Regression Problem

(adapted from) Prof. Alexander Ihler
Overview

- Regression Problem Definition and define parameters Θ.
- Prediction using Θ as parameters
- Measure the error
- Finding good parameters Θ (direct minimization problem)
- Non-Linear regression problem
Example of Regression

- Vehicle price estimation problem
 - Features \(x \): Fuel type, The number of doors, Engine size
 - Targets \(y \): Price of vehicle
 - Training Data: (fit the model)

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>The number of doors</th>
<th>Engine size (61 – 326)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>70</td>
<td>11000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>120</td>
<td>17000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>310</td>
<td>41000</td>
</tr>
</tbody>
</table>

- Testing Data: (evaluate the model)

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>The number of doors</th>
<th>Engine size (61 – 326)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>150</td>
<td>21000</td>
</tr>
</tbody>
</table>
Example of Regression

- Vehicle price estimation problem

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>#of doors</th>
<th>Engine size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>70</td>
<td>11000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>120</td>
<td>17000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>310</td>
<td>41000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>The number of doors</th>
<th>Engine size (61 – 326)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>150</td>
<td>21000</td>
</tr>
</tbody>
</table>

- $\Theta = [-300, -200, 700, 130]$
- Ex #1 = $-300 + -200 * 1 + 4 * 700 + 70 * 130 = 11400$
- Ex #2 = $-300 + -200 * 1 + 2 * 700 + 120 * 130 = 16500$
- Ex #3 = $-300 + -200 * 2 + 2 * 700 + 310 * 130 = 41000$
 - Mean Absolute Training Error = $1/3 * (400 + 500 + 0) = 300$
- Test = $-300 + -200 * 2 + 4 * 700 + 150 * 130 = 21600$
 - Mean Absolute Testing Error = $1/1 * (600) = 600$
Supervised learning

- **Notation**
 - Features: \(x \) (input variables)
 - Targets: \(y \) (output variables)
 - Predictions: \(\hat{y} \)
 - Parameters: \(\theta \)

Program ("Learner")
- Characterized by some "parameters" \(\theta \)
- Procedure (using \(\theta \)) that outputs a prediction

Training data (examples)
- Features

Feedback / Target values

Evaluation of the model (measure error)

Error = Distance between \(y \) and \(\hat{y} \)

Learning algorithm
- Change \(\theta \)
- Improve performance
Overview

- Regression Problem Definition and parameters.
- Prediction using Θ as parameters
- Measure the error
- Finding good parameters Θ (direct minimization problem)
- Non-Linear regression problem

(c) Alexander Ihler
Linear regression

- Define form of function $f(x)$ explicitly
- Find a good $f(x)$ within that family

\[Y = 5 + 1.5X_1 \]

New instance with $X_1=8$
Predicted value $= 17$

\[\tilde{y} = \Theta_0 + \Theta_1 \times X_1 \]
return \tilde{y}

\tilde{y} = Predicted target value (Black line)

(c) Alexander Ihler
More dimensions?

\[\hat{y}(x) = \theta \cdot x^T \]

\[\theta = [\theta_0 \ \theta_1 \ \theta_2] \]

\[x = [1 \ x_1 \ x_2] \]

(c) Alexander Ihler
Notation

\[\hat{y}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots \]

Define “feature” \(x_0 = 1 \) (constant)

Then

\[\hat{y}(x) = \theta^T x \]

\[\theta = [\theta_0, \ldots, \theta_n] \]

\[x = [1, x_1, \ldots, x_n] \]

\(\tilde{Y} \) is a plane in \(n+1 \) dimension space

\(n = \text{the number of features in dataset} \)
Overview

- Regression Problem Definition and parameters.
- Prediction using Θ as parameters
- Measure the error
- Finding good parameters Θ (direct minimization problem)
- Non-Linear regression problem
Supervised learning

- Notation
 - Features x (input variables)
 - Targets y (output variables)
 - Predictions \hat{y}
 - Parameters θ

Program ("Learner")
Characterized by some "parameters" θ
Procedure (using θ) that outputs a prediction

Error = Distance between y and \hat{y}

Learning algorithm
Change θ
Improve performance

Training data (examples)
Features
Feedback / Target values
Evaluation of the model (measure error)
Measuring error

Red points = Real target values
Black line = \tilde{y} (predicted value)
$\tilde{y} = \Theta_0 + \Theta_1 \cdot X$
Blue lines = Error (Difference between real value y and predicted value \tilde{y})

$$y - \hat{y}(x) = (y - \theta \cdot x^T)$$
Mean Squared Error

- How can we quantify the error?

\[\text{MSE}, \ J(\theta) = \frac{1}{m} \sum_{j} (y^{(j)} - \hat{y}(x^{(j)}))^2 \]

\(m = \) number of instance of data

\[= \frac{1}{m} \sum_{j} (y^{(j)} - \theta \cdot x^{(j)T})^2 \]

- \(Y = \) Real target value in dataset,
- \(\hat{y} = \) Predicted target value by \(\Theta \cdot X \)

- Training Error: \(m = \) the number of training instances,
- Testing Error: Using a partition of Training error to check predicted values. \(m = \) the number of testing instances,
MSE cost function

\[J(\theta) = \frac{1}{m} \sum_{j} (y^{(j)} - \hat{y}(x^{(j)}))^2 \]

\[= \frac{1}{m} \sum_{j} (y^{(j)} - \theta \cdot x^{(j)T})^2 \]

- Rewrite using matrix form

\[\theta = [\theta_0, \ldots, \theta_n] \]

\[y = \begin{bmatrix} y^{(1)} & \ldots & y^{(m)} \end{bmatrix}^T \]

\[X = \begin{bmatrix} x_0^{(1)} & \ldots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \ldots & x_n^{(m)} \end{bmatrix} \]

\[J(\theta) = \frac{1}{m} (y^T - \theta X^T) \cdot (y^T - \theta X^T)^T \]

(Matlab)

\[>> e = y' - \theta \cdot X'; \quad J = e' \cdot e / m; \]

(c) Alexander Ihler
Visualizing the error function

The plane is the value of J, not the plane fitted to output values.

