For each question on Quiz \#4, "Zero" gives the percentage of students who received zero, "Partial" gives the percentage who received partial credit, and "Full" gives the percentage who received 100\%. (Due to rounding, numbers shown below are only an approximate estimate.)

Problem 1:
full credit: $\sim 94.8 \% ~(\sim 55$ students)
partial credit: $\sim 5.2 \%$ (~ 3 students)
zero credit: $\sim 0 \%$ (~ 0 students)
Problem 2:
full credit: ~34.5\% (~20 students)
partial credit: $\sim 50 \%$ (~ 29 students)
zero credit: $\sim 15.5 \%$ (~ 9 students)
Problem 3:
full credit: ~50\% (~29 students)
partial credit: $\sim 50 \%$ (~ 29 students)
zero credit: $\sim 0 \%$ (~ 0 students)
\qquad
YOUR ID: \qquad ID TO RIGHT: \qquad ROW: \qquad SEAT: \qquad

1. (25 pts total, -5 pts for each error, but not negative) MINI-MAX SEARCH IN GAME TREES.

The game tree below illustrates a position reached in the game. Process the tree left-to-right. It is Max's turn to move. At each leaf node is the estimated score returned by the heuristic static evaluator.
1.a. Fill in each blank square with the proper mini-max search value.
1.b. What is the best move for Max? (write A, B, or C) _ A
1.c. What score does Max expect to achieve? \qquad 6

3. (50 points total, 10 pts each) Constraint Satisfaction Problems

You are a map-coloring robot assigned to color this map of Australia. Adjacent regions must be colored a different color ($\mathrm{R}=$ Red, $\mathrm{B}=\mathrm{Blue}, \mathrm{G}=\mathrm{Green}$). The constraint graph is shown.
3.a. (10 pts) FORWARD CHECKING.

Variable NT has been assigned a value as shown, but no constraint propag See section 6.3.2. 1e. Cross out all values that would be eliminated by Forward Checking.

WA	NT	Q	SA	NSW	V	T
R $\mathbf{Z B}$	G	R \mathbf{B}	R / B	R G B	RGB	RGB

3.b. (10 pts) ARC CONSISTENCY.

WA	NT	Q	SA	NSW	V	T
B	G	$\boldsymbol{X} \mathbf{X B}$	R \mathbf{X}	$\mathbf{X} \mathbf{G}$	$\mathbf{X} \mathbf{B}$	RGB

3.c. (10 pts) MINIMUM-REMAINING-VALUES HEURISTIC. Consider the assignment below. WA is assigned and constraint propagation has been done. List all unassigned variables that might be selected by the Minimum-Remaining-Values (MRV) Heuristic: \qquad See section 6.3.1.

WA	NT	Q	SA	NSW	V	T
R	G B	R G B	G B	R G B	R G B	R G B

3.d. (10 pts) DEGREE HEURISTIC. Consider the assignment below. (It is the same assignment as in problem 3.c. above.) WA is assigned and constraint propagation has been done. List all unassigned variables that might be selected by the Degree Heuristic: \qquad See section 6.3.1.

WA	NT	Q	SA	NSW	V	T
R	G B	R G B	G B	R G B	R G B	R G B

3.e. (10 pts) MIN-CONFLICTS HEURISTIC. Consider the complete but inconsistent assignment below. SA has just been selected to be assigned a new value during local search for a complete and consistent assignment. What new value would be chosen below for SA by the Min-Conflicts Heuristic? \qquad .

See section 6.4.

WA	NT	Q	SA	NSW	V	T
R	B	G	$\boldsymbol{?}$	G	B	B

