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CS-171, Intro to A.I. — Final Exam — Winter Quarter, 2012 
 
NAME AND EMAIL ADDRESS: 
 
YOUR ID:                    ID TO RIGHT:                    ROW:           NO. FROM RIGHT: 
 
 
 
The exam will begin on the next page. Please, do not turn the page until told. 
 
When you are told to begin the exam, please check first to make sure that you 
have all 11 pages, as numbered 1-11 in the bottom-left corner of each page. 
 
The exam is closed-notes, closed-book.  No calculators, cell phones, electronics. 
 
Please clear your desk entirely, except for pen, pencil, eraser, an optional blank 
piece of paper (for optional scratch pad use), and an optional water bottle. 
Please turn off all cell phones now. 

This page summarizes the points available for each question so you can plan your time. 
 
1. (10 pts total) Decision Tree Classifier Learning. 
 
2. (5 pts total, -1 pt each wrong answer, but not negative) Search Properties. 
 
3. (10 pts total) Naïve Bayes Classifier Learning. 
 
4. (10 pts total, 1 pt each) Bayesian Networks. 
 
5. (10 points total, 2 pts each) Constraint Satisfaction Problems. 
 
6. (5 pts total, -1 for each error, but not negative) Alpha-Beta Pruning. 
 
7. (10 pts total, -2 for each error, but not negative) Conversion to CNF. 

8. (10 pts total, -2 for each error, but not negative) Resolution Theorem Proving. 

9. (10 pts total, 2 pts each) State-Space Search. 

10. (8 pts total, 1 pt each) Puzzle-Solving. 
 
11. (2 pts total, 1 pt each) Heuristics. 
 
12. (10 pts total, 2 pts each) English to FOL Conversion. 
 
The Exam is printed on both sides to save trees!  Work both sides of each page! 
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1. (10 pts total) Decision Tree Classifier Learning. You are a robot in a lumber yard, 
and must learn to discriminate Oak wood from Pine wood. You choose to learn a 
Decision Tree classifier.  You are given the following examples: 
 
 
 
 
 
 
 

 
1a. (2 pts) Which attribute would information gain choose as the root of the tree? 
 
 Hardness   . 
 
1b. (4 pts) Draw the decision tree that would be constructed by recursively applying 
information gain to select roots of sub-trees, as in the Decision-Tree-Learning algorithm. 
 
 
 
 
 
 
 
 
 
 
Classify these new examples as Oak or Pine using your decision tree above. 
1c. (2 pts) What class is [Density=Light, Grain=Small, Hardness=Hard]?  Pine  
1d. (2 pts) What class is [Density=Light, Grain=Small, Hardness=Soft]?  Oak  
 
2. (5 pts total, -1 pt each wrong answer, but not negative) Search Properties.  
Fill in the values of the four evaluation criteria for each search strategy shown.  Assume 
a tree search where b is the finite branching factor; d is the depth to the shallowest goal 
node; m is the maximum depth of the search tree; C* is the cost of the optimal solution; 
step costs are identical and equal to some positive ε; and in Bidirectional search both 
directions use breadth-first search. 
 Note that these conditions satisfy all of the footnotes of Fig. 3.21 in your book. 
Criterion Complete? Time complexity Space complexity Optimal? 
Breadth-First  Yes O(b^d)  O(b^d)  Yes 
Uniform-Cost Yes O(b^(1+floor(C*/ε))) 

O(b^(d+1)) also OK 
O(b^(1+floor(C*/ε))) 
O(b^(d+1)) also OK 

Yes 

Depth-First No O(b^m) O(bm) No 
Iterative Deepening Yes O(b^d) O(bd) Yes 
Bidirectional 
(if applicable) 

Yes O(b^(d/2)) O(b^(d/2)) Yes 

Example Density Grain Hardness Class 
Example #1 Heavy Small Hard Oak 
Example #2 Heavy Large Hard Oak 
Example #3 Heavy Small Hard Oak 
Example #4 Light Large Soft Oak 
Example #5 Light Large Hard Pine 
Example #6 Heavy Small Soft Pine 
Example #7 Heavy Large Soft Pine 
Example #8 Heavy Small Soft Pine 

Hardness? 

Density? 

