CS-171, Intro to A.I. — Quiz#3 — Winter Quarter, 2012 — 20 minutes

YOUR NAME AND EMAIL ADDRESS:	
YOUR ID: ID TO RIGHT: RO	W: NO. FROM RIGHT:
1. (30 pts total, 5 pts each) RESOLUTION. Apply resolutions, then simplify. Write your answer in Conjunctive N is no resolution is possible.	01
if no resolution is possible.	See Section 7.5.2 and Figure 7.13
1.a. (1 pt) (P Q \neg R S) (P \neg Q W X). (P \neg R S W X) .
1.b. (1 pt) (P Q \neg R S) (\neg P). (Q \neg R S)	Order of literals within clauses does not matter.
1.c. (1 pt) (¬R) (R). () <u>"FALSE" is OK</u>	<u>.</u>
1.d. (1 pt) (P Q ¬R S) (P R ¬S W X) (P Q ¬R R W	∑X) <mark>also OK</mark> (P Q S ¬S W X) . "TRUE" is OK
1.e. (1 pt) $(P \neg Q R \neg S) (P \neg Q R \neg S)$ <u>None</u>	
1.f. (1 pt) ($P \neg O \neg S W$) ($P R \neg S X$) None	

2. (30 pts total, 5 pts each) LOGIC-TO-ENGLISH. For each of the following FOL sentences on the left, write the letter corresponding to the best English sentence on the right. Use these intended interpretations: (1) "Student(x)" is intended to mean "x is a student." (2) "Quiz(x)" is intended to mean "x is a quiz." (3) "Got100(x, y)" is intended to mean "x got 100 on y."

В	$\forall s \exists q \; Student(s) \Rightarrow [\; Quiz(q) \land Got100(s, q) \;]$	A	For every quiz, there is a student who got 100 on it.	See Section 8.2.6
Е	$\exists q \forall s \text{ Quiz}(q) \land [\text{ Student}(s) \Rightarrow \text{Got}100(s, q)]$	В	For every student, there is a quiz on which that student got 100.	
А	$\forall q \exists s Quiz(q) \Rightarrow [Student(s) \land Got100(s, q)]$	C	Every student got 100 on every qu	iiz.
F	$\exists s \forall q \text{ Student}(s) \land [\text{Quiz}(q) \Rightarrow \text{Got}100(s, q)]$	D	Some student got 100 on some qu	iz.
С	$\forall s \forall q [Student(s) \land Quiz(q)] \Rightarrow Got100(s, q)$	Е	There is a quiz on which every student got 100.	
D	$\exists s \exists q \; Student(s) \land Quiz(q) \land Got100(s, q)$	F	There is a student who got 100 on every quiz.	

**** TURN PAGE OVER. QUIZ CONTINUES ON THE REVERSE ****

3. (10 pts total, -2 each error, but not negative) CONJUNCTIVE NORMAL FORM (CNF). Convert the following logical sentence to Conjunctive Normal Form. Show your work.

$$\mathbf{B} \Leftrightarrow (\mathbf{P} \Rightarrow \mathbf{Q})$$

See Section 7.5.2

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B \Rightarrow (P \Rightarrow Q)) \land ((P \Rightarrow Q) \Rightarrow B)$ 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B \lor (P \Rightarrow Q)) \land (\neg (P \Rightarrow Q) \lor B)$ $(\neg B \lor (\neg P \lor Q)) \land (\neg (\neg P \lor Q) \lor B)$ 3. Move \neg inwards using de Morgan's rules: $(\neg B \lor \neg P \lor Q) \land ((P \land \neg Q) \lor B)$ 4. Apply distributive law $(\land \text{ over } \lor)$ and flatten: $(\neg B \lor \neg P \lor Q) \land (P \lor B) \land (\neg Q \lor B)$ 5. write each clause (disjunct) as a sentence in KB: $(\neg B \lor \neg P \lor Q)$ $(P \lor B)$ $(\neg Q \lor B)$

5. (**5 pts each, 30 pts total**) **LOGIC TERMINOLOGY.** In each of the following, KB is a set of sentences, {} is the empty set of sentences, and S is a single sentence. Recall that |= is read "entails" and that |- is read "derives."

$\mathbf{S} = \mathbf{Sound.}$	$\mathbf{U} = \mathbf{U}$ nsound.	
$\mathbf{C} = \mathbf{Complete}.$	$\mathbf{I} = $ Incomplete.	
Sat = Satisfiable.	Unsat = Unsatisfiable.	
$\mathbf{V} = \mathbf{Valid}.$	$\mathbf{N} = \mathbf{N}$ one of the above.	
For each blank below, write in the key above that corresponds to the best term.		

Tor each blank below, write in the key above that corresponds to the best term

5a. Let S be given in advance. Suppose that $\{\} \models S$. Then S is <u>V</u>.

5b. Let S be given in advance. Suppose that for some KB1, KB1 $\mid =$ S; but that for some other KB2, KB2 $\mid = \neg$ S. Then S is <u>Sat</u>.

5c. Suppose that for any KB and any S, whenever KB $\mid =$ S then KB $\mid -$ S. Then the inference procedure is <u>C</u>.

5d. Suppose that for some KB and some S, KB \mid - S but not KB \mid = S. Then the inference procedure is <u>U</u>.

5e. Suppose that for some KB and some S, KB $\mid =$ S but not KB $\mid -$ S. Then the inference procedure is <u>I</u>...

5f. Suppose that for any KB and any S, whenever KB \mid - S then KB \mid = S. Then the inference procedure is <u>S</u>.