
Announcements (1)

• Cancelled:
– Homework #2 problem 4.d, and Mid-term problems 9.d & 9.e & 9.h.
– Everybody gets them right, regardless of your actual answers.Everybody gets them right, regardless of your actual answers.

• Homework #2 problem 4.d and Mid-term problem 9.d:
– Uniform-cost search (sort queue by g(n)) is both complete and optimal when 

the path cost never decreases and at most a finite number of paths have a 
cost below the optimal path costcost below the optimal path cost.

– Step costs ≥ ε > 0 imply this condition.
– A* also requires this condition for completeness.

• Mid-term problem 9.e & 9.h:Mid term problem 9.e & 9.h:
– Greedy best-first search is both complete and optimal when the heuristic is 

optimal.
• There is no such thing as an “optimal” heuristic.

f (– If the search space contains only a single local maximum (i.e., the global 
maximum = the only local maximum), then hill-climbing is guaranteed to 
climb that single hill and will find the global maximum.

• Your book shows several problems that confound hill-climbing.
– However, I can see where the phrasing could be confusing.



Announcements (2)

• The Mid-term exam is now a pedagogical device.

• You can recover 50% of your missed points by showing that you 
have debugged and repaired your knowledge base.

F h it h i t d d t d• For each item where points were deducted:
– Write 2-4 sentences, and perhaps an equation or two.
– Describe:

Wh h b i h k l d b l di h ?• What was the bug in the knowledge base leading to the error?
• How has the knowledge base been repaired so that the error will 

not happen again?
Turn in with your exam on Tuesday May 18 (in place of HW #5)– Turn in, with your exam, on Tuesday, May 18 (in place of HW #5).

– 50% of your missed points will be forgiven for each correct repair.

H k #5 i ll d t i ti t d thi• Homework #5 is cancelled to give you time to do this.



Game-Playing & Adversarial Search

Reading:  R&N, “Adversarial Search”
Ch. 5 (3rd ed.); Ch. 6 (2nd ed.)

For Thursday:  R&N, “Constraint Satisfaction Problems”
Ch. 6 (3rd ed.); Ch 5 (2nd ed.)



Overview

• Minimax Search with Perfect Decisions
– Impractical in most cases, but theoretical basis for analysis

• Minimax Search with Cut-off
– Replace terminal leaf utility by heuristic evaluation function

• Alpha-Beta Pruning
– The fact of the adversary leads to an advantage in search!

• Practical Considerations
– Redundant path elimination, look-up tables, etc.p p

• Game Search with Chance
– Expectiminimax searchp



Types of Games

battleship
Kriegspiel

Not Considered:  Physical games like tennis, croquet, 
ice hockey, etc.
(but see “robot soccer” http://www robocup org/)(but see  robot soccer  http://www.robocup.org/)



Typical assumptions

• Two agents whose actions alternate

• Utility values for each agent are the opposite of the other
– This creates the adversarial situation

• Fully observable environments

I th t• In game theory terms: 
– “Deterministic, turn-taking, zero-sum games of perfect information”

• Generalizes to stochastic games, multiple players, non zero-sum, etc.



Grundy’s game - special case of nim
Given a set of coins, a player takes a set and divides it into two unequal sets.

The player who cannot make a play, looses.

How do we search this tree to find the optimal move?



Game tree (2-player, deterministic, turns)

How do we search this tree to find the optimal move?



Search versus Games

S h d• Search – no adversary
– Solution is (heuristic) method for finding goal
– Heuristics and CSP techniques can find optimal solution
– Evaluation function: estimate of cost from start to goal through given node
– Examples: path planning, scheduling activities

• Games – adversary
– Solution is strategy gy

• strategy specifies move for every possible opponent reply.
– Time limits force an approximate solution
– Evaluation function: evaluate “goodness” of game position

E l h h k Oth ll b k– Examples: chess, checkers, Othello, backgammon



Games as Search

• Two players: MAX and MIN

• MAX moves first and they take turns until the game is overMAX moves first and they take turns until the game is over
– Winner gets reward, loser gets penalty.
– “Zero sum” means the sum of the reward and the penalty is a constant.