Oak Pine 

Soft 

Light 

Hard 

Heavy 
Density? 

Oak Pine 

Heavy Light 

If root is Density: 
 Heavy = OOOPPP, Light = OP 
If root is Grain: 
 Small = OOPP, Large = OOPP 
If root is Hardness: 
 Hard = OOOP, Soft = OPPP 
(O = Oak, P = Pine) 

Half credit for the correct root; half credit 
for wrong root but correct classification; 
full credit for the correct tree. 

Full credit if 
your answers 
are right for 
the tree you 
drew, even if 
the tree itself 
is wrong. 

See Section 18.3. 

See Figure 3.21. 
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3.  (10 pts total) Naïve Bayes Classifier Learning. You are a robot in an animal 
shelter, and must learn to discriminate Dogs from Cats. You choose to learn a Naïve 
Bayes classifier.  You are given the following (noisy) examples: 
 
 
 
 
 
 
 
 
 
Recall that Baye’s rule allows you to rewrite the conditional probability of the class given 
the attributes as the conditional probability of the attributes given the class. As usual, α 
is a normalizing constant that makes the probabilities sum to one. 
 
P(Class | Sound, Fur, Color) = α P(Sound, Fur, Color | Class) P(Class) 
 
3a. (2 pts) Now assume that the attributes (Sound, Fur, and Color) are conditionally 
independent given the Class. Rewrite the expression above, using this assumption of 
conditional independence (i.e., rewrite it as a Naïve Bayes Classifier expression). 
 
α P(Sound, Fur, Color | Class) P(Class) =  
 α P(Sound | Class) P(Fur | Class) P(Color | Class) P(Class) 
 
3b. (4 pts total; -1 for each wrong answer, but not negative) Fill in numerical values 
for the following expressions.  Leave your answers as common fractions (e.g., 1/4, 3/5).   
 
P(Dog)=  1/2        P(Cat)=   1/2  
 
P(Sound=Meow | Class=Dog)= 1/4     P(Sound=Meow | Class=Cat)=  3/4  
 
P(Sound=Bark | Class=Dog)= 3/4     P(Sound=Bark | Class=Cat)=  1/4  
 
P(Fur=Coarse | Class=Dog)= 3/4     P(Fur=Coarse | Class=Cat)=  1/4  
 
P(Fur=Fine | Class=Dog)=  1/4     P(Fur=Fine | Class=Cat)=  3/4  
 
P(Color=Brown | Class=Dog)= 1/2     P(Color=Brown | Class=Cat)=  1/2  
 
P(Color=Black | Class=Dog)= 1/2     P(Color=Black | Class=Cat)=  1/2  
 
3c. (2 pt each) Consider a new example (Sound=Bark ^ Fur=Coarse ^ Color=Brown). 
Write these class probabilities as the product of α and common fractions from above. 
 
P(Class=Dog | Sound=Bark ^ Fur=Coarse ^ Color=Brown) =   α(3/4)(3/4)(1/2)(1/2)=9/10  
P(Class=Cat | Sound=Bark ^ Fur=Coarse ^ Color=Brown) =  α(1/4)(1/4)(1/2)(1/2)=1/10   

Example Sound Fur Color Class 
Example #1 Meow Coarse Brown Dog 
Example #2 Bark Fine Brown Dog 
Example #3 Bark Coarse Black Dog 
Example #4 Bark Coarse Black Dog 
Example #5 Meow Fine Brown Cat 
Example #6 Meow Coarse Black Cat 
Example #7 Bark Fine Black Cat 
Example #8 Meow Fine Brown Cat 

See Sections 13. 5.2 and 20.2.2. 
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4. (10 pts total, 1 pt each) Bayesian Networks.  
Draw the Bayesian Network that corresponds to the conditional probability equation. 
 
 
4a.  P(B|A,C) P(A) P(C|D) P(D)   

 
 
4b.  P(A) P(B) P(C) P(D)    

 
 
4c.  P(A|B) P(C|B) P(B) P(D)   

 
 
4d.  P(D|C) P(C|B) P(B|A) P(A)   

 
 
4e.  P(B|A) P(A) P(C|D) P(D)   

Write down the factored conditional probability equation that corresponds to the 
graphical Bayesian Network shown. 
 
