1. (35 pts total, -5 pts for each edit step from your answer to the correct answer)
The Knowledge Engineering process.
Your book identifies seven sequential steps in the knowledge engineering process, which steps are below. Unfortunately, the order of the steps has been scrambled. Please, straighten them out.

A. Encode a description of the specific problem instance
B. Assemble the relevant knowledge
C. Pose queries to the inference procedure and get answers
D. Encode general knowledge about the domain
E. Debug the knowledge base
F. Identify the task
G. Decide on a vocabulary of predicates, functions, and constants

Fill in the blanks with the letters A, B, C, D, E, F, and G, all in the proper sequence.

F B G D A C E

2. (30 pts total, 5 pts each) Logic-To-English. For each of the following FOPC sentences on the left, write the letter corresponding to the best English sentence on the right. Use these intended interpretations: (1) “Student(x)” is intended to mean “x is a student.” (2) “Quiz(x)” is intended to mean “x is a quiz.” (3) “Got100(x, y)” is intended to mean “x got 100 on y.”

B	∀s∃q Student(s) ⇒ [Quiz(q) ∧ Got100(s, q)]	A	For every quiz, there is a student who got 100 on it.
E	∃q ∀s Quiz(q) ∧ [Student(s) ⇒ Got100(s, q)]	B	For every student, there is a quiz on which that student got 100.
A	∀q∃s Quiz(q) ⇒ [Student(s) ∧ Got100(s, q)]	C	Every student got 100 on every quiz.
F	∃s ∀q Student(s) ∧ [Quiz(q) ⇒ Got100(s, q)]	D	Some student got 100 on some quiz.
C	∀s∀q [Student(s) ∧ Quiz(q)] ⇒ Got100(s, q)	E	There is a quiz on which every student got 100.
D	∃s∃q Student(s) ∧ Quiz(q) ∧ Got100(s, q)	F	There is a student who got 100 on every quiz.

**** TURN PAGE OVER. QUIZ CONTINUES ON THE REVERSE ****
3. (35 pts total, -5 pts for each edit step from your proof to a correct proof)

Resolution Proof. (http://www.braingle.com)

Detective Dorothy interviewed four local burglars to identify who stole Lady Diva’s teapot.

It was well known that each burglar told exactly one lie:

Arnold: I didn’t do it. Brian did it.

Brian: I didn’t do it. Derek did it.

Charlie: I didn’t do it. Brian is lying when he says Derek did it.

Derek: I didn’t do it. If Arnold didn’t do it, then Brian did it.

Use these propositional variables:

A = Arnold did it. B = Brian did it. C = Charlie did it. D = Derek did it.

You translate the evidence into propositional logic (recall that each suspect told exactly one lie):

Arnold: \((A ∧ B) ∨ (¬A ∧ ¬B)\)

Brian: \((B ∧ D) ∨ (¬B ∧ ¬D)\)

Charlie: \((C ∧ ¬D) ∨ (¬C ∧ D)\)

Derek: \((D ∧ (¬A ⇒ B)) ∨ (¬D ∧ (¬A ⇒ ¬B))\)

At most one burglar stole the teapot:

\((A ⇒ ¬B ∧ ¬C ∧ ¬D) \cap (B ⇒ ¬A ∧ ¬C ∧ ¬D) \cap (C ⇒ ¬A ∧ ¬B ∧ ¬D) \cap (D ⇒ ¬A ∧ ¬B ∧ ¬C)\)

After converting to Conjunctive Normal Form, your Knowledge Base (KB) consists of:

Arnold: \((A ∨ ¬B) \cap (¬A ∨ B)\)

Brian: \((B ∨ ¬D) \cap (¬B ∨ D)\)

Charlie: \((C ∨ D) \cap (¬C ∨ ¬D)\)

Derek: \((¬A ∨ D) \cap (¬B ∨ D) \cap (A ∨ B ∨ ¬D)\)

At most one: \((¬A ∨ ¬B) \cap (¬A ∨ ¬C) \cap (¬A ∨ ¬D) \cap (¬B ∨ ¬C) \cap (¬B ∨ ¬D) \cap (¬C ∨ ¬D)\)

(Side note: Normally, you would start four proofs, one for each goal sentence: A, B, C, D. Only the proof of C would succeed, and you would know Charlie did it. For this timed test, you will do only one proof.)

You will be asked to prove, “Charlie did it.” The goal is \((C)\). You adjoin the negated goal to your KB:

\((¬C)\)

Produced a resolution proof:

Repetitively choose two clauses, write one clause in the first blank space on a line, and the other clause in the second. Apply resolution to them. Write the resulting clause in the third blank space, and insert it into the knowledge base.

Resolve \((C ∨ D)\) and \((¬C)\) to give \((D)\).

Resolve \((B ∨ ¬D)\) and \((¬B ∨ ¬D)\) to give \((¬D)\).

Resolve \((C ∨ D)\) and \((¬D)\) to give \((C)\).

Resolve \((C)\) and \((¬C)\) to give \((1)\).

Other proofs are OK as long as they are correct. For example, a three-line proof is:

Resolve \((B ∨ ¬D)\) and \((¬B ∨ ¬D)\) to give \((¬D)\).

Resolve \((C ∨ D)\) and \((¬D)\) to give \((C)\).

Resolve \((C)\) and \((¬C)\) to give \((1)\).

Other proofs are OK as long as they are correct. For example, another proof is:

Resolve \((¬C)\) and \((C ∨ D)\) to give \((D)\).

Resolve \((D)\) and \((¬B ∨ ¬D)\) to give \((¬B)\).

Resolve \((¬B)\) and \((B ∨ ¬D)\) to give \((¬D)\).

Resolve \((¬D)\) and \((D)\) to give \((1)\).

Extra lines or steps are OK as long as your proof is correct.

It is OK (even expected) to simplify expressions. E.g., if you resolved \((¬B ∨ ¬D)\) and \((B ∨ ¬D)\) to give \((¬D ∨ ¬D)\), of course you would simplify it to \((¬D)\). It is OK to simplify as you go, i.e., you don’t need a separate step.