Knowledge Representation using First-Order Logic (Part III)

This lecture: R&N Chapters 8, 9

Next lecture: Chapter 13; Chapter 14.1-14.2

(Please read lecture topic material before and after each lecture on that topic)
Outline

• Review: KB |= S is equivalent to |= (KB ⇒ S)
 – So what does {} |= S mean?
• Review: Follows, Entails, Derives
 – Follows: “Is it the case?”
 – Entails: “Is it true?”
 – Derives: “Is it provable?”
• Review: FOL syntax

• Finish FOL Semantics, FOL examples

• Inference in FOL
Using FOL

- We want to TELL things to the KB, e.g.
 \[
 \text{TELL}(KB, \forall x, \text{King}(x) \Rightarrow \text{Person}(x))
 \]
 \[
 \text{TELL}(KB, \text{King}(John))
 \]

 These sentences are assertions

- We also want to ASK things to the KB,
 \[
 \text{ASK}(KB, \exists x, \text{Person}(x))
 \]

 these are queries or goals

The KB should return the list of x’s for which Person(x) is true:
\{x/John, x/Richard, ...\}
FOL Version of Wumpus World

- Typical percept sentence:
 \text{Percept}([\text{Stench, Breeze, Glitter, None, None}], 5)

- Actions:
 \text{Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb}

- To determine best action, construct query:
 \forall a \text{ BestAction}(a, 5)

- \text{ASK} solves this and returns \{a/\text{Grab}\}
 - And TELL about the action.
Knowledge Base for Wumpus World

- Perception
 - $\forall s, b, g, x, y, t \text{ Percept}([s, \text{Breeze}, g, x, y], t) \Rightarrow \text{Breeze}(t)$
 - $\forall s, b, x, y, t \text{ Percept}([s, b, \text{Glitter}, x, y], t) \Rightarrow \text{Glitter}(t)$

- Reflex action
 - $\forall t \text{ Glitter}(t) \Rightarrow \text{BestAction(Grab, t)}$

- Reflex action with internal state
 - $\forall t \text{ Glitter}(t) \land \neg \text{Holding(Gold, t)} \Rightarrow \text{BestAction(Grab, t)}$

 Holding(Gold,t) can not be observed: keep track of change.
Deducing hidden properties

Environment definition:

\[\forall x,y,a,b \ Adjacent([x,y],[a,b]) \iff [a,b] \in \{[x+1,y], [x-1,y],[x,y+1],[x,y-1]\} \]

Properties of locations:

\[\forall s,t \ At(Agent,s,t) \land Breeze(t) \Rightarrow Breezy(s) \]

Squares are breezy near a pit:

- **Diagnostic** rule---infer cause from effect
 \[\forall s \ Breezy(s) \iff \exists r \ Adjacent(r,s) \land Pit(r) \]

- **Causal** rule---infer effect from cause (model based reasoning)
 \[\forall r \ Pit(r) \Rightarrow [\forall s \ Adjacent(r,s) \Rightarrow Breezy(s)] \]
Keeping track of change

Facts hold in **situations**, rather than eternally
E.g., $\text{Holding}(\text{Gold}, \text{Now})$ rather than just $\text{Holding}(\text{Gold})$

Situation calculus is one way to represent change in FOL:

- Adds a situation argument to each non-eternal predicate
- E.g., Now in $\text{Holding}(\text{Gold}, \text{Now})$ denotes a situation

Situations are connected by the **Result** function

$\text{Result}(a, s)$ is the situation that results from doing a in s
Describing actions I

“Effect” axiom—describe changes due to action
\[\forall s \ \text{AtGold}(s) \Rightarrow \text{Holding}(\text{Gold, Result}(\text{Grab, s})) \]

“Frame” axiom—describe **non-changes** due to action
\[\forall s \ \text{HaveArrow}(s) \Rightarrow \text{HaveArrow}(\text{Result}(\text{Grab, s})) \]

Frame problem: find an elegant way to handle non-change
- (a) representation—avoid frame axioms
- (b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves, . . .
Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is “about” a **predicate** (not an action per se):

\[
P \text{ true afterwards} \iff \begin{array}{l}
\text{[an action made } P \text{ true} } \\
\lor \quad \text{ } P \text{ true already and no action made } P \text{ false}
\end{array}
\]

For holding the gold:

\[
\forall a, s \quad \text{Holding}(Gold, Result(a, s)) \iff \\
[(a = \text{Grab} \land \text{AtGold}(s)) \\
\lor \quad (\text{Holding}(Gold, s) \land a \neq \text{Release})]
\]
Set Theory in First-Order Logic

Can we define set theory using FOL?
- individual sets, union, intersection, etc

Answer is yes.

Basics:
- empty set = constant = \{\}

- unary predicate Set(), true for sets

- binary predicates:
 \[x \in S \] (true if \(x \) is a member of the set \(S \))
 \[S_1 \subseteq S_2 \] (true if \(S_1 \) is a subset of \(S_2 \))

- binary functions:
 intersection \(S_1 \cap S_2 \), union \(S_1 \cup S_2 \), adjoining \(\{x|s\} \)
A Possible Set of FOL Axioms for Set Theory

The only sets are the empty set and sets made by adjoining an element to a set
\[\forall s \text{ Set}(s) \iff (s = \{\}) \lor (\exists x, s_2 \text{ Set}(s_2) \land s = \{x|s_2\}) \]

The empty set has no elements adjoined to it
\[\neg \exists x, s \ {x|s} = \{\} \]

Adjoining an element already in the set has no effect
\[\forall x, s \ x \in s \iff s = \{x|s\} \]