 
4f.  P(D|A,B,C) P(A) P(B) P(C)   
 
 
 
 
4g.  P(D|A,C) P(C|B) P(B|A) P(A)   
 
 
 
 
4h.  P(D|B,C) P(C|A,B) P(B) P(A)   
 
 
 
 
4i.  P(D|A,B,C) P(C|A,B) P(B|A) P(A)  
 
 
 
 
4j.  P(D|B,C) P(C|A) P(B|A) P(A)   

A
 B

C D

A
 

CB D

A
 

B
C D

A
 

B C D

A
 

B C D

A
 

D

CB

A
 

D

CB

A
 

D

C

B

A
 

D

C

B

A
 

D

C

B

See Section 14.2. 
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5. (10 points total, 2 pts each) Constraint Satisfaction Problems. 
 
 
   
     
   
   
     
   

You are a map-coloring robot assigned to color this Southwest USA map. Adjacent regions 
must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown. 
 
5a. (2pts total, -1 each wrong answer, but not negative) FORWARD CHECKING. 
Cross out all values that would be eliminated by Forward Checking, after variable AZ 
has just been assigned value R as shown: 

CA NV AZ UT CO NM 
R G B R G B R R G B R G B R G B 

 
5b. (2pts total, -1 each wrong answer, but not negative) ARC CONSISTENCY.  
CA and AZ have been assigned values, but no constraint propagation has been done. 
Cross out all values that would be eliminated by Arc Consistency (AC-3 in your book). 

CA NV AZ UT CO NM 
B R G B R R G B R G B R G B 

 
5c. (2pts total, -1 each wrong answer, but not negative) MINIMUM-REMAINING-
VALUES HEURISTIC. Consider the assignment below.  NV is assigned and constraint 
propagation has been done.  List all unassigned variables that might be selected by the 
Minimum-Remaining-Values (MRV) Heuristic:           CA, AZ, UT                                   . 
 

CA NV AZ UT CO NM 
R B G R B R B R G B R G B 

 
5d. (2pts total, -1 each wrong answer, but not negative) DEGREE HEURISTIC. 
Consider the assignment below.  (It is the same assignment as in problem 5c above.) 
NV is assigned and constraint propagation has been done.  List all unassigned 
variables that might be selected by the Degree Heuristic:.          AZ                               .   
 

CA NV AZ UT CO NM 
R B G R B R B R G B R G B 

 
5e. (2pts total) MIN-CONFLICTS HEURISTIC. Consider the complete but inconsistent 
assignment below. AZ has just been selected to be assigned a new value during local 
search for a complete and consistent assignment. What new value would be chosen 
below for AZ by the Min-Conflicts Heuristic?.                          R                                 .   
 

CA NV AZ UT CO NM 
B G ? G G B 

NV 

CA 

AZ 

UT 
CO 

NM 

CA 

NV 
UT CO 

AZ NM 

X X X X 

X X X X X X 

See Chapter 6. 
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6. (5 pts total, -1 for each error, but not negative) Alpha-Beta Pruning. In the game 
tree below it is Max's turn to move. At each leaf node is the estimated score of that 
resulting position as returned by the heuristic static evaluator. 
(1) Perform Mini-Max search and label each branch node with its value. 
(2) Cross out each leaf node that would be pruned by alpha-beta pruning. 
(3) What is Max’s best move (A, B, or C)?  B   
 

 
 
7. (10 pts total, -2 for each error, but not negative) Conversion to CNF. Convert this 
Propositional Logic wff (well-formed formula) to Conjunctive Normal Form and simplify. 
Show your work (correct result, 0 pts; correct work, 10 pts).  
 

