C3 -	171	, intro	to A.I. –	– Quiz#	3 — VVII	nter Qua	rter, 2014 — 20 minutes		
YOU	IR N	AME:							
YOUR ID: ID TO RIGHT: ROV						ROW:_	SEAT NO.:		
The Your are be	Knov book elow. En	vledge En c identifie Unfortu	ngineering s seven sec nately, the scription o	process. quential stee order of the	eps in the k ne steps has fic problem	knowledge ei s been scram	o the correct answer) ngineering process, which steps hbled. Please, straighten them out. See Section 8.4		
B. C. D. E. F.	Assemble the relevant knowledge Pose queries to the inference procedure and get answers Encode general knowledge about the domain Debug the knowledge base Identify the task Decide on a vocabulary of predicates, functions, and con						Due to an ambiguity in answering a student question during the quiz, it is OK for "F" to appear in any position.		
Fill iı	n the	blanks wit	th the letter	rs A, B, C,	D, E, F, and	d G, all in th	ne proper sequence.		
F		В	G	D	A	C	<u>E .</u>		
	-	, <u>-</u>	-	_	O		e following FOPC sentences on		

2. (30 pts total, 5 pts each) Logic-To-English. For each of the following FOPC sentences on the left, write the letter corresponding to the best English sentence on the right. Use these intended interpretations: (1) "Student(x)" is intended to mean "x is a student." (2) "Quiz(x)" is intended to mean "x is a quiz." (3) "Got100(x, y)" is intended to mean "x got 100 on y."

See Section 8.2.6

				See Section 8.2.6
В	$\forall s \exists q \text{ Student}(s) \Rightarrow [\text{ Quiz}(q) \land \text{Got100}(s, q)]$	A	For every quiz, there is a student who got 100 on it.	See Section 8.2.0
Е	$\exists q \ \forall s \ Quiz(q) \ \land [\ Student(s) \Rightarrow Got100(s, q)]$	В	For every student, there is a on which that student got 1	
A	$\forall q \exists s \ Quiz(q) \Rightarrow [\ Student(s) \land Got100(s, q)]$	С	Every student got 100 on e	very quiz.
F	$\exists s \ \forall q \ Student(s) \land [Quiz(q) \Rightarrow Got100(s, q)]$	D	Some student got 100 on so	ome quiz.
С	$\forall s \forall q [Student(s) \land Quiz(q)] \Rightarrow Got100(s, q)$	Е	There is a quiz on which every student got 100.	
D	$\exists s \exists q \ Student(s) \land Quiz(q) \land Got100(s, q)$	F	There is a student who got 100 on every quiz.	

**** TURN PAGE OVER. QUIZ CONTINUES ON THE REVERSE ****

3. (35 pts total, -5 pts for each edit step from your proof to a correct proof)

Resolution Proof. (http://www.braingle.com)

Detective Dorothy interviewed four local burglars to identify who stole Lady Diva's teapot.

See Section 7.5.2

It was well known that each burglar told exactly one lie:

Arnold: I didn't do it. Brian did it. Brian: I didn't do it. Derek did it.

Charlie: I didn't do it. Brian is lying when he says Derek did it. Derek: I didn't do it. If Arnold didn't do it, then Brian did it.

Use these propositional variables:

A= Arnold did it. **B**= Brian did it. **C**= Charlie did it. **D**= Derek did it.

You translate the evidence into propositional logic (recall that each suspect told exactly one lie):

Arnold: $(A \wedge B) \vee (\neg A \wedge \neg B)$ *Brian:* $(B \wedge D) \vee (\neg B \wedge \neg D)$

Charlie: $(C \land \neg D) \lor (\neg C \land D)$

Derek: $(D \land (\neg A \Rightarrow B)) \lor (\neg D \land \neg (\neg A \Rightarrow B))$

At most one burglar stole the teapot:

 $(\ A \Rightarrow \neg B \land \neg C \land \neg D\)\ (\ B \Rightarrow \neg A \land \neg C \land \neg D\)\ (\ C \Rightarrow \neg A \land \neg B \land \neg D\)\ (\ D \Rightarrow \neg A \land \neg B \land \neg C\)$

After converting to Conjunctive Normal Form, your Knowledge Base (KB) consists of:

Arnold: $(A \lor \neg B)$ $(\neg A \lor B)$ Brian: $(B \lor \neg D)$ $(\neg B \lor D)$ Charlie: $(C \lor D)$ $(\neg C \lor \neg D)$ Derek: $(\neg A \lor D)$ $(\neg B \lor D)$ $(A \lor B \lor \neg D)$

At most one: $(\neg A \lor \neg B)$ $(\neg A \lor \neg C)$ $(\neg A \lor \neg D)$ $(\neg B \lor \neg C)$ $(\neg B \lor \neg D)$ $(\neg C \lor \neg D)$

(Side note: Normally, you would start four proofs, one for each goal sentence: A, B, C, D. Only the proof of C would succeed, and you would know Charlie did it. For this timed test, you will do only one proof.) You will be asked to prove, "Charlie did it." The goal is (C). You adjoin the negated goal to your KB:

 $(\neg C)$

Produce a resolution p

Repeatedly choose two

Other proofs are OK as long as they are correct. For example, a three-line proof is:

Resolve (B $^{\vee}$ ¬D) and (¬B $^{\vee}$ ¬D) to give (¬ D).

Resolve ($C \lor D$) and ($\neg D$) to give (C).

the second. Apply resol Resolve (C) and (-C) to give ().

the knowledge base. Continue until you produce (). If you cannot produce (), then you have made a mistake. The shortest proof I know is only three lines. It is OK to use more lines, if your proof is correct. It is OK to use abbreviated CNF, i.e., $(\neg A \neg B)$ instead of $(\neg A \lor \neg B)$. It is OK to omit the parentheses.

Resolve $(C \lor D)$ and $(\neg C)$ to give (D).

Resolve $(B \lor \neg D)$ and (D) to give (B).

Resolve $(A \lor \neg B)$ and (B) to give (A)

Resolve $(\neg A \lor \neg B)$ and (B) to give $(\neg A)$

Resolve $\underline{\hspace{1cm}}$ and $\underline{\hspace{1cm}}$ to give $\underline{\hspace{1cm}}$ ()

Other proofs are OK as long as they are correct. For example, another proof is:

Resolve (\neg C) and ($C \lor D$) to give (D). Resolve (D) and $(\neg B \lor \neg D)$ to give $(\neg B)$.

Resolve (\neg B) and ($B \lor \neg$ D) to give (\neg D).

Resolve $(\neg D)$ and (D) to give (). Resolve

Extra lines or steps are OK as long as your proof is correct.

Resolve _____

It is OK (even expected) to simplify expressions. E.g., if you resolved $(\neg B \lor \neg D)$ and $(B \lor \neg D)$ to give $(\neg D \lor \neg D)$, of course you would simplify it to (¬D). It is OK to simplify as you go, i.e., you don't need a separate step.