CS-171, Intro to A.I. - Quiz\#2 — Fall Quarter, 2014 - 20 minutes
YOUR NAME AND EMAIL ADDRESS: \qquad
YOUR ID: \qquad ID TO RIGHT: \qquad ROW: \qquad SEAT: \qquad

1. (25 pts total, -5 pts for each error, but not negative) MINI-MAX SEARCH IN GAME TREES.

The game tree below illustrates a position reached in the game. Process the tree left-to-right. It is Max's turn to move. At each leaf node is the estimated score returned by the heuristic static evaluator.
1.a. Fill in each blank square with the proper mini-max search value.
1.b. What is the best move for Max? (write A, B, or C) \qquad

2. (25 pts total, -5 for each error, but not negative) ALPHA-BETA PRUNING. Process the tree left-toright. This is the same tree as above (1.a). You do not need to indicate the branch node values again.

Cross out each leaf node that will be pruned by Alpha-Beta Pruning.

3. (50 points each, 10 pts each) Constraint Satisfaction Problems

BA = Banat
$B U=B u c o v i n a$
$C R=$ Crisana
DO = Dobrogea
MA = Maramures
MO = Moldova
TR = Transilvania
WA = Walachia

You are a map-coloring robot assigned to color this map of Romania regions. Adjacent regions must be colored a different color ($\mathrm{R}=\mathrm{Red}, \mathrm{B}=\mathrm{Blue}, \mathrm{G}=\mathrm{Green}$). The constraint graph is shown.

3a. (10 pts total, -5 each wrong answer, but not negative) FORWARD CHECKING. TR has been assigned value R, as shown. Cross out all values that would be eliminated by Forward Checking:

$B A$	$B U$	$C R$	$D O$	$M A$	$M O$	$T R$	WA
$R G B$	R	$R G B$					

3b. (10 pts total, -5 each wrong answer, but not negative) ARC CONSISTENCY.
BA has been assigned R and TR has been assigned B, as shown; but no constraint propagation has been done. Cross out all values that would be eliminated by Arc Consistency (AC-3 in your book).

$B A$	BU	CR	DO	MA	MO	TR	WA
R	R G B	R G B	R G B	R G B	R G B	B	R G B

3c. (10 pts total, -5 each wrong answer, but not negative) MINIMUM-REMAINING-VALUES HEURISTIC. Consider the assignment below. WA has been assigned B and constraint propagation has been done, as shown. List all unassigned variables that might be selected by the Minimum-Remaining-Values (MRV) Heuristic: \qquad .

BA	BU	CR	DO	MA	MO	TR	WA
$R G$	R G B	R G B	R G	R G B	R G	R G	B

3d. (10 pts total, $\mathbf{- 5}$ each wrong answer, but not negative) DEGREE HEURISTIC. Consider the assignment below. (It is the same assignment as in problem 3c above.) WA has been assigned B and constraint propagation has been done, as shown. List all unassigned variables that might be selected by the Degree Heuristic: \qquad

$B A$	$B U$	$C R$	$D O$	$M A$	$M O$	TR	WA
$R G$	$R G B$	$R G B$	$R G$	$R G B$	$R G$	$R G$	B

3e. (10 pts total) MIN-CONFLICTS HEURISTIC. Consider the complete but inconsistent assignment below. TR has been selected to be assigned a new value. What new value would be chosen below for TR by the Min-Conflicts Heuristic?.

BA	BU	CR	DO	MA	MO	TR	WA
R	G	R	R	G	G	$\boldsymbol{?}$	B