The only elements of a set are those that were adjoined into it. Expressed recursively:
\[\forall x, s \ x \in s \iff [\exists y, s_2 \ (s = \{y|s_2\} \land (x = y \lor x \in s_2))] \]
A Possible Set of FOL Axioms for Set Theory

A set is a subset of another set iff all the first set’s members are members of the 2nd set

\[\forall s_1, s_2 \ s_1 \subseteq s_2 \iff (\forall x \ x \in s_1 \Rightarrow x \in s_2) \]

Two sets are equal iff each is a subset of the other

\[\forall s_1, s_2 \ (s_1 = s_2) \iff (s_1 \subseteq s_2 \land s_2 \subseteq s_1) \]

An object is in the intersection of 2 sets only if a member of both

\[\forall x, s_1, s_2 \ x \in (s_1 \cap s_2) \iff (x \in s_1 \land x \in s_2) \]

An object is in the union of 2 sets only if a member of either

\[\forall x, s_1, s_2 \ x \in (s_1 \cup s_2) \iff (x \in s_1 \lor x \in s_2) \]
Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base
The electronic circuits domain

One-bit full adder

Possible queries:
- does the circuit function properly?
- what gates are connected to the first input terminal?
- what would happen if one of the gates is broken?
and so on
The electronic circuits domain

1. Identify the task
 - Does the circuit actually add properly?

2. Assemble the relevant knowledge
 - Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 - Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
 - Alternatives:
 - Type(X_1) = XOR (function)
 Type(X_1, XOR) (binary predicate)
 XOR(X_1) (unary predicate)
The electronic circuits domain

4. Encode general knowledge of the domain
 - \(\forall t_1, t_2 \) \(\text{Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2) \)
 - \(\forall t \) \(\text{Signal}(t) = 1 \lor \text{Signal}(t) = 0 \)
 - \(1 \neq 0 \)
 - \(\forall t_1, t_2 \) \(\text{Connected}(t_1, t_2) \Rightarrow \text{Connected}(t_2, t_1) \)
 - \(\forall g \) \(\text{Type}(g) = \text{OR} \Rightarrow \text{Signal}(\text{Out}(1,g)) = 1 \iff \exists n \text{ Signal}(\text{In}(n,g)) = 1 \)
 - \(\forall g \) \(\text{Type}(g) = \text{AND} \Rightarrow \text{Signal}(\text{Out}(1,g)) = 0 \iff \exists n \text{ Signal}(\text{In}(n,g)) = 0 \)
 - \(\forall g \) \(\text{Type}(g) = \text{XOR} \Rightarrow \text{Signal}(\text{Out}(1,g)) = 1 \iff \text{Signal}(\text{In}(1,g)) \neq \text{Signal}(\text{In}(2,g)) \)
 - \(\forall g \) \(\text{Type}(g) = \text{NOT} \Rightarrow \text{Signal}(\text{Out}(1,g)) \neq \text{Signal}(\text{In}(1,g)) \)
5. Encode the specific problem instance

Type(X_1) = XOR Type(X_2) = XOR
Type(A_1) = AND Type(A_2) = AND
Type(O_1) = OR

Connected(Out(1,X_1),In(1,X_2)) Connected(Out(1,X_1),In(1,X_2))
Connected(Out(1,X_1),In(2,A_2)) Connected(In(1,C_1),In(1,X_1))
Connected(Out(1,A_2),In(1,O_1)) Connected(In(1,C_1),In(2,X_1))
Connected(Out(1,A_1),In(2,O_1)) Connected(In(2,C_1),In(2,A_1))
Connected(Out(1,X_2),Out(1,C_1)) Connected(In(3,C_1),In(2,X_2))
Connected(Out(1,O_1),Out(2,C_1)) Connected(In(3,C_1),In(1,A_2))
6. Pose queries to the inference procedure
 What are the possible sets of values of all the terminals for the adder circuit?

 \[\exists i_1, i_2, i_3, o_1, o_2 \text{ Signal(In}(1,C_1)) = i_1 \land \text{Signal(In}(2,C_1)) = i_2 \land \text{Signal(In}(3,C_1)) = i_3 \land \text{Signal(Out}(1,C_1)) = o_1 \land \text{Signal(Out}(2,C_1)) = o_2 \]

7. Debug the knowledge base
 May have omitted assertions like \(1 \neq 0\)
Syntactic Ambiguity

• FOPC provides many ways to represent the same thing.
• E.g., “Ball-5 is red.”
 – HasColor(Ball-5, Red)
 • Ball-5 and Red are objects related by HasColor.
 – Red(Ball-5)
 • Red is a unary predicate applied to the Ball-5 object.
 – HasProperty(Ball-5, Color, Red)
 • Ball-5, Color, and Red are objects related by HasProperty.
 – ColorOf(Ball-5) = Red
 • Ball-5 and Red are objects, and ColorOf() is a function.
 – HasColor(Ball-5(), Red())
 • Ball-5() and Red() are functions of zero arguments that both return an object, which objects are related by HasColor.
 – ...

• This can GREATLY confuse a pattern-matching reasoner.
 – Especially if multiple people collaborate to build the KB, and they all have different representational conventions.
Summary

• First-order logic:
 – Much more expressive than propositional logic
 – Allows objects and relations as semantic primitives
 – Universal and existential quantifiers
 – syntax: constants, functions, predicates, equality, quantifiers

• Knowledge engineering using FOL
 – Capturing domain knowledge in logical form

• Inference and reasoning in FOL
 – Next lecture

• Required Reading:
 – All of Chapter 8
 – Next lecture: Chapter 9