P ⇒ [ ¬ ( Q ⇔ P ) ] 
 

P ⇒ [ ¬ { ( Q ⇒ P ) ∧ ( P ⇒ Q ) } ]  /* convert ( A ⇔ B ) into ( A ⇒ B) ∧ ( B ⇒ A) */ 
 
¬ P ˅ [ ¬ { ( ¬ Q ˅  P ) ∧ ( ¬ P ˅  Q ) } ] /* convert ( A ⇒ B ) into ( ¬ A ˅ B ) */ 
 
¬ P ˅ [ ( Q ∧  ¬ P ) ˅  ( P ∧  ¬ Q ) ]  /* apply DeMorgan’s Laws */ 
 
( ¬ P ˅ Q ˅ P ) ∧ ( ¬ P ˅ Q ˅ ¬ Q ) ∧ ( ¬ P ˅ ¬ P ˅ P ) ∧ ( ¬ P ˅ ¬ P ˅ ¬ Q ) /* distribute */ 
 
True ∧ True ∧ True ∧ (¬ P ˅ ¬ Q )  /* simplify */ 
 
(¬ P ˅ ¬ Q )     /* simplify */ 
 
 
  

It is OK to omit the disjunction symbol here. 

See Section 7.5.2. 

1 

(Min) 

8 

5 

4 4 

4 

8 5 9 3 9 4 

5 3 

(Max) 

(Max) 

4 8 1 5 2 2 5 2 8 4 2 2 8 3 9 3 4 4 9 3 4 2 3 2 1 1 

(A) (B) (C) 

X X X X X X X X X X X X X X 
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8. (10 pts total, -2 for each error, but not negative) Resolution Theorem Proving. You are a 
robot in a logic-based question answering system, and must decide whether or not an input goal 
sentence is entailed by your Knowledge Base (KB). Your current KB in CNF is: 
 
S1: ( P Q )  
S2: ( ¬P Q ) 
S3: ( P ¬Q ) 
 
Your input goal sentence is:  ( P ∧ Q). 
 
8a. (2 pts) Write the negated goal sentence in CNF. 
 
S4:  (¬P  ¬Q )     
 
8b. (8 pts total, -2 for each error, but not negative) Use resolution to prove that the goal 
sentence is entailed by KB, or else explain why no such proof is possible. For each step of the 
proof, fill in Si and Sj with the sentence numbers of previous CNF sentences that resolve to 
produce the CNF result that you write in the resolvent blank. The resolvent is the result of 
resolving the two sentences Si and Sj. Use as many steps as necessary, ending by producing 
the empty clause; or else explain why no such proof is possible. 
 The first one is done for you as an example. 
 
 
Resolve Si  S1  with Sj  S2  to produce resolvent S5:  ( Q )    
 
 
Resolve Si  S1  with Sj  S3  to produce resolvent S6:  ( P )    
 
 
Resolve Si  S4  with Sj  S5  to produce resolvent S7:  (¬P )    
 
 
Resolve Si  S6  with Sj  S7  to produce resolvent S8:  ( )    
 
 
Resolve Si    with Sj    to produce resolvent S9:      
 
 
Resolve Si    with Sj    to produce resolvent S10:      
 
 
Add additional lines below if needed; or, if no such resolution proof is possible, use the space 
below to explain why not: 
 
  

Other proofs are OK as long as they are 
correct. E.g., you might instead resolve S4 
with S6 to produce resolvent S7 as ( ¬ Q), 
then resolve that with S5 to produce S8 ( ). 

It is OK to insert the disjunction symbol here. 

See Section 7.5.2. 
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9. (10 pts total, 2 pts each) State-Space Search. Execute Tree Search through this graph (do 
not remember visited nodes, so repeated nodes are possible). It is not a tree, but pretend you 
don’t know that. Step costs are given next to each arc, and heuristic values are given next to 
each node (as h=x). The successors of each node are indicated by the arrows out of that node. 
(Note: C is a successor of itself). As usual, successors are returned in left-to-right order. 
 For each search strategy below, indicate the order in which nodes are expanded. 
 

9.a. (2 pts, -1 for each wrong answer, but not negative) UNIFORM COST SEARCH. 
 
S C B A F C E D F C G1           
 
9.b. (2 pts, -1 for each wrong answer, but not negative) GREEDY BEST-FIRST  SEARCH. 
 
S C C C C C C C C C C etc.           
 
9.c (2 pts, -1 for each wrong answer, but not negative) ITERATIVE DEEPENING SEARCH. 
 
S S A B C S A D B E C F C S A D G1         
 
9.d. (2 pts, -1 for each wrong answer, but not negative) A* SEARCH.  
 
S C B A F C E G2            
 
9.e. (2 pts, -1 for each wrong answer, but not negative) OPTIMALITY. 
 