J is error function.

Dimensions are Θ_0 and Θ_1 instead of X_1 and X_2
Output is J instead of y as target value

Representation of J in 2D space.
Inner red circles has less value of J
Outer red circles has higher value of J
Overview

- Regression Problem Definition and parameters.
- Prediction using Θ as parameters
- Measure the error
- Finding good parameters Θ (direct minimization problem)
- Non-Linear regression problem
Supervised learning

- **Notation**
 - Features x
 - Targets y
 - Predictions \hat{y}
 - Parameters θ

Program ("Learner")

Characterized by some "parameters" θ

Procedure (using θ) that outputs a prediction

Learning algorithm

Change θ

Improve performance

Training data (examples)

- Features
- Feedback / Target values

Evaluation of the model (measure error)
Finding good parameters

- Want to find parameters which minimize our error…

- Think of a cost “surface”: error residual for that θ…

$$\hat{\theta} = \arg \min_{\theta} J(\theta)$$
MSE Minimum \((m \leq n+1)\)

- Consider a simple problem
 - One feature, two data points
 - Two unknowns and two equations:

\[
y^{(1)} = \theta_0 + \theta_1 x^{(1)} \\
y^{(2)} = \theta_0 + \theta_1 x^{(2)}
\]

\(n + 1 = 1 + 1 = 2\)

\(m = 2\)

- Can solve this system directly:

\[
y^T = \theta X^T \quad \Rightarrow \quad \hat{\theta} = y^T (X^T)^{-1}
\]

Theta gives a line or plane that exactly fit to all target values.
SSE Minimum \((m > n+1)\)

- Most of the time, \(m > n\)
 - There may be no linear function that hits all the data exactly
 - Minimum of a function has gradient equal to zero (gradient is a horizontal line.)

\[
\nabla J(\theta) = \left[y^T - \theta X^T \right] \cdot X = 0
\]

- Reordering, we have

\[
y^T X - \theta X^T \cdot X = 0
\]

\[
y^T X = \theta X^T \cdot X
\]

\[
\theta = y^T X (X^T X)^{-1}
\]

Just need to know how to compute parameters.

(c) Alexander Ihler
Effects of Mean Square Error choice

outlier data: An outlier is an observation that lies an abnormal distance from other value.

- 16^2 cost for this one datum
- Heavy penalty for large errors
- Distract line from other points.

(c) Alexander Ihler
Absolute error

\[\ell_1(\theta) = \sum_j |y^{(j)} - \hat{y}(x^{(j)})| \]

\[= \sum_j |y - \theta \cdot x^T| \]
Error functions for regression

(Mean Square Error)
\[\ell_2 : (y - \hat{y})^2 \]

(Mean Absolute Error)
\[\ell_1 : |y - \hat{y}| \]

Something else entirely…

(???)
\[c - \log(\exp(-(y - \hat{y})^2) + c) \]

“Arbitrary” Error functions can’t be solved in closed form…
So as alternative way, use gradient descent

(c) Alexander Ihler
Overview

• Regression Problem Definition and parameters.
• Prediction using Θ as parameters
• Measure the error
• Finding good parameters Θ (direct minimization problem)
• Non-Linear regression problem
Nonlinear functions

- Single feature x, predict target y:

$$D = \{(x^{(j)}, y^{(j)})\}$$

$$\hat{y}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Add features:

$$D = \{([x^{(j)}, (x^{(j)})^2, (x^{(j)})^3], y^{(j)})\}$$

$$\hat{y}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

Linear regression in new features

- Sometimes useful to think of “feature transform”

$$\Phi(x) = \begin{bmatrix} 1, x, x^2, x^3, \ldots \end{bmatrix}$$

$$\hat{y}(x) = \theta \cdot \Phi(x)$$

- Convert a non-linear function to linear function and then solve it.
Higher-order polynomials

- Are more features better?
- “Nested” hypotheses
 - 2nd order more general than 1st,
 - 3rd order ““ than 2nd, ...
- Fits the observed data better
Test data

- After training the model
- Go out and get more data from the world
 - New observations \((x,y)\)
- How well does our model perform?

(c) Alexander Ihler
Training versus test error

- Plot MSE as a function of model complexity
 - Polynomial order
- Decreases
 - More complex function fits training data better
- What about new data?
- 0th to 2nd order
 - Error decreases
 - Underfitting
- Higher order
 - Error increases
 - Overfitting

(c) Alexander Ihler
Summary

• Regression Problem Definition
 – Vehicle Price estimation
• Prediction using \(\Theta: \hat{y}(x) = \theta x^T \)
• Measure the error: difference between \(y \) and \(\hat{y} \)
 – e.g. Absolute error, MSE
• direct minimization problem
 – Two cases \(m \leq n+1 \) and \(m > n+1 \)
• Non-Linear regression problem
 – Finding best \(n^{th} \) order polynomial function for each problem (not overfitting and not under fitting)