>Not Fire</td>
</tr>
<tr>
<td>Therefore, Not P</td>
<td>Therefore, not Smoke</td>
</tr>
</tbody>
</table>

Law of the Excluded Middle (due to Aristotle)

<table>
<thead>
<tr>
<th>A Or B</th>
<th>Alice is a Democrat or a Republican</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not A</td>
<td>Alice is not a Democrat</td>
</tr>
<tr>
<td>Therefore, B</td>
<td>Therefore, Alice is a Republican</td>
</tr>
</tbody>
</table>

Why is this different from:

All men are people
Half of people are women
So half of men are women
Inference by Resolution

• KB is represented in CNF
 – KB = AND of all the sentences in KB
 – KB sentence = clause = OR of literals
 – Literal = propositional symbol or its negation

• Find two clauses in KB, one of which contains a literal and the other its negation

• Cancel the literal and its negation

• Bundle everything else into a new clause

• Add the new clause to KB
Conjunctive Normal Form (CNF)

• **Boolean formulae are central to CS**
 – Boolean logic is the way our discipline works

• Two canonical Boolean formulae representations:
 – **CNF** = Conjunctive Normal Form
 • A conjunct of disjuncts = (AND (OR …) (OR …))
 • “…” = a list of literals (= a variable or its negation)
 • CNF is used by Resolution Theorem Proving
 – **DNF** = Disjunctive Normal Form
 • A disjunct of conjuncts = (OR (AND …) (AND …))
 • DNF is used by Decision Trees in Machine Learning

• Can convert any Boolean formula to CNF or DNF
Conjunctive Normal Form (CNF)

We’d like to prove: \(\text{KB} \models \alpha \)
(This is equivalent to \(\text{KB} \land \neg \alpha \) is unsatisfiable.)

We first rewrite \(\text{KB} \land \neg \alpha \) into **conjunctive normal form (CNF)**.

A “conjunction of disjunctions”
\[
(A \lor \neg B) \land (B \lor \neg C \lor \neg D)
\]

- Any KB can be converted into CNF.
- In fact, any KB can be converted into CNF-3 using clauses with at most 3 literals.
Example: Conversion to CNF

Example: \(B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \)

1. Eliminate \(\iff \) by replacing \(\alpha \iff \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \).
 \[
 = (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})
 \]

2. Eliminate \(\Rightarrow \) by replacing \(\alpha \Rightarrow \beta \) with \(\neg \alpha \lor \beta \) and simplify.
 \[
 = (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \lor \neg P_{2,1}) \lor B_{1,1})
 \]

3. Move \(\neg \) inwards using de Morgan's rules and simplify.
 \[
 \neg (\alpha \lor \beta) = \neg \alpha \land \neg \beta
 \]
 \[
 = (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})
 \]

4. Apply distributive law (\(\land \) over \(\lor \)) and simplify.
 \[
 = (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})
 \]
Example: Conversion to CNF

Example: \(B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \)

From the previous slide we had:
\[
= (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})
\]

5. KB is the conjunction of all of its sentences (all are true), so write each clause (disjunct) as a sentence in KB:

\[
KB =\
\]

\[
\ldots (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})\equiv (\neg B_{1,1} \quad P_{1,2} \quad P_{2,1})
\]

\[
(\neg P_{1,2} \lor B_{1,1})\equiv (\neg P_{1,2} \quad B_{1,1})
\]

\[
(\neg P_{2,1} \lor B_{1,1})\equiv (\neg P_{2,1} \quad B_{1,1})
\]

\[
\ldots\equiv (\text{same})
\]

Often, Won’t Write “\(\lor\)” or “\(\land\)”
(we know they are there)
Inference by Resolution

• KB is represented in CNF
 – KB = AND of all the sentences in KB
 – KB sentence = clause = OR of literals
 – Literal = propositional symbol or its negation

• Find two clauses in KB, one of which contains a literal and the other its negation

