For each question on Quiz \#4, "Zero" below gives the fraction of students who scored zero, "Partial" gives the fraction who got partial credit, and "Perfect" gives the fraction who scored 100\%.

Problem 1
Zero: 0.6% (~ 1 students), Partial: 18\% (~ 30 students), Perfect: 82\% (~139 students)

Problem 2

Zero: 1.8\% (~ 3 students), Partial: 52\% (~ 8 students), Perfect: 46\% (~ 79 students)

Problem 3

Zero: 0\% (~0 students), Partial: 11\% (~19 students), Perfect: 89\% (~151 students)

CS-171, Intro to A.I. — Quiz\#4 — Fall Quarter, 2014 - 20 minutes

YOUR NAME: \qquad
YOUR ID: \qquad ID TO RIGHT: \qquad ROW: \qquad SEAT NO.: \qquad

1. (45 pts total, 15 pts each, -1 each error, but not negative) Bayesian Network

See Section 14.1-2.
1a. ($\mathbf{1 5} \mathrm{pts}$) Write down the factored conditional probability expression that corresponds to the graphical Bayesian Network shown.
$P(A \mid C, D, F) P(B \mid D) P(C \mid H) P(D \mid E, G, I) P(E \mid G, J) P(F \mid I) P(G \mid I) P(H \mid I) P(I \mid J) P(J)$

1b. (15 pts) Draw the Bayesian Network that corresponds to this conditional probability:
P(A|D,F,H,I)
P(B
D, E,G, J) P(C |
H) $\mathrm{P}(\mathrm{D}$
G) $P(E \mid J) P(F \mid$
|H) $P(G \mid I, J) P(H) P(I) P(J)$

1.c. (15 pts) Below is the Bayesian network for the WetGrass problem [Fig. 14.12(a) in R\&N].

S	R	$\mathrm{P}(\mathrm{W})$
t	t	.99
t	f	.90
f	t	.90
f	f	.00

Write down an expression that will evaluate to $P(C=t \wedge R=t \wedge S=f \wedge W=t)$.
The probability tables show the probability that variable is True, e.g., $\mathrm{P}(\mathrm{M})$ means $\mathrm{P}(\mathrm{M}=\mathrm{t})$. Express your answer as a series of numbers (numerical probabilities) separated by multiplication symbols. You do not need to carry out the multiplication to produce a single number (probability). SHOW YOUR WORK.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{C}=\mathrm{t} \wedge \mathrm{R}=\mathrm{t} \wedge \mathrm{~S}=\mathrm{f} \wedge \mathrm{~W}=\mathrm{t}) \\
& =\mathrm{P}(\mathrm{~W}=\mathrm{t} \mid \mathrm{R}=\mathrm{t} \wedge \mathrm{~S}=\mathrm{f}) * \mathrm{P}(\mathrm{R}=\mathrm{t} \mid \mathrm{C}=\mathrm{t}) * \mathrm{P}(\mathrm{~S}=\mathrm{f} \mid \mathrm{C}=\mathrm{t}) * \mathrm{P}(\mathrm{C}=\mathrm{t}) \\
& =.90 * .8 * .9 * .5
\end{aligned}
$$

**** TURN PAGE OVER. QUIZ CONTINUES ON THE REVERSE ****
2. (30 pts total) Decision Tree Learning. Consider the following data set consisting of three binary input attributes (A1, A2, and A3) and one binary output (y):

Example	A1	A2	A3	Output y
$\mathbf{x 1}$	1	0	0	0
$\mathbf{x} \mathbf{2}$	1	0	1	0
$\mathbf{x} 3$	0	1	0	0
$\mathbf{x} \mathbf{4}$	1	1	1	1
$\mathbf{x 5}$	1	1	0	1

2.a. (15 pts) Use the Decision-Tree-Learning algorithm to draw a decision

See Section 18.3 and Exercise 18.6, page 764.

If root is A 1 :
0 branch = 0, 1 branch = 0011
If root is A2:
0 branch = 00, 1 branch = 011
If root is A3:
0 branch = 001, 1 branch = 01
(Assume root is A2, as above.) If attribute tested is A1: 0 branch $=0,1$ branch $=11$ If attribute tested is A3:

0 branch $=01,1$ branch $=1$
2.b. (5 pts) How would your tree classify $A 1=0, A 2=0, A 3=0$? (Write 0 or 1.) \qquad Full credit if your answers are right for the tree you drew, even if the tree itself is wrong.
2.d. (5 pts) How would your tree classify $A 1=0, A 2=1, A 3=1$? (Write 0 or 1.) \qquad
3. (25 pts total, $\mathbf{5}$ pts each) Machine Learning. Label the following statements T (true) or F (false).

3a. \qquad A decision tree can learn and represent any Boolean function.

See Section 18.3.2.
3b. \qquad The information gain from an attribute A is how much classifier accuracy improves when attribute A is added to the example feature vectors in the training set.

See Section 18.3.4.
\qquad Overfitting is a general phenomenon that occurs with most or all typ

See Section 18.3.5.
3d. F \qquad Cross-validation is a way to improve the accuracy of a learned hypothesis by reducing over-fitting using Ockham's razor.

See Section 18.4.1.
3e. T \qquad An agent is learning if it improves its performance on future tasks after making observations about the world. See the first sentence of Chapter 18.

