First-Order Logic
Knowledge Representation

First Lecture Today (Tue 28 Jun)
Review Chapters 8.3-8.5,
Read 9.1-9.2 (optional: 9.5)

Second Lecture Today (Tue 28 Jun)
Read Chapters 13, 14.1-14.5

Next Lecture (Thu 30 Jun)
Read Chapters 3.1-3.4, 18.6.1-2, 20.3.1

(Please read lecture topic material before and after each lecture on that topic)
Outline

- Review --- Syntactic Ambiguity

- Using FOL
 - Tell, Ask

- Example: Wumpus world

- Deducing Hidden Properties
 - Keeping track of change
 - Describing the results of Actions

- Set Theory in First-Order Logic

- Knowledge engineering in FOL

- The electronic circuits domain
You will be expected to know

- Seven steps of Knowledge Engineering (R&N section 8.4.1)

- Given a simple Knowledge Engineering problem, produce a simple FOL Knowledge Base that solves the problem
Review --- Syntactic Ambiguity

• FOPC provides many ways to represent the same thing.
 • E.g., “Ball-5 is red.”
 – HasColor(Ball-5, Red)
 • Ball-5 and Red are objects related by HasColor.
 – Red(Ball-5)
 • Red is a unary predicate applied to the Ball-5 object.
 – HasProperty(Ball-5, Color, Red)
 • Ball-5, Color, and Red are objects related by HasProperty.
 – ColorOf(Ball-5) = Red
 • Ball-5 and Red are objects, and ColorOf() is a function.
 – HasColor(Ball-5(), Red())
 • Ball-5() and Red() are functions of zero arguments that both return an object, which objects are related by HasColor.
 – ...

• This can GREATLY confuse a pattern-matching reasoner.
 • Especially if multiple people collaborate to build the KB, and they all have different representational conventions.
Review --- Syntactic Ambiguity --- Partial Solution

• FOL can be TOO expressive, can offer TOO MANY choices

• Likely confusion, especially for teams of Knowledge Engineers

• Different team members can make different representation choices
 – E.g., represent “Ball43 is Red.” as:
 • a predicate (= verb)? E.g., “Red(Ball43)”?
 • an object (= noun)? E.g., “Red = Color(Ball43))”?
 • a property (= adjective)? E.g., “HasProperty(Ball43, Red)”?

• PARTIAL SOLUTION:
 – An upon-agreed ontology that settles these questions
 – Ontology = what exists in the world & how it is represented
 – The Knowledge Engineering teams agrees upon an ontology
 BEFORE they begin encoding knowledge
Using FOL

- We want to TELL things to the KB, e.g.

 \[\text{TELL}(\text{KB}, \forall x, King(x) \Rightarrow Person(x)) \]

 \[\text{TELL}(\text{KB}, King(\text{John})) \]

 These sentences are assertions

- We also want to ASK things to the KB,

 \[\text{ASK}(\text{KB}, \exists x, Person(x)) \]

 these are queries or goals

The KB should return the list of x’s for which Person(x) is true:

\[\{x/\text{John}, x/\text{Richard},...\} \]
Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base
FOL Version of Wumpus World

• Typical percept sentence:
 Percept([Stench,Breeze,Glitter,None,None],5)

• Actions:
 Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb

• To determine best action, construct query:
 \[\exists a \text{ BestAction}(a,5) \]

• ASK solves this and returns \{a/Grab\}
 – And TELL about the action.
Knowledge Base for Wumpus World

- **Perception**
 - $\forall s, g, x, y, t \text{ Percept}([s, \text{Breeze}, g, x, y], t) \Rightarrow \text{Breeze}(t)$
 - $\forall s, b, x, y, t \text{ Percept}([s, b, \text{Glitter}, x, y], t) \Rightarrow \text{Glitter}(t)$

- **Reflex action**
 - $\forall t \text{ Glitter}(t) \Rightarrow \text{BestAction(Grab, t)}$

- **Reflex action with internal state**
 - $\forall t \text{ Glitter}(t) \land \lnot \text{Holding(Gold, t)} \Rightarrow \text{BestAction(Grab, t)}$

 Holding(Gold,t) can not be observed: keep track of change.
Deducing hidden properties