• Cancel the literal and its negation

• Bundle everything else into a new clause

• Add the new clause to KB
Recall that \((A \Rightarrow B) = (\neg A \lor B)\)

and so:

\[(Y \lor X) = (\neg X \Rightarrow Y)\]

\[(\neg Y \lor Z) = (Y \Rightarrow Z)\]

which yields:

\[((Y \lor X) \land (\neg Y \lor Z)) = (\neg X \Rightarrow Z) = (X \lor Z)\]

Recall: All clauses in KB are conjoined by an implicit AND (= CNF representation).
Resolution Examples

- **Resolution:** inference rule for CNF: sound and complete! *

\[(A \lor B \lor C)\]
\[(\neg A)\]
\[\therefore (B \lor C)\]

"If A or B or C is true, but not A, then B or C must be true."

\[(A \lor B \lor C)\]
\[(\neg A \lor D \lor E)\]
\[\therefore (B \lor C \lor D \lor E)\]

"If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true."

\[(A \lor B)\]
\[(\neg A \lor B)\]
\[\therefore (B \lor B) \equiv B\]

Simplification is done always.

* Resolution is “refutation complete” in that it can prove the truth of any entailed sentence by refutation.
* You can start two resolution proofs in parallel, one for the sentence and one for its negation, and see which branch returns a correct proof.
Only Resolve **ONE** Literal Pair!
If more than one pair, result always = TRUE.
Useless!! Always simplifies to TRUE!!

<table>
<thead>
<tr>
<th>No!</th>
<th>No!</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OR A B C D) (OR ¬A ¬B F G)</td>
<td>(OR A B C D) (OR ¬A ¬B ¬C)</td>
</tr>
<tr>
<td>(OR C D F G)</td>
<td>(OR D)</td>
</tr>
<tr>
<td>No!</td>
<td>No!</td>
</tr>
</tbody>
</table>

Yes! (but = TRUE)
<table>
<thead>
<tr>
<th>Yes! (but = TRUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OR A B C D) (OR ¬A ¬B F G)</td>
</tr>
<tr>
<td>(OR B ¬B C D F G)</td>
</tr>
<tr>
<td>Yes! (but = TRUE)</td>
</tr>
</tbody>
</table>
Resolution Algorithm

- The resolution algorithm tries to prove: \(KB \models \alpha \) equivalent to \(KB \land \neg \alpha \) unsatisfiable

- Generate all new sentences from KB and the (negated) query.
- One of two things can happen:

1. We find \(P \land \neg P \) which is unsatisfiable. I.e. we can entail the query.

2. We find no contradiction: there is a model that satisfies the sentence \(KB \land \neg \alpha \) (non-trivial) and hence we cannot entail the query.
Resolution example
Stated in English

• “Laws of Physics” in the Wumpus World:
 – “A breeze in B11 is equivalent to a pit in P12 or a pit in P21.”

• Particular facts about a specific instance:
 – “There is no breeze in B11.”

• Goal or query sentence:
 – “Is it true that P12 does not have a pit?”
Resolution example
Stated in Propositional Logic

• “Laws of Physics” in the Wumpus World:
 – “A breeze in B11 is equivalent to a pit in P12 or a pit in P21.”
 \[(B_{1,1} \iff (P_{1,2} \lor P_{2,1}))\]
 We converted this sentence to CNF in the CNF example we worked above.

• Particular facts about a specific instance:
 – “There is no breeze in B11.”
 \[\lnot B_{1,1}\]

• Goal or query sentence:
 – “Is it true that P12 does not have a pit?”
 \[\lnot P_{1,2}\]
Resolution example

Resulting Knowledge Base stated in CNF

• “Laws of Physics” in the Wumpus World:
 \[
 \begin{align*}
 &\neg B_{1,1} \land P_{1,2} \land P_{2,1} \\
 &\neg P_{1,2} \land B_{1,1} \\
 &\neg P_{2,1} \land B_{1,1}
 \end{align*}
 \]

• Particular facts about a specific instance:
 \[
 \neg B_{1,1}
 \]

• Negated goal or query sentence:
 \[
 (P_{1,2})
 \]
Resolution example
A Resolution proof ending in ()

