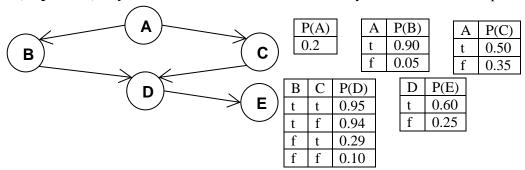
CS-171, Intro to A.I. — Quiz#4 — Winter Quarter, 2014 — 20 minutes

YOUR NAME:

SEAT NO .: _ YOUR ID: _ ID TO RIGHT:____ ROW NO.: _____

1. (5 pts) Definition of conditional probability. Write down the definition of P(H | D) in terms of P(H), P(D), P(H \wedge D), and P(H \vee D).

$$P(H \mid D) =$$


2. (5 pts) Bayes' Rule. Write down the result of applying Bayes' Rule to P(H | D).

$$P(H \mid D) =$$

3. (15 pts) Bayesian Networks. Draw the Bayesian Network that corresponds to this factored conditional probability expression. Draw left-to-right, i.e., put A and B on the left, G and H on the right.

P(A | D) P(B | C, E) P(C | D, E) P(D | E, G) P(E | F, H) P(F | G, H) P(G | H) P(H)

4. (30 pts total) Bayesian Networks. Shown below is a Bayesian network and its probability tables.

4.a. (15 pts) Write the factored conditional probability expression that corresponds to this network:

4.b. (15 pts) Write down an expression that will evaluate to P($a=T \land b=F \land c=T \land d=F \land e=F$). Express your answer as a series of numbers (numerical probabilities) separated by multiplication symbols. You do not need to carry out the multiplication to produce a single number. SHOW YOUR WORK.

5. (15 pts total) Decision Tree Learning.

You are an agricultural robot given the following set of plant examples. Each is assigned a class label of + or — depending on whether or not it is a member of the target class:

Example	Vine?	Fruit?	Leaf?	Class
Watermelon	Yes	Yes	Curly	+
lvy	Yes	No	Curly	_
Bougainvillea	Yes	No	Flat	_
Kudzu	Yes	No	Flat	_
Maple	No	No	Curly	+
Oak	No	No	Flat	+
Sycamore	No	No	Flat	+
Apple	No	Yes	Curly	_

5.a. (5 pts) Draw the decision tree that would be constructed by recursively applying information gain to select roots of sub-trees, as in the Decision-Tree-Learning algorithm.

5.b.	(5 p	ts) \	<i>N</i> hat	class	is Grape	? (Vine=	:Yes, Frเ	uit=Yes,	Leaf=Curly	/)

5c. (5 pt) What class is Orange? (Vine=No, Fruit=Yes, Leaf=Curly)_____

6. (30 pts total, 2 pts each) Machine Learning concepts.

For each of the following items on the left, write in the letter corresponding to the best answer or the correct definition on the right.

anower of the correct dominator of the right.				
. Learning	Α	Improves performance of future tasks after observing the world		
Information Gain	В	Fixed set, list, or vector of features/attributes paired with a value		
Decision Boundary	С	Agent learns patterns in the input with no explicit feedback		
Cross-validation	D	Agent observes input-output pairs & learns to map input to output		
Linear Classifier	Ε	Example input-output pairs, from which to discover a hypothesis		
Factored Representation	F	Examples distinct from training set, used to estimate accuracy		
(Feature Vector)				
Supervised Learning	G	Supervised learning with a discrete set of possible output values		
Test Set	Н	Supervised learning with numeric output values		
Naïve Bayes Classifier	ı	Internal nodes test a value of an attribute, leaf nodes=class labels		
Classification	J	Expected reduction in entropy from testing an attribute value		
Decision Tree	Κ	Choose an over-complex model based on irrelevant data patterns		
Regression	L	Randomly split the data into a training set and a test set		
Training Set	М	Surface in a high-dimensional space that separates the classes		
Unsupervised Learning	N	Tests w·f >0, where w is a weight vector and f is a feature vector		
Overfitting	0	Tests P (C) Π_i P(X _i C), where C is a class label and X _i are features		