For each question on Quiz #4, "Zero" gives the percentage of students who received zero, "Partial" gives the percentage who received partial credit, and "Full" gives the percentage who received 100%. (Due to rounding, numbers shown below are only an approximate estimate.)

Problem 1: full credit: ~94.8% (~55 students) partial credit: ~5.2% (~3 students) zero credit: ~0% (~0 students)

Problem 2: full credit: ~34.5% (~20 students) partial credit: ~50% (~29 students) zero credit: ~15.5% (~9 students)

Problem 3: full credit: ~50% (~29 students) partial credit: ~50% (~29 students) zero credit: ~0% (~0 students)

CS-171, Intro to A.I. — Quiz#4 — Summer Quarter, 2016 — 20 minutes

YOUR NAME AND EMAIL ADDRESS:

YOUR ID: _____ ID TO RIGHT: _____ ROW: _____ SEAT: _____

1. (25 pts total, -5 pts for each error, but not negative) MINI-MAX SEARCH IN GAME TREES.

The game tree below illustrates a position reached in the game. Process the tree left-to-right. It is **Max**'s turn to move. At each leaf node is the estimated score returned by the heuristic static evaluator.

1.a. Fill in each blank square with the proper mini-max search value.

1.b. What is the best move for Max? (write A, B, or C) <u>A</u>

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

3. (50 points total, 10 pts each) Constraint Satisfaction Problems

You are a map-coloring robot assigned to color this map of Australia. Adjacent regions must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown.

3.a. (10 pts) FORWARD CHECKING.

Variable NT has been assigned a value as shown, but <u>no</u> constraint propage <u>See section 6.3.2.</u> he. Cross out all values that would be eliminated by Forward Checking.

WA	NT	Q	SA	NSW	V	Т
R B	G	R B	R B	RGB	RGB	RGB

3.b. (10 pts) ARC CONSISTENCY.

Variables WA and NT have been assigned values as shown, but <u>no</u> consistency (AC-3 in your book).

B G XXXB RXX XGX XXB RGB	WA	NT	Q	SA	NSW	V	Т
	В	G	XX B	K X X		XX B	RGB

3.c. (10 pts) MINIMUM-REMAINING-VALUES HEURISTIC. Consider the assignment below. WA is assigned and constraint propagation <u>has</u> been done. List all unassigned variables that might be selected by the Minimum-Remaining-Values (MRV) Heuristic: NT, SA

See section 6.3.1.

WA	NT	Q	SA	NSW	V	Т
R	G B	R G B	GB	RGB	RGB	RGB

3.d. (10 pts) DEGREE HEURISTIC. Consider the assignment below. (It is the same assignment as in problem 3.c. above.) WA is assigned and constraint propagation <u>has</u> been done. List all unassigned variables that might be selected by the Degree Heuristic: SA

-	-	-		See sec	tion 6.3.1.	
WA	NT	Q	SA	NSW	V	Т
R	G B	R G B	G B	RGB	RGB	RGB

ſ	WA	NT	Q	SA	NSW	V	Т
Ī	R	В	G	?	G	В	В