F l d fi iti h bl• Formal definition as a search problem:
– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess.
– Player(s): Defines which player has the move in a state.
– Actions(s): Returns the set of legal moves in a state.
– Result(s,a): Transition model defines the result of a move.
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.)
– Terminal-Test(s): Is the game finished?  True if finished, false otherwise.
– Utility function(s,p): Gives numerical value of terminal state s for player p.y ( p) p y p

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe.
• E.g., win (+1), lose (0), and draw (1/2) in  chess.

• MAX uses search tree to determine next moveMAX uses  search tree to determine next move.



An optimal procedure: The Min-Max method

Designed to find the optimal strategy for Max and find best move:

• 1. Generate the whole game tree, down to the leaves.

2 Apply utility (payoff) function to each leaf• 2. Apply utility (payoff) function to each leaf.

• 3.  Back-up values from leaves through branch nodes:
M d t th M f it hild l– a Max node computes the Max of its child values

– a Min node computes the Min of its child values

4 At t h th l di t th hild f hi h t l• 4. At root: choose the move leading to the child of highest value.



Game Trees



Two-Ply Game Tree



Two-Ply Game Tree



Two-Ply Game Tree

Minimax maximizes the utility for the worst-case outcome for max

The minimax decision



Pseudocode for Minimax Algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return arg max MIN VALUE(Result(state a))return arg maxaACTIONS(state) MIN-VALUE(Result(state,a))

function MAX-VALUE(state) returns a utility value
if TERMINAL TEST( t t ) th t UTILITY( t t )if TERMINAL-TEST(state) then return UTILITY(state)
v  −∞
for a  in ACTIONS(state) do

v  MAX(v MIN-VALUE(Result(state a)))

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)

v  MAX(v,MIN-VALUE(Result(state,a)))
return v

if TERMINAL-TEST(state) then return UTILITY(state)
v  +∞
for a  in ACTIONS(state) do

v  MIN(v,MAX-VALUE(Result(state,a))) ( , U ( esu (s a e,a)))
return v



Properties of minimax

• Complete?
– Yes (if tree is finite).

• Optimal?
– Yes (against an optimal opponent).( g p pp )
– Can it be beaten by an opponent playing sub-optimally?

• No.  (Why not?)

• Time complexity?
– O(bm)

• Space complexity?
– O(bm)   (depth-first search, generate all actions at once)( ) ( g )
– O(m)   (depth-first search, generate actions one at a time)



Game Tree Size

• Tic-Tac-Toe
– b ≈ 5 legal actions per state on average, total of 9 plies in game.

“ply” = one action by one player “move” = two plies• ply  = one action by one player, move  = two plies.
– 59 = 1,953,125
– 9! = 362,880  (Computer goes first)

8! 40 320 (Computer goes second)– 8! = 40,320 (Computer goes second)
 exact solution quite reasonable

• Chess• Chess
– b ≈ 35 (approximate average branching factor)
– d ≈ 100 (depth of game tree for “typical” game)

bd ≈ 35100 ≈ 10154 nodes!!– bd ≈ 35100 ≈ 10154 nodes!!
 exact solution completely infeasible

• It is usually impossible to develop the whole search tree• It is usually impossible to develop the whole search tree.



Static (Heuristic) Evaluation Functions

• An Evaluation Function:
– Estimates how good the current board configuration is for a player.

Typically evaluate how good it is for the player how good it is for– Typically, evaluate how good it is for the player, how good it is for 
the opponent, then subtract the opponent’s score from the player’s.