Did Uniform Cost Search find the optimal goal? Yes  
Why or why not? Step costs are ≥ ε > 0   
 
Did A* Search find the optimal goal? No  
Why or why not? heuristic is not admissible (at D)  
 

S 

A B 

D E F 

G1 G2 G3 

C h=13 

h=13 h=11 h=16 

h=11 
h=12 

h=10 

12 24 

10 10 

15 

5 
4 

2 

11 

8 

See Section 3.4.2 

See Section 3.5.1 

See Section 3.4.5 

See Section 3.5.2 
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10. (8 pts total, 1 pt each) Puzzle-Solving. The sliding-tile puzzle has three black tiles 
(B), three white tiles (W), and an empty space (blank). The starting state is:  

 
The goal is to have all the white tiles to the left of all the 

black tiles; the position of the blank is not important.  
 
The puzzle has two legal moves with associated costs: 
(1) A tile may move into an adjacent empty location. This has a cost of 1. 
(2) A tile may hop over one or two other tiles into the empty location. This has a cost 
equal to the number of tiles jumped over. 
 
10a. What is the branching factor?   6  
 
10b. Does the search space have loops (cycles)? (Y=yes, N=no)  Y  
 
10c. Is breadth-first search optimal? (“Y" = yes, “N" = no)  N  
 
10d. Is uniform-cost search optimal? (“Y" = yes, “N" = no)  Y  
 
10e. Consider a heuristic function h1(n) = the number of black tiles to the left of the left-
most white tile. Is this heuristic admissible? (“Y" = yes, “N" = no)  Y  
 
10f. Consider a heuristic function h2(n) = the number of black tiles to the left of the right-
most white tile. Is this heuristic admissible? (“Y" = yes, “N" = no)  Y  
 
10g. Consider a heuristic function h3(n) = the number of black tiles to the left of the 
right-most white tile plus the number of white tiles to the right of the left-most black tile. 
Is this heuristic admissible? (“Y" = yes, “N" = no)  N  
 
10h. Consider a heuristic function h4(n) = h3(n) / 2. Is this heuristic admissible? (“Y" = 
yes, “N" = no)  Y  
 
 
11. (2 pts total, 1 pt each) Heuristics. Suppose that there is no good step cost or path 
cost for a problem, i.e., no cost-so-far function g(n). However, there is a good 
comparison method: a binary test to tell whether one node is cheaper than another, but 
not to assign numerical values to either. Answer Y (= yes) or N (= no).  
 
11a. Is this enough to do a greedy best-first search?  Y  
Question 11a was discarded as ambiguous. Everyone automatically gets it right. 
 
11b. Suppose you also have a consistent heuristic, h(n). Is this enough to do A* search 
and guarantee an optimal solution?  N  
  

B B B      W W W 

See Chapter 3. 

See Chapter 3. 
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12. (10 pts total, 2 pts each) English to FOL Conversion. For each English sentence 
below, write the FOL sentence that best expresses its intended meaning. Use Person(x) 
for “x is a person,” Food(x) for “x is food,” and Likes(x, y) for “x likes y.” 
 The first one is done for you as an example. 
 
12a. (2 pts) “Every person likes every food.” 
 
 ∀x ∀y [ Person(x) ∧ Food(y) ] ⇒ Likes(x, y)  
 
 
 
12b. (2 pts) “For every food, there is a person who likes that food.” 
 
 ∀y ∃x Food(y) ⇒ [ Person(x) ∧ Likes(x, y) ] 
 
 
 
12c. (2 pts) “There is a person who likes every food.” 
 
 ∃x ∀y Person(x) ∧ [Food(y) ⇒ Likes(x, y) ] 
 
 
 
12d. (2 pts) “Some person likes some food.” 
 
 ∃x ∃y Person(x) ∧ Food(y) ∧ Likes(x, y) 

 

 

12e. (2 pts) “There is a food that every person likes.” 
 
 ∃y ∀x Food(y) ∧ [ Person(x) ⇒ Likes(x, y) ]  
 
 
 
12f. (2 pts) “For every person, there is a food that the person likes.” 
 
 ∀x ∃y Person(x) ⇒ [ Food(y) ∧ Likes(x, y) ] 
 
 
 

See Section 8.2.6  