Environment definition:
\[\forall x,y,a,b \ Adjacent([x,y],[a,b]) \iff [a,b] \in \{[x+1,y], [x-1,y],[x,y+1],[x,y-1]\} \]

Properties of locations:
\[\forall s,t \ At(Agent,s,t) \land Breeze(t) \Rightarrow Breezy(s) \]

Squares are breezy near a pit:
- Diagnostic rule---infer cause from effect
 \[\forall s \ Breezy(s) \iff \exists r \ Adjacent(r,s) \land Pit(r) \]

- Causal rule---infer effect from cause (model based reasoning)
 \[\forall r \ Pit(r) \Rightarrow [\forall s \ Adjacent(r,s) \Rightarrow Breezy(s)] \]
Keeping track of change

Facts hold in situations, rather than eternally
E.g., $Holding(Gold, Now)$ rather than just $Holding(Gold)$

Situation calculus is one way to represent change in FOL:
 Adds a situation argument to each non-eternal predicate
 E.g., Now in $Holding(Gold, Now)$ denotes a situation

Situations are connected by the *Result* function
$Result(a, s)$ is the situation that results from doing a in s
Describing actions I

"Effect" axiom—describe changes due to action
\[\forall s \quad \text{AtGold}(s) \Rightarrow \text{Holding}(\text{Gold, Result}(\text{Grab}, s)) \]

"Frame" axiom—describe non-changes due to action
\[\forall s \quad \text{HaveArrow}(s) \Rightarrow \text{HaveArrow}(\text{Result}(\text{Grab}, s)) \]

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . . .
Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):

\[P \text{ true afterwards} \Leftrightarrow \begin{array}{c}
\text{[an action made } P \text{ true} }\\
\lor P \text{ true already and no action made } P \text{ false}
\end{array} \]

For holding the gold:

\[\forall a, s \quad \text{Holding}(Gold, \text{Result}(a, s)) \Leftrightarrow \]
\[\begin{array}{c}
(a = \text{Grab} \land \text{AtGold}(s)) \\
\lor (\text{Holding}(Gold, s) \land a \neq \text{Release})
\end{array} \]
Set Theory in First-Order Logic

Can we define set theory using FOL?
 - individual sets, union, intersection, etc

Answer is yes.

Basics:
 - empty set = constant = \{ \}

 - unary predicate \text{Set}(), true for sets

 - binary predicates:
 \[x \in s \] (true if \(x \) is a member of the set \(s \))
 \[s_1 \subseteq s_2 \] (true if \(s_1 \) is a subset of \(s_2 \))

 - binary functions:
 intersection \(s_1 \cap s_2 \), union \(s_1 \cup s_2 \), adjoining \(\{x|s\} \)
A Possible Set of FOL Axioms for Set Theory

The only sets are the empty set and sets made by adjoining an element to a set
\[\forall s \text{ Set}(s) \iff (s = \{\}) \lor (\exists x, s_2 \text{ Set}(s_2) \land s = \{x|s_2\}) \]

The empty set has no elements adjoined to it
\[\neg \exists x, s \{x|s\} = {} \]

Adjoining an element already in the set has no effect
\[\forall x, s \ x \in s \iff s = \{x|s\} \]

The only elements of a set are those that were adjoined into it.
Expressed recursively:
\[\forall x, s \ x \in s \iff [\exists y, s_2 \ (s = \{y|s_2\} \land (x = y \lor x \in s_2))] \]
A Possible Set of FOL Axioms for Set Theory

A set is a subset of another set iff all the first set’s members are members of the 2nd set

\[\forall s_1, s_2 \ s_1 \subseteq s_2 \iff (\forall x \ x \in s_1 \Rightarrow x \in s_2) \]

Two sets are equal iff each is a subset of the other

\[\forall s_1, s_2 \ (s_1 = s_2) \iff (s_1 \subseteq s_2 \land s_2 \subseteq s_1) \]

An object is in the intersection of 2 sets only if a member of both

\[\forall x, s_1, s_2 \ x \in (s_1 \cap s_2) \iff (x \in s_1 \land x \in s_2) \]

An object is in the union of 2 sets only if a member of either

\[\forall x, s_1, s_2 \ x \in (s_1 \cup s_2) \iff (x \in s_1 \lor x \in s_2) \]
The electronic circuits domain