• Knowledge Base at start of proof:
 \[(\neg B_{1,1} \quad P_{1,2} \quad P_{2,1}) \]
 \[(\neg P_{1,2} \quad B_{1,1}) \]
 \[(\neg P_{2,1} \quad B_{1,1}) \]
 \[(\neg B_{1,1}) \]
 \[(P_{1,2}) \]

A resolution proof ending in ():
• Resolve \((\neg P_{1,2} \quad B_{1,1}) \) and \((\neg B_{1,1}) \) to give \((\neg P_{1,2}) \)
• Resolve \((\neg P_{1,2}) \) and \((P_{1,2}) \) to give ()

• Consequently, the goal or query sentence is entailed by KB.
• Of course, there are many other proofs, which are OK iff correct.
Resolution example

Graphical view of the proof

• \(KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \)
• \(\alpha = \neg P_{1,2} \)

\[KB \land \neg \alpha \]

A sentence in KB is not “used up” when it is used in a resolution step. It is true, remains true, and is still in KB.

False in all worlds

True!
Detailed Resolution Proof Example

- **In words:** If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

 Prove that the unicorn is both magical and horned.

Problem 7.2, R&N page 280. (Adapted from Barwise and Etchemendy, 1993.)

Note for non-native-English speakers: immortal = not mortal
In words: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

Prove that the unicorn is both magical and horned.

First, Ontology: What do we need to describe and reason about?

Use these propositional variables ("immortal" = "not mortal"):
Y = unicorn is mythical
R = unicorn is mortal
M = unicorn is a mammal
H = unicorn is horned
G = unicorn is magical
Detailed Resolution Proof Example

- **In words:** *If the unicorn is mythical, then it is immortal*, but if it is not mythical, then it is a mortal mammal. *If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.*

 Prove that the unicorn is both magical and horned.

 \[
 \begin{align*}
 Y &= \text{unicorn is mythical} \\
 R &= \text{unicorn is mortal} \\
 M &= \text{unicorn is a mammal} \\
 H &= \text{unicorn is horned} \\
 G &= \text{unicorn is magical}
 \end{align*}
 \]

- **Second, translate to Propositional Logic, then to CNF:**
 - Propositional logic (prefix form, aka Polish notation):
 \[
 \text{\texttt{(=> Y (NOT R)) \quad ; same as (Y => (NOT R)) in infix form}}
 \]
 - CNF (clausal form) ; recall \((A \Rightarrow B) = (\text{NOT } A \lor B)\)
 \[
 \text{\texttt{((NOT Y) (NOT R))}}
 \]

 Prefix form is often a better representation for a parser, since it looks at the first element of the list and dispatches to a handler for that operator token.
Detailed Resolution Proof Example

- **In words:** *If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.*

 Prove that the unicorn is both magical and horned.

 \[
 Y = \text{unicorn is mythical} \quad R = \text{unicorn is mortal} \\
 M = \text{unicorn is a mammal} \quad H = \text{unicorn is horned} \\
 G = \text{unicorn is magical}
 \]

- **Second, translate to Propositional Logic, then to CNF:**

 - Propositional logic (prefix form):

 \[
 (\Rightarrow (\neg Y) (Y R M)) \quad ; \text{same as} \quad (\neg Y) \Rightarrow (Y R M)
 \]

 - CNF (clausal form)

 \[
 (M Y) \\
 (R Y)
 \]

 If you ever have to do this “for real” you will likely invent a new domain language that allows you to state important properties of the domain --- then parse that into propositional logic, and then CNF.
In words: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned. Prove that the unicorn is both magical and horned.

Y = unicorn is mythical R = unicorn is mortal
M = unicorn is a mammal H = unicorn is horned
G = unicorn is magical

Second, translate to Propositional Logic, then to CNF:

Propositional logic (prefix form):

– (=> (OR (NOT R) M) H) ; same as ((Not R) OR M) => H in infix form

CNF (clausal form)

– (H (NOT M))
– (H R)
Detailed Resolution Proof Example

- **In words:** If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. *The unicorn is magical if it is horned.*

 Prove that the unicorn is both magical and horned.

