For each question on Quiz #2, "Zero" below gives the fraction of students who scored zero, "Partial" gives the fraction who got partial credit, and "Perfect" gives the fraction who scored 100%.

Problem 1

Zero: 2% (~3 students), Partial: 0% (~0 students), Perfect: 98% (~176 students)

Problem 2

Zero: 29% (~53 students), Partial: 17% (~30 students), Perfect: 54% (~96 students)

Problem 3

Zero: 0% (~0 students), Partial: 33% (~60 students), Perfect: 67% (~119 students)

CS-171, Intro to A.I. — Quiz#2 — Fall Quarter, 2014 — 20 minutes

1. (25 pts total, -5 pts for each error, but not negative) MINI-MAX SEARCH IN GAME TREES.

The game tree below illustrates a position reached in the game. Process the tree left-to-right. It is **Max**'s turn to move. At each leaf node is the estimated score returned by the heuristic static evaluator.

1.a. Fill in each blank square with the proper mini-max search value.

1.b. What is the best move for Max? (write A, B, or C) <u>B</u>

2. (25 pts total, -5 for each error, but not negative) ALPHA-BETA PRUNING. Process the tree left-to-right. This is the same tree as above (1.a). You do not need to indicate the branch node values again.

Cross out each leaf node that will be pruned by Alpha-Beta Pruning.

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

3. (50 points each, 10 pts each) Constraint Satisfaction Problems

You are a map-coloring robot assigned to color this map of Romania regions. Adjacent regions must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown.

3a. (10 pts total, -5 each wrong answer, but not negative) F(See Section 6.3.2. **NG.** TR has been assigned value R, as shown. Cross out all values that would be eliminated by Forward Checking:

BA	BU	CR	DO	MA	MO	TR	WA
ЖGВ	ХGВ	ХGВ	RGB	🗶 G B	ЖGВ	R	🗙 G B

3b. (10 pts total, -5 each wrong answer, but not negative) ARC CONSISTENCY.

BA has been assigned R and TR has been assigned B, as shown; but no constraint See Section 6.3.2. been done. Cross out all values that would be eliminated by Arc Consistency (AC-3 in your book).

BA	BU	CR	DO	MA	MO	TR	WA
R	X GX	XGX	ЖХВ	R	RXX	В	X G X

3c. (10 pts total, -5 each wrong answer, but not negative) MINIMUM-REMAINING-VALUES HEURISTIC. Consider the assignment below. WA has been assigned B and constraint propagation has been done, as shown. List all unassigned variables that might be selected **See Section 6.3.1.** Remaining-Values (MRV) Heuristic: **BA, DO, MO, TR**

BA	BU	CR	DO	MA	MO	TR	WA
RG	RGB	RGB	RG	RGB	RG	RG	В

3d. (10 pts total, -5 each wrong answer, but not negative) DEGREE HEURISTIC. Consider the assignment below. (It is the same assignment as in problem 3c above.) WA has been assigned B and constraint propagation has been done, as shown. List all unassigned variables that might be selected by the Degree Heuristic: <u>TR</u> <u>See Section 6.3.1.</u>

BA	BU	CR	DO	MA	MO	TR	WA
RG	RGB	R G B	RG	R G B	RG	R G	В

3e. (10 pts total) MIN-CONFLICTS HEURISTIC. Consider the complete but inconsistent assignment below. TR has been selected to be assigned a new value. What new value would be chosen below for TR by the Min-Conflicts Heuristic?. **B** . See Section 6.4.

D A	D 11	0.0	50			TD	14/4
BA	BO	CR	DO	MA	MO	IR	VVA
R	G	R	R	G	G	?	В