– Othello: Number of white pieces - Number of black pieces
– Chess: Value of all white pieces - Value of all black piecesChess:  Value of all white pieces Value of all black pieces

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

• If the board evaluation  is X for a player, it’s -X for the opponent
– “Zero-sum game”







Applying MiniMax to tic-tac-toe

• The static evaluation function heuristic



Backup Values









Alpha-Beta Pruning
Exploiting the Fact of an Adversary

• If a position is provably bad:
– It is NO USE expending search time to find out exactly how bad

• If the adversary can force a bad position:
– It is NO USE expending search time to find out the good positions 

that the adversary won’t let you achieve anyway

• Bad = not better than we already know we can achieve elsewhere.

• Contrast normal search:
– ANY node might be a winner.
– ALL nodes must be considered.
– (A* avoids this through knowledge, i.e., heuristics)



Tic-Tac-Toe Example with Alpha-Beta Pruning

Backup Values



Another Alpha-Beta Example

Do DF-search until first leaf

[-∞,+∞]

Range of possible values

[ ][-∞, +∞]



Alpha-Beta Example (continued)

[-∞,+∞]

[-∞,3][ ∞,3]



Alpha-Beta Example (continued)

[-∞,+∞]

[ ∞ 3][-∞,3]



Alpha-Beta Example (continued)

[3,+∞]

[3,3]



Alpha-Beta Example (continued)

[3,+∞]
This node is

[-∞,2][3,3]

worse for MAX



Alpha-Beta Example (continued)

[3,14] ,

[-∞,2][3,3] [-∞,14][ ∞,2][3,3] [ ∞,14]



Alpha-Beta Example (continued)

[3,5] ,

[−∞,2][3,3] [-∞,5][ ∞,2][3,3] [ ∞,5]



Alpha-Beta Example (continued)

[3,3]

[2,2][−∞,2][3,3]



Alpha-Beta Example (continued)

[3,3]

[2,2][-∞,2][3,3]



General alpha-beta pruning

• Consider a node n in the tree ---

• If player has a better choice at:If player has a better choice at:
– Parent node of n
– Or any choice point further up

• Then n will never be reached in play.

• Hence, when that much is known 
b t it b dabout n, it can be pruned.



Alpha-beta Algorithm

• Depth first search
– only considers nodes along a single path from root at any time

 =  highest-value choice found at any choice point of path for MAX
(initially,  =  −infinity)

 = lowest value choice found at any choice point of path for MIN = lowest-value choice found at any choice point of path for MIN
(initially,  =  +infinity)

P t l f d  d t hild d d i h• Pass current values of  and  down to child nodes during search.
• Update values of  and  during search:

– MAX updates  at MAX nodes
MIN d t  t MIN d– MIN updates  at MIN nodes

• Prune remaining branches at a node when  ≥ 



When to Prune 

• Prune whenever  ≥ .

Prune below a Max node whose alpha value becomes greater than– Prune below a Max node whose alpha value becomes greater than 
or equal to the beta value of its ancestors.

• Max nodes update alpha based on children’s returned values.

– Prune below a Min node whose beta value becomes less than or 
equal to the alpha value of its ancestors.

• Min nodes update beta based on children’s returned values.odes update beta based o c d e s e u ed a ues



Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game

MAX VALUE( t t )vMAX-VALUE(state, - ∞ , +∞)
return the action in SUCCESSORS(state) with value v



Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game

MAX VALUE( t t )vMAX-VALUE(state, - ∞ , +∞)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state, , ) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v  - ∞
for a in ACTIONS(state) do

v  MAX(v,MIN-VALUE(Result(s,a),  , ))
if v ≥  then return v
 MAX( )  MAX( ,v)

return v

(MIN-VALUE is defined analogously)



Alpha-Beta Example Revisited

Do DF-search until first leaf

[-∞,+∞]
, , initial values

=−


[ ]

 =+
, , passed to kids

[-∞, +∞]
=−
 =+



Alpha-Beta Example (continued)

[-∞,+∞]=−
 =+

[-∞,3]

 +

[ ∞,3]

=−
 =3

MIN updates , based on kids



Alpha-Beta Example (continued)

[-∞,+∞]

[ ∞ 3][-∞,3]
=−
 =3

MIN updates , based on kids.
No change.