One-bit full adder

Possible queries:
- does the circuit function properly?
- what gates are connected to the first input terminal?
- what would happen if one of the gates is broken?
and so on
The electronic circuits domain

1. Identify the task
 – Does the circuit actually add properly?

2. Assemble the relevant knowledge
 – Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 – Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
 – Alternatives:
 – Type(X_1) = XOR (function)
 – Type(X_1, XOR) (binary predicate)
 – XOR(X_1) (unary predicate)
4. Encode general knowledge of the domain
 - \(\forall t_1, t_2 \) Connected\((t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2) \)
 - \(\forall t \) \(\text{Signal}(t) = 1 \lor \text{Signal}(t) = 0 \)
 - \(1 \neq 0 \)
 - \(\forall t_1, t_2 \) Connected\((t_1, t_2) \Rightarrow \text{Connected}(t_2, t_1) \)
 - \(\forall g \) Type\((g) = \text{OR} \Rightarrow \text{Signal}(\text{Out}(1,g)) = 1 \Leftrightarrow \exists n \) \(\text{Signal}(\text{In}(n,g)) = 1 \)
 - \(\forall g \) Type\((g) = \text{AND} \Rightarrow \text{Signal}(\text{Out}(1,g)) = 0 \Leftrightarrow \exists n \) \(\text{Signal}(\text{In}(n,g)) = 0 \)
 - \(\forall g \) Type\((g) = \text{XOR} \Rightarrow \text{Signal}(\text{Out}(1,g)) = 1 \Leftrightarrow \text{Signal}(\text{In}(1,g)) \neq \text{Signal}(\text{In}(2,g)) \)
 - \(\forall g \) Type\((g) = \text{NOT} \Rightarrow \text{Signal}(\text{Out}(1,g)) \neq \text{Signal}(\text{In}(1,g)) \)
The electronic circuits domain

5. Encode the specific problem instance

\[
\text{Type}(X_1) = \text{XOR} \quad \text{Type}(X_2) = \text{XOR} \\
\text{Type}(A_1) = \text{AND} \quad \text{Type}(A_2) = \text{AND} \\
\text{Type}(O_1) = \text{OR}
\]

\[
\text{Connected}(\text{Out}(1,X_1),\text{In}(1,X_2)) \quad \text{Connected}(\text{In}(1,C_1),\text{In}(1,X_1)) \\
\text{Connected}(\text{Out}(1,X_1),\text{In}(2,A_2)) \quad \text{Connected}(\text{In}(1,C_1),\text{In}(1,A_1)) \\
\text{Connected}(\text{Out}(1,A_2),\text{In}(1,O_1)) \quad \text{Connected}(\text{In}(2,C_1),\text{In}(2,X_1)) \\
\text{Connected}(\text{Out}(1,A_1),\text{In}(2,O_1)) \quad \text{Connected}(\text{In}(2,C_1),\text{In}(2,A_1)) \\
\text{Connected}(\text{Out}(1,X_2),\text{Out}(1,C_1)) \quad \text{Connected}(\text{In}(3,C_1),\text{In}(2,X_2)) \\
\text{Connected}(\text{Out}(1,O_1),\text{Out}(2,C_1)) \quad \text{Connected}(\text{In}(3,C_1),\text{In}(1,A_2))
\]
The electronic circuits domain

6. Pose queries to the inference procedure
 What are the possible sets of values of all the terminals for the adder circuit?

 \[\exists i_1, i_2, i_3, o_1, o_2 \text{ Signal(In}(1, C_1)) = i_1 \land \text{Signal(In}(2, C_1)) = i_2 \land \text{Signal(In}(3, C_1)) = i_3 \land \text{Signal(Out}(1, C_1)) = o_1 \land \text{Signal(Out}(2, C_1)) = o_2 \]

7. Debug the knowledge base
 May have omitted assertions like 1 ≠ 0
Review --- Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base
Summary

• First-order logic:
 – Much more expressive than propositional logic
 – Allows objects and relations as semantic primitives
 – Universal and existential quantifiers
 – Syntax: constants, functions, predicates, equality, quantifiers

• Knowledge engineering using FOL
 – Capturing domain knowledge in logical form