CS-171, Intro to A.I. — Quiz#4 — Winter Quarter, 2012 — 20 minutes

YOUR NAME AND EMAIL ADDRESS:

YOUR ID: _____ ID TO RIGHT:_____ ROW:____ NO. FROM RIGHT:_____

1. (30 pts total, 2 pts each) Machine Learning concepts.

For each of the following items on the left, write in the letter corresponding to the best answer or the correct definition on the right. The first one is done for you as an example.

Learning	А	Improves performance of future tasks after observing the world	
Information Gain	В	Fixed set, list, or vector of features/attributes paired with a value	
Decision Boundary	С	Agent learns patterns in the input with no explicit feedback	
Support Vector Machine	D	Agent observes input-output pairs & learns to map input to output	
Cross-validation	Е	Example input-output pairs, from which to discover a hypothesis	
Linear Classifier	F	Examples distinct from training set, used to estimate accuracy	
Factored Representation	G	Supervised learning with a discrete set of possible output values	
(Feature Vector)			
Supervised Learning	Н	Supervised learning with numeric output values	
Test Set	-	Internal nodes test a value of an attribute, leaf nodes=class labels	
Naïve Bayes Classifier	J	Expected reduction in entropy from testing an attribute value	
Classification	К	Choose an over-complex model based on irrelevant data patterns	
Decision Tree	L	Randomly split the data into a training set and a test set	
Regression	Μ	Surface in a high-dimensional space that separates the classes	
Training Set	Ν	Tests w · f >0, where w is a weight vector and f is a feature vector	
Unsupervised Learning	0	Tests P (C) Π_i P(X _i C), where C is a class label and X _i are features	
Overfitting	Ρ	Current most-popular "off-the-shelf" supervised learning method	
	Information Gain Decision Boundary Support Vector Machine Cross-validation Linear Classifier Factored Representation (Feature Vector) Supervised Learning Test Set Naïve Bayes Classifier Classification Decision Tree Regression Training Set Unsupervised Learning	Information GainBInformation GainBDecision BoundaryCSupport Vector MachineDCross-validationELinear ClassifierFFactored Representation (Feature Vector)GSupervised LearningHTest SetINaïve Bayes ClassifierJClassificationKDecision TreeLRegressionMTraining SetNUnsupervised LearningO	

2. (30 pts total, 10 pts each) Bayesian networks.

For each Bayesian network shown below, write down in factored form the joint probability distribution that it represents.

2a	
2b	A
2c	

**** TURN PAGE OVER. QUIZ CONTINUES ON THE REVERSE ****

2. (25 pts total) Decision Tree Learning.

You are an agricultural robot given the following set of plant examples. Each is assigned a class label of + or — depending on whether or not it is a member of the target class:

	-			
Example	Vine?	Fruit?	Leaf?	Class
Watermelon	Yes	Yes	Curly	+
lvy	Yes	No	Curly	_
Bougainvillea	Yes	No	Flat	—
Kudzu	Yes	No	Flat	_
Maple	No	No	Curly	+
Oak	No	No	Flat	+
Sycamore	No	No	Flat	+
Apple	No	Yes	Curly	_

2a. (15 pts) Draw the decision tree that would be constructed by recursively applying information gain to select roots of sub-trees, as in the Decision-Tree-Learning algorithm.

2b. (5 pts) What class is Grape? (Vine=Yes, Fruit=Yes, Leaf=Curly)_____

2c. (5 pt) What class is Orange? (Vine=No, Fruit=Yes, Leaf=Curly)_____

4. (10 pts total) Bayesian networks.

Draw the Bayesian network that represents P(J | A) P(M | A) P(A | B, E) P(B) P(E).