Alpha-Beta Example (continued)

[3,+∞]
MAX updates , based on kids.

=3
 =+

[3,3]
3 is returned
as node value.



Alpha-Beta Example (continued)

[3,+∞]=3
 =+

 d kid

[3,3]
=3
 =+

, , passed to kids



Alpha-Beta Example (continued)

[3,+∞]=3
 =+ MIN updates ,

[3,3]
=3
 =2

based on kids.

[-∞,2]



Alpha-Beta Example (continued)

[3,+∞]

 ≥ 

=3
 =+

[-∞,2][3,3] =3
 =2

 ≥ ,
so prune.

 2



Alpha-Beta Example (continued)

MAX d t b d kid

2 is returned

MAX updates , based on kids.
No change. =3

 =+
[3,+∞]

[-∞,2][3,3]

2 is returned
as node value.



Alpha-Beta Example (continued)

,
=3
 =+ [3,+∞]

[-∞,2][3,3] =3

, , passed to kids

[ ∞,2][3,3]  3
 =+



Alpha-Beta Example (continued)

[3,14] ,
=3
 =+ MIN updates ,

based on kids

[-∞,2][3,3] [-∞,14]

=3
 =14

based on kids.

[ ∞,2][3,3] [ ∞,14]



Alpha-Beta Example (continued)

[3,5] ,
=3
 =+ MIN updates ,

based on kids

[−∞,2][3,3] [-∞,5]

=3
 =5

based on kids.

[ ∞,2][3,3] [ ∞,5]



Alpha-Beta Example (continued)

[3,3]
=3
 =+ 2 is returned

as node value

[2,2][−∞,2][3,3]

as node value.



Alpha-Beta Example (continued)

Max calculates the

[3,3]

Max calculates the 
same node value, and 
makes the same move!

[2,2][-∞,2][3,3]



Effectiveness of Alpha-Beta Search

• Worst-Case
– branches are ordered so that no pruning takes place. In this case 

alpha-beta gives no improvement over exhaustive searchalpha-beta gives no improvement over exhaustive search

• Best-Case
– each player’s best move is the left-most child (i.e., evaluated first)each player s best move is the left most child (i.e., evaluated first)
– in practice, performance is closer to best rather than worst-case
– E.g., sort moves by the remembered move values found last time.
– E.g., expand captures first, then threats, then forward moves, etc.E.g., expand captures first, then threats, then forward moves, etc.
– E.g., run Iterative Deepening search, sort by value last iteration.

• In practice often get O(b(d/2)) rather than O(bd) p g ( ) ( )
– this is the same as having a branching factor of sqrt(b), 

• (sqrt(b))d =  b(d/2),i.e., we effectively go from b to square root of b
– e.g., in chess go from b ~ 35  to  b ~ 6g , g

• this permits much deeper search in the same amount of time



Final Comments about Alpha-Beta Pruning

• Pruning does not affect final results

Entire subtrees can be pruned• Entire subtrees can be pruned.

• Good move ordering improves effectiveness of pruning

• Repeated states are again possible.
– Store them in memory = transposition table



Example

-which nodes can be pruned?

3 4 1 2 7 8 5 63 4 1 2 7 8 5



Second Example

-which nodes can be pruned?

6 5 8 7 2 1 3 46 5 8 7 2 1 3





Iterative (Progressive) Deepening

• In real games, there is usually a time limit T on making a move

• How do we take this into account?• How do we take this into account? 
• using alpha-beta we cannot use “partial” results with any 

confidence unless the full breadth of the tree has been searched
– So, we could be conservative and set a conservative depth-limitSo, we could be conservative and set a conservative depth limit 

which guarantees that we will find a move in time < T
• disadvantage is that we may finish