- Second, translate to Propositional Logic, then to CNF:

 - Propositional logic (prefix form)
 - \((=> H G)\); same as \(H => G\) in infix form

 - CNF (clausal form)
 - \(((NOT H) G)\)
Detailed Resolution Proof Example

• **In words:** If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

 Prove that the unicorn is both magical and horned.

 \[Y = \text{unicorn is mythical} \quad R = \text{unicorn is mortal} \]
 \[M = \text{unicorn is a mammal} \quad H = \text{unicorn is horned} \]
 \[G = \text{unicorn is magical} \]

• **Current KB (in CNF clausal form) =**

 \[
 ((\neg Y) (\neg R)) \quad (M \ Y) \quad (R \ Y) \quad (H (\neg M)) \\
 (H \ R) \quad ((\neg H) \ G)
 \]
Detailed Resolution Proof Example

• **In words:** *If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.*

 Prove that *the unicorn is both magical and horned.*

 Y = unicorn is mythical
 R = unicorn is mortal
 M = unicorn is a mammal
 H = unicorn is horned
 G = unicorn is magical

• **Third, negated goal to Propositional Logic, then to CNF:**

 • Goal sentence in propositional logic (prefix form)
 – (AND H G) ; same as H AND G in infix form

 • Negated goal sentence in propositional logic (prefix form)
 – (NOT (AND H G)) = (OR (NOT H) (NOT G))

 • CNF (clausal form)
 – ((NOT G) (NOT H))
Detailed Resolution Proof Example

• **In words:** If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

 Prove that the unicorn is both magical and horned.

 \[\begin{align*}
 Y &= \text{unicorn is mythical} \\
 R &= \text{unicorn is mortal} \\
 M &= \text{unicorn is a mammal} \\
 H &= \text{unicorn is horned} \\
 G &= \text{unicorn is magical}
 \end{align*} \]

• **Current KB + negated goal** (in CNF clausal form) =

 \[\begin{align*}
 & (\neg Y) (\neg R) \quad (M Y) \quad (R Y) \quad (H (\neg M)) \\
 & (H R) \quad (\neg H) G \quad (\neg G) (\neg H)
 \end{align*}\]
Detailed Resolution Proof Example

• **In words:** If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

 Prove that the unicorn is both magical and horned.

 \[
 \begin{align*}
 & (\neg Y \neg R) \quad (M Y) \quad (R Y) \quad (H \neg M) \quad \\
 & (H R) \quad (\neg H G) \quad (\neg G \neg H)
 \end{align*}
 \]

• **Fourth, produce a resolution proof ending in ():**
 • Resolve (\neg H \neg G) and (\neg H G) to give (\neg H)
 • Resolve (\neg Y \neg R) and (Y M) to give (\neg R M)
 • Resolve (\neg R M) and (R H) to give (M H)
 • Resolve (M H) and (\neg M H) to give (H)
 • Resolve (\neg H) and (H) to give ()

• Of course, there are many other proofs, which are OK iff correct.
Detailed Resolution Proof Example

Graph view of proof

• \((\neg Y \neg R)(YR)(YM)(RH)(\neg MH)(\neg HG)(\neg G \neg H)\)
Detailed Resolution Proof Example

Graph view of a different proof

\[(\neg Y \neg R)(Y R)(Y M)(R H)(\neg M H)(\neg H G)(\neg G \neg H) \]
Horn Clauses

• Resolution can be exponential in space and time.

• If we can reduce all clauses to “Horn clauses” inference is linear in space and time.

A clause with at most 1 positive literal.

\[A \lor \neg B \lor \neg C \]

• Every Horn clause can be rewritten as an implication with a conjunction of positive literals in the premises and at most a single positive literal as a conclusion.

\[A \lor \neg B \lor \neg C \equiv B \land C \Rightarrow A \]

• 1 positive literal and \(\geq 1 \) negative literal: definite clause (e.g., above)

• 0 positive literals: integrity constraint or goal clause

\[\neg(A \lor \neg B) \equiv (A \land B \Rightarrow False) \]

states that \((A \land B)\) must be false

• 0 negative literals: fact

\[(A) \equiv (True \Rightarrow A) \]

states that \(A\) must be true.

