
CS-171, Intro to A.I., Winter Quarter, 2014 — Quiz # 1 — 20 minutes

1. NAME:

YOUR ID: ID TO RIGHT: ROW: NO. FROM RIGHT:

2. (25 pts total, -5 pts each error, but not negative) Search Properties. Fill in the
values of the four evaluation criteria for each search strategy shown. Assume a tree
search where b is the finite branching factor; d is the depth to the shallowest goal node; m
is the maximum depth of the search tree; l is the depth limit; step costs are identical and
equal to some positive ε; in bidirectional search both directions use breadth-first search.

Note: These assumptions are the same as in Figure 3.21 of your textbook.

 Complete? Time complexity Space complexity Optimal?
Depth-First

No O(b^m) O(bm) No

Breadth-First

Yes O(b^d) O(b^d) Yes

Uniform-Cost Yes O(b^(1+floor(C*/ε)))
O(b^(d+1)) also OK

O(b^(1+floor(C*/ε)))
O(b^(d+1)) also OK

Yes

Depth-Limited

No O(b^l) O(bl) No

Iterative
Deepening

Yes O(b^d) O(bd) Yes

Bidirectional
(if applicable)

Yes O(b^(d/2)) O(b^(d/2)) Yes

3. (30 pts total, -5 pts each error, but not negative) Reasoning about Search.

Note: Assumptions are DIFFERENT from problem 2 above. REASON about them.

Assume that you are doing Tree Search, the state space is infinitely deep, the branching
factor is finite, there are cycles and loops, multiple goal nodes exist with different costs,
step costs may differ from each other and are always greater than some given positive
constant, in bidirectional search both directions use breadth-first search, and the heuristic
function is consistent.
 These assumptions represent a typical ill-conditioned search space.

3a. Is depth-first search complete? N optimal? N (“Y” = yes, “N” = no)
3b. Is breadth-first search complete? Y optimal? N (“Y” = yes, “N” = no)
3c. Is uniform-cost search complete? Y optimal? Y (“Y” = yes, “N” = no)
3d. Is depth-limited search complete? N optimal? N (“Y” = yes, “N” = no)
3e. Is iterated-deepening search complete? Y optimal? N (“Y” = yes, “N” = no)
3f. Is bidirectional search complete? Y optimal? N (“Y” = yes, “N” = no)
3g. Is greedy best-first search complete? N optimal? N (“Y” = yes, “N” = no)
3h. Is A* search complete? Y optimal? Y (“Y” = yes, “N” = no)

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

Your answer will be considered correct if
it differs from that shown below by no
more than ±1, e.g., O(b^d) vs. O(b^(d+1)).

4. (45 pts total, 9 pts each) Execute Tree Search through this graph (i.e., do not remember visited nodes).
Step costs are given next to each arc. Heuristic values are given next to each node (as h=x). The successors
of each node are indicated by the arrows out of that node. Successors are returned in left-to-right order.
Specifically, the children of S are (A, B) and the children of B are (C, B), in that order.
 For each search strategy below, show the order in which nodes are expanded (i.e., to expand a node
means that its children are generated), ending with the goal node that is found. Show the path from start to
goal, or write “None”. Give the cost of the path found, if any. The first one is done for you, as an example.

4.a. DEPTH FIRST SEARCH.

Order of node expansion: S A C G

Path found: S A C G Cost of path found: 25

4.b. (9 pts) BREADTH FIRST SEARCH.

Order of node expansion: S A B C G

Path found: S A C G Cost of path found: 25

4.c. (9 pts) UNIFORM COST SEARCH.

Order of node expansion: S B C A B G

Path found: S B C G Cost of path found: 14

4.d. (9 pts) GREEDY (BEST-FIRST) SEARCH.

Order of node expansion: S B B B B B B B ...

Path found: none Cost of path found: none

4.e. (9 pts) ITERATED DEEPENING SEARCH.

Order of node expansion: S S A B S A C G

Path found: S A C G Cost of path found: 25

4.f. (9 pts) A* SEARCH.

Order of node expansion: S B C G

Path found: S B C G Cost of path found: 14

Is the heuristic admissible? (Yes or No) Y

Minor errors will receive partial credit.
The Reader will determine how much
credit to allow in any particular case.

BFS does the Goal-test before the
child is pushed onto the queue. The
goal is found when C is expanded.

IDS does the Goal-test before the child
is pushed onto the queue. The goal is
found when D is expanded.

See section 3.4.3.

See section 3.4.1.

See section 3.4.2.

UCS does goaltest when node is popped off queue.

See section 3.5.1.

A always has lower h(=4) than any other node on queue.

See section 3.4.5

See section 3.5.2. A* does goaltest when node is popped off queue.

Please see the lecture slides for Uninformed Search, topic
“When to do Goal-Test? When generated? When popped?”
for clarification about exactly what to do in practical cases.

S

A
C

G

B h=15 h=7

h=8

h=4

9

8

8 1

4

h=0

10

