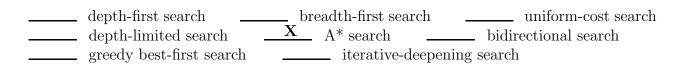

ICS 171 — Quiz #2 — FIFTEEN (15) minutes

 1. (5 pts) NAME AND EMAIL ADDRESS:

 YOUR ID:
 ID TO RIGHT:

 ROW:
 NO. FROM RIGHT:

2. (5 pts each, 30 pts total) Use the following tree to indicate the order that nodes are expanded, for different types of search. Assume that G (double box) is the only goal node. Here, path costs are shown to the right of each path, $g = \cos t$ of path so far, $h = \operatorname{estimate}$ of remaining cost to goal, $f = \operatorname{estimate}$ of total path cost.


For each search strategy, write down the order in which nodes are expanded. Stop at G.

(2a) DEPTH-FIRST SEARCH:							
A B D	<u> </u>	C <u>F</u>	G				
(2b) BREADTH-FIRST SE	CARCH:						
<u>A</u> <u>B</u> <u>C</u>	D I	E <u>F</u>	G				
(2c) ITERATIVE DEEPEN	NING DEPT	TH-FIRST	SEARCH:	\bigcirc			
<u>A</u> <u>A</u> <u>B</u>	<u>C</u> <u></u>	<u> 8</u>		<u> </u>	<u>C</u>	F	G
(2d) UNIFORM-COST SEA	ARCH:						
<u>A</u> <u>C</u> <u>F</u>	G						
(2e) GREEDY BEST-FIRS	T SEARCH	[:					
A B E	D (<u> </u>					
(2f) A* SEARCH:							
A C G							

3. (5 pts (a)h, 10 pts total) Use the tree above.

(3a) $\underline{Y}_{\underline{Y}}$ (Y=yes or N=no) Is the heuristic in problem 2 above admissable?

4. (10 pts) In general, which is the preferred search method when (a) there is a large search space, (b) the depth of the solution is unknown, (c) an optimal solution is desired, and (d) a consistent admissable heuristic is available? (Mark one blank with "X")

5. (5 pts each, 30 pts total) Recall that

- True path cost so far = g(n).
- Estimated cost to goal = h'(n).
- Estimated total cost = f'(n) = g(n) + h'(n).

The following is a proof that A^* search (queue sorted by f') is optimal if the heuristic is admissable. The lines have been labelled A through G. Unfortunately, they have been scrambled.

Let n_g be the first goal node popped off the queue. Let n_o be any other node on the queue. We wish to prove that n_o can never be extended to a path to any goal node that costs less than the path to n_g that we just found.

A: true total cost of n_g						
F:	$= g(n_g) //$ because n_g represents a complete path					
D:	$= f'(n_g)$ // by definition of f with $h'(n_g) = 0$					
B:	$\leq f'(n_o)$ // because queue is sorted by f					
E:	$= g(n_o) + h'(n_o)$ // by definition of f					
C:	$\leq g(n_o) + \text{true cost to goal from } n_o // \text{ because } h' \text{ is admissable}$					
G:	$=$ true total cost of n_o					

Fill in the blanks with the letters B, C, D, E, F ,and G to prove that the true total cost of $n_g \leq$ true total cost of n_o . The first and last letters, A and G, have been done for you as an example.

<u>A</u> <u>F</u> <u>D</u> <u>B</u> <u>E</u> <u>C</u> <u>G</u>

6. (5 pts each, 15 pts total) Label the following as "T" (true) or "F" (false).

6.a. $\underline{\mathbf{F}}$ An admissable heuristic never underestimates the remaining distance (cost) to the goal.

6.b. <u>**F**</u> A good way to find a heuristic for a problem is to make the problem harder and then solve the new harder problem.

6.c. <u>**F**</u> Let h_1 and h_2 be two admissable consistent heuristics. Heuristic h_1 is stronger (better) than heuristic h_2 just in case, for every search node n, we have $h_1(n) \ge h_2(n)$.