• Forward Chaining and Backward chaining are sound and complete with Horn clauses and run linear in space and time.
Forward chaining (FC)

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.

- This proves that $KB \Rightarrow Q$ is true in all possible worlds (i.e. trivial), and hence it proves entailment.

- Forward chaining is sound and complete for Horn KB
Forward chaining example

“OR” Gate

“AND” gate
Forward chaining example
Backward chaining (BC)

Idea: work backwards from the query q

- check if q is known already, or
- prove by BC all premises of some rule concluding q
- Hence BC maintains a stack of sub-goals that need to be proved to get to q.

Avoid loops: check if new sub-goal is already on the goal stack

Avoid repeated work: check if new sub-goal
 1. has already been proved true, or
 2. has already failed
Backward chaining example
Backward chaining example
Backward chaining example
Backward chaining example

we need P to prove L and L to prove P.
Backward chaining example

As soon as you can move forward, do so.
Backward chaining example
Forward vs. backward chaining

• FC is data-driven, automatic, unconscious processing,
 – e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving,
 – e.g., Where are my keys? How do I get into a PhD program?

• Complexity of BC can be much less than linear in size of KB
Model Checking

Two families of efficient algorithms:

• Complete backtracking search algorithms:
 – E.g., DPLL algorithm

• Incomplete local search algorithms
 – E.g., WalkSAT algorithm
The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable. **This is just backtracking search for a CSP.**

Improvements:

1. **Early termination**
 A clause is true if any literal is true.
 A sentence is false if any clause is false.

2. **Pure symbol heuristic**
 Pure symbol: always appears with the same "sign" in all clauses.
 e.g., In the three clauses $(A \lor \neg B)$, $(\neg B \lor \neg C)$, $(C \lor A)$, A and B are pure, C is impure.
 Make a pure symbol literal true. (if there is a model for S, then making a pure symbol true is also a model).

3. **Unit clause heuristic**
 Unit clause: only one literal in the clause
 The only literal in a unit clause must be true.

 Note: literals can become a pure symbol or a unit clause when other literals obtain truth values. e.g. $(A \lor \text{True}) \land (\neg A \lor B)$

$A = \text{pure}$
The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness

Walksat Procedure

Start with random initial assignment.
Pick a random unsatisfied clause.
Select and flip a variable from that clause:
 - With probability p, pick a random variable.
 - With probability $1-p$, pick greedily
 a variable that minimizes the number of unsatisfied clauses.
Repeat to predefined maximum number flips;
 if no solution found, restart.
Hard satisfiability problems

• Consider *random* 3-CNF sentences. e.g.,

\[(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C) \]

\(m = \text{number of clauses (5)} \)
\(n = \text{number of symbols (5)} \)

- Hard problems seem to cluster near \(m/n = 4.3 \) (critical point)
Hard satisfiability problems
Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n = 50$
You are told: John drove to the grocery store and bought a pound of noodles, a pound of ground beef, and two pounds of tomatoes.

- Is John 3 years old?
- Is John a child?
- What will John do with the purchases?
- Did John have any money?
- Does John have less money after going to the store?
- Did John buy at least two tomatoes?
- Were the tomatoes made in the supermarket?
- Did John buy any meat?
- Is John a vegetarian?
- Will the tomatoes fit in John’s car?

- Can Propositional Logic support these inferences?
Summary

• Logical agents apply inference to a knowledge base to derive new information and make decisions

• Basic concepts of logic:
 – syntax: formal structure of sentences
 – semantics: truth of sentences wrt models
 – entailment: necessary truth of one sentence given another
 – inference: deriving sentences from other sentences
 – soundness: derivations produce only entailed sentences
 – completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic. Forward and backward chaining are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power