For each question on Quiz #4, "Zero" below gives the fraction of students who scored zero, "Partial" gives the fraction who got partial credit, and "Perfect" gives the fraction who scored 100%.

Problem 1

Zero: 0.6% (~1 students), Partial: 18% (~30 students), Perfect: 82% (~139 students)

Problem 2

Zero: 1.8% (~3 students), Partial: 52% (~88 students), Perfect: 46% (~79 students)

Problem 3

Zero: 0% (~0 students), Partial: 11% (~19 students), Perfect: 89% (~151 students)

CS-171, Intro to A.I. — Quiz#4 — Fall Quarter, 2014 — 20 minutes

YOUR NAME: _____

YOUR ID: _____ ID TO RIGHT:_____ ROW:_____ SEAT NO.: _____

(45 pts total, 15 pts each, -1 each error, but not negative) Bayesian Network
 See Section 14.1-2.
 (15 pts) Write down the factored conditional probability expression that corresponds to the graphical Bayesian Network shown.

P(A | C,D,F) P(B | D) P(C | H) P(D | E,G,I) P(E | G,J) P(F | I) P(G | I) P(H | I) P(I | J) P(J)

1b. (15 pts) Draw the Bayesian Network that corresponds to this conditional probability:

P(A | D,F,H,I) P(B | D, E,G, J) P(C | H) P(D | G) P(E| J) P(F | H) P(G | I, J) P(H) P(I) P(J)

1.c. (15 pts) Below is the Bayesian network for the WetGrass problem [Fig. 14.12(a) in R&N].

	-		
(C)	С	P(S)	
	t	.1	
	f	.5	
	С	P(R)	
	t	.8	
	f	.2	

S	R	P(W)
t	t	.99
t	f	.90
f	t	.90
f	f	.00

Write down an expression that will evaluate to P($C=t \land R=t \land S=f \land W=t$).

The probability tables show the probability that variable is True, e.g., P(M) means P(M=t). Express your answer as a series of numbers (numerical probabilities) separated by multiplication symbols. You do not need to carry out the multiplication to produce a single number (probability). **SHOW YOUR WORK.**

P(C=t
$$\land$$
 R=t \land S=f \land W = t)
= P(W=t | R=t \land S=f) * P(R=t | C = t) * P(S=f | C=t) * P(C=t)
= .90 * .8 * .9 * .5
**** TURN PAGE OVER. QUIZ CONTINUES ON THE REVERSE ****

2. (30 pts total) Decision Tree Learning. Consider the following data set consisting of three binary input attributes (*A1*, *A2*, and *A3*) and one binary output (y):

Example	<i>A1</i>	A2	A3	Output <i>y</i>
x1	1	0	0	0
x2	1	0	1	0
x3	0	1	0	0
x4	1	1	1	1
x5	1	1	0	1

See Section 18.3 and Exercise 18.6, page 764.

2.a. (15 pts) Use the Decision-Tree-Learning algorithm to draw a decision

If root is A1:
0 branch = 0, 1 branch = 0011
If root is A2:
0 branch = 00, 1 branch = 011
If root is A3:
0 branch = 001, 1 branch = 01
(Assume root is A2, as above.)
If attribute tested is A1:
0 branch = 0, 1 branch = 11
If attribute tested is A3.

0 branch = 01, 1 branch = 1

3. (25 pts total, 5 pts each) Machine Learning. Label the following statements T (true) or F (false).

3a. <u>T</u> A decision tree can learn and represent any Boolean function.

See Section 18.3.2.

3b. <u>F</u> The information gain from an attribute A is how much classifier accuracy improves when attribute A is added to the example feature vectors in the training set. **See Section 18.3.4.**

3c. <u>T</u> Overfitting is a general phenomenon that occurs with most or all type **See Section 18.3.5.**

 3d. _____ F ____ Cross-validation is a way to improve the accuracy of a learned hypothesis by reducing over-fitting using Ockham's razor.

 See Section 18.4.1.

3e. <u>T</u> An agent is learning if it improves its performance on future tasks after making observations about the world. **See the first sentence of Chapter 18.**