## CS-171, Intro to A.I. — Quiz#3 — Fall Quarter, 2015 — 20 minutes

| YOUR NAME:                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                              |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|
| YOUR ID:                                                                                                                                                                                                                                                                                                                       | _ ID TO RIGHT:                                                                                                                                                                                  | ROW:                                                                         | SEAT:                                               |
| <b>1. (70 pts total, 10 pts eac</b><br>For each English sentence<br>(wff, or well-formed formula<br><b>1.a (example)</b> B "All po<br>A. $\forall x \text{ Person}(x) \land M$<br>B. $\forall x \text{ Person}(x) \Rightarrow M$<br>C. $\exists x \text{ Person}(x) \land M$<br>D. $\exists x \text{ Person}(x) \Rightarrow M$ | h) Correspondence of Engl<br>below, write the letter corresp<br>). The first one is done for yc<br>srsons are mortal."<br>ortal(x)<br>fortal(x)<br>fortal(x)                                    | ish sentences and FOPC<br>bonding to its best or close<br>bu, as an example. | s <b>(FOL) sentences.</b><br>st FOPC (FOL) sentence |
| 1.b (10 pts)"Somebo                                                                                                                                                                                                                                                                                                            | dy likes everybody."                                                                                                                                                                            |                                                                              |                                                     |
| A. ∃x ∀y Person(x) ∧<br>B. ∃x ∃y Person(x) ∧<br>C. ∃x ∀y Person(x) ∧<br>D. ∃x ∃y Person(x) ∧                                                                                                                                                                                                                                   | Person(y) $\land$ Likes(x, y)<br>Person(y) $\land$ Likes(x, y)<br>Person(y) $\Rightarrow$ Likes(x, y)<br>Person(y) $\Rightarrow$ Likes(x, y)                                                    |                                                                              |                                                     |
| 1.c (10 pts) "Food is                                                                                                                                                                                                                                                                                                          | defined to be something the                                                                                                                                                                     | at somebody eats."                                                           |                                                     |
| (I.e., define the predicate F                                                                                                                                                                                                                                                                                                  | Food(x) to be true whenever                                                                                                                                                                     | r somebody eats x, and fa                                                    | alse otherwise.)                                    |
| A. $\forall x \exists y Food(x) \Leftrightarrow$<br>B. $\forall x \exists y [Food(x) \land$<br>C. $\exists x \exists y Food(x) \Leftrightarrow$                                                                                                                                                                                | $[\operatorname{Person}(y) \land \operatorname{Eats}(y, x)]$ $\operatorname{Person}(y)] \Leftrightarrow \operatorname{Eats}(y, x)$ $[\operatorname{Person}(y) \land \operatorname{Eats}(y, x)]$ |                                                                              |                                                     |
| D. $\forall X \ \forall Y \ FOOD(X) \Leftrightarrow$<br>1 d (10 pts) "Every b                                                                                                                                                                                                                                                  | $[ Person(y) \land Eats(y, x) ]$                                                                                                                                                                |                                                                              |                                                     |
| A $\exists x \text{ Hammer}(x) \land \exists$                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |                                                                              |                                                     |
| B. ∀x Hammer(x) ∧                                                                                                                                                                                                                                                                                                              | Fool(x)                                                                                                                                                                                         |                                                                              |                                                     |
| C. $\exists x \text{ Hammer}(x) \Rightarrow$                                                                                                                                                                                                                                                                                   | Tool(x)                                                                                                                                                                                         |                                                                              |                                                     |
| D. ∀x Hammer(x) $\Rightarrow$                                                                                                                                                                                                                                                                                                  | Tool(x)                                                                                                                                                                                         |                                                                              |                                                     |
| 1.e (10 pts) "A grand                                                                                                                                                                                                                                                                                                          | lparent x of y is defined to b                                                                                                                                                                  | be x is a parent of a parer                                                  | nt of y."                                           |
| A. ∃x ∀y ∀z Grandpa                                                                                                                                                                                                                                                                                                            | arent(x, y) $\Leftrightarrow$ [ Parent(x, z) $\land$ ]                                                                                                                                          | Parent(z, y)]                                                                |                                                     |
| B. ∀x ∃y ∀z Grandpa                                                                                                                                                                                                                                                                                                            | $\operatorname{arent}(x, y) \Leftrightarrow [\operatorname{Parent}(x, z) \land I)$                                                                                                              | Parent(z, y)]                                                                |                                                     |
| C. $\forall x \forall y \exists z Grandpa$                                                                                                                                                                                                                                                                                     | $\operatorname{arent}(x, y) \Leftrightarrow [\operatorname{Parent}(x, z) \land ]$                                                                                                               | Parent(z, y) ]                                                               |                                                     |
| 1 f (10 pts) "Everyon                                                                                                                                                                                                                                                                                                          | areni(x, y) $\Leftrightarrow$ [ Pareni(x, 2) $\land$                                                                                                                                            | Pareni(Z, Y) j<br>alifornia "                                                |                                                     |
| A $\forall x \operatorname{Person}(x) \land \ln x$                                                                                                                                                                                                                                                                             | (x IRVINE) $\wedge \ln(x SOUTHEF)$                                                                                                                                                              | RNCALIFORNIA)                                                                |                                                     |
| B. $\exists x \operatorname{Person}(x) \land \ln x$                                                                                                                                                                                                                                                                            | $(x, IRVINE) \land In(x, SOUTHEF$                                                                                                                                                               |                                                                              |                                                     |
| C. ∀x [ Person(x) ∧ I                                                                                                                                                                                                                                                                                                          | $n(x, IRVINE) ] \Rightarrow In(x, SOUT)$                                                                                                                                                        | HERNCALIFORNIA)                                                              |                                                     |
| D. $\exists x Person(x) \Rightarrow [$                                                                                                                                                                                                                                                                                         | In(x, IRVINE) ] ~ In(x, SOUTI                                                                                                                                                                   | HERNCALIFORNIA                                                               |                                                     |
| 1.g (10 pts) "Every d                                                                                                                                                                                                                                                                                                          | og likes some bone."                                                                                                                                                                            |                                                                              |                                                     |
| A. ∀x ∃y [ Dog(x) ∧ E                                                                                                                                                                                                                                                                                                          | $3one(y) ] \Rightarrow Likes(x, y)$                                                                                                                                                             |                                                                              |                                                     |
| B. $\forall x \exists y Dog(x) \land Bo$                                                                                                                                                                                                                                                                                       | $one(y) \wedge Likes(x, y)$                                                                                                                                                                     |                                                                              |                                                     |
| C. $\forall x \forall y \text{ Dog}(x) \land B$                                                                                                                                                                                                                                                                                | $Sne(y) \wedge Likes(x, y)$                                                                                                                                                                     |                                                                              |                                                     |
| $D. \forall x \exists y Dog(x) \Longrightarrow [$ 1 h (10 nts) "Someth                                                                                                                                                                                                                                                         | bone(y) $\wedge$ Likes(x, y) ]                                                                                                                                                                  | e any wall " (adapted fro                                                    | m Frost "Mending Wall")                             |
| $\neg$ A x x Wall(v)                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 | e any wan. (adapted no                                                       | in rost, menuing wan j                              |
| B. $\exists x \forall y Wall(y) \Rightarrow -$                                                                                                                                                                                                                                                                                 | - Love(x, y)                                                                                                                                                                                    |                                                                              |                                                     |
| C. $\exists x \exists y Wall(y) \Rightarrow -$                                                                                                                                                                                                                                                                                 | ¬ Love(x, y)                                                                                                                                                                                    |                                                                              |                                                     |
| D. ∀x ∀y Wall(y) ∧ –                                                                                                                                                                                                                                                                                                           | Love(x, y)                                                                                                                                                                                      |                                                                              |                                                     |
| **** TU                                                                                                                                                                                                                                                                                                                        | RN PAGE OVER. QUIZ CON                                                                                                                                                                          | NTINUES ON THE REVER                                                         | SE. ****                                            |

2. (30 pts total, 10 pts each) Constraint Satisfaction Problems.



You are a map-coloring robot assigned to color this Southwest USA map. Adjacent regions must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown.

2.a. (10 pts total, -5 each wrong answer, but not negative) MINIMUM-REMAINING-VALUES (MRV) HEURISTIC. Consider the assignment below. NV is assigned and constraint propagation has been done. List all unassigned variables that might be selected by the Minimum-Remaining-Values (MRV) Heuristic:

| CA  | NV | AZ  | UT  | CO  | NM  |
|-----|----|-----|-----|-----|-----|
| R B | G  | R B | R B | RGB | RGB |

**2.b. (10 pts total, -5 each wrong answer, but not negative) DEGREE HEURISTIC (DH).** Consider the assignment below. (It is the same assignment as in problem 2.a above.) NV is assigned and constraint propagation has been done. List all unassigned variables that might be selected by the Degree Heuristic:.

| CA  | NV | AZ  | UT | CO  | NM  |
|-----|----|-----|----|-----|-----|
| R B | G  | R B | RB | RGB | RGB |

**2.c. (10 pts total, -5 each wrong answer, but not negative) LEAST CONSTRAINING VALUE (LCV) HEURISTIC.** Consider the assignment below. (It is the same assignment as in problem 2.a above.) NV is assigned and constraint propagation has been done.

CO has been chosen as the next variable to be explored (despite the heuristics above!). Two possible value orderings might be returned by the Least Constraining Value Heuristic. List them:

| CA  | NV | AZ  | UT  | CO  | NM  |
|-----|----|-----|-----|-----|-----|
| R B | G  | R B | R B | RGB | RGB |