CS-171, Intro to A.I. — Quiz#3 — Fall Quarter, 2012 — 20 minutes

YOUR NAME:		

YOUR ID: _____ ID TO RIGHT:_____ ROW:____ NO. FROM RIGHT:____

1. (**35 pts total, -5 pts for each error, but not negative**) **The Knowledge Engineering process.** Your book identifies seven sequential steps in the knowledge engineering process, which steps are below. Unfortunately, the order of the steps has been scrambled. Please, straighten them out.

- A. Encode a description of the specific problem instance
- B. Assemble the relevant knowledge
- C. Pose queries to the inference procedure and get answers
- D. Encode general knowledge about the domain
- E. Debug the knowledge base
- F. Identify the task
- G. Decide on a vocabulary of predicates, functions, and constants

Fill in the blanks with the letters A, B, C, D, E, F, and G, all in the proper sequence.

2. (30 pts total, 5 pts each) Logic-To-English. For each of the following FOPC sentences on the left, write the letter corresponding to the best English sentence on the right. Use these intended interpretations: (1) "Student(x)" is intended to mean "x is a student." (2) "Quiz(x)" is intended to mean "x is a quiz." (3) "Got100(x, y)" is intended to mean "x got 100 on y."

В	B \forall s∃q Student(s) \Rightarrow [Quiz(q) \land Got100(s, q)] A For every quiz, there is a			See Section 8.2.6	
D	$V_{S} = q$ Student(s) $\rightarrow [Quiz(q) \land GotToo(s, q)]$	Π	student who got 100 on it.		
E	$\exists q \forall s Quiz(q) \land [Student(s) \Rightarrow Got100(s, q)]$	В	For every student, there is on which that student got 1	•	
А	$\forall q \exists s Quiz(q) \Rightarrow [Student(s) \land Got100(s, q)]$	C	Every student got 100 on e	every quiz.	
F	$\exists s \forall q \text{ Student}(s) \land [\text{Quiz}(q) \Rightarrow \text{Got}100(s, q)]$	D	Some student got 100 on s	ome quiz.	
С	$\forall s \forall q [Student(s) \land Quiz(q)] \Rightarrow Got100(s, q)$	E	There is a quiz on which every student got 100.		
D	$\exists s \exists q $ Student(s) \land Quiz(q) \land Got100(s, q)	F	There is a student who got 100 on every quiz.		

**** TURN PAGE OVER. QUIZ CONTINUES ON THE REVERSE ****

See Section 8.4

the unic	icorn is mythical, th orn is either immort	al or a mamn	al, then it is hor				
	hat the unicorn is bo copositional variable		0	1797.	See Section	7.5.2	
	unicorn is m Y thical				unicorn is a m	a M mal	
	unicorn is H orned						
You have tr	anslated your goal set $H \lor \neg G$)), so the negated	d goal is:	
You have t $(\neg$	ranslated the Engli Y $\lor \neg R$) $\lor H$)	sh sentences $(Y \lor R)$	into a proposi (Y)	tional logic Ki M)	nowledge Base	e (KB):	
	v n) resolution proof, us				orn is horned a	and magic	
	choose two clauses,						
· ·	Apply resolution to						
the knowled	lge base. Continue	until you pro	duce (). If you	cannot produc	e (), then you	have mad	
	u used abbreviated					t the pare	
more mics,	n your proor is corre		ne is done for y	ou, as an examp	лс.		
Resolve	$(\neg H \lor \neg G)$	and	$(\neg H \lor G)$	to give	(¬ H)		
Decelue	$(-\mathbf{M})$	our d		40.000			
Resolve	$(\neg M \lor H)$	and	(¬ H)	to give	(¬ M)	•	
Resolve	(Y ∨ M)	and	(¬ M)	to give	(Y)		
Resolve	$(\neg Y \lor \neg R)$	and	(\mathbf{V})	to give	$(\neg \mathbf{R})$		
			(1)	to give	((((((((((((((((((((•	
Resolve	<u>(R∨H)</u>	and	(¬R)	to give	(H)	·	
Resolve	(¬H)	and	(H)	to give	()		
Other proofs are	OK as long as they a	are correct.	Abr	ight and clever	student has co	nstructed	
For example, and	· · ·			a shorter proof than I was able to find:			
Resolve $(\neg H \lor \neg G)$ and $(\neg H \lor G)$ to give $(\neg H)$. Resolve $(R \lor H)$ and $(\neg H)$ to give (R) . Resolve $(\neg Y \lor \neg R)$ and (R) to give $(\neg Y)$. Resolve $(Y \lor M)$ and $(\neg Y)$ to give (M) .			Resolve (¬H ¬G) and (¬H G) to give (¬H) Resolve (¬Y ¬R) and (Y M) to give (¬R M) Resolve (¬R M) and (R H) to give (M H)				
		Reso					
		Resolve (M H) and (¬M H) to give (H)					
Resolve (¬ M [∨] H Resolve (H) and	Ⅰ) and (M) to give ((¬ H) to give ().	(H).	Reso	olve (¬H) and (H	l) to give ()		
Resolve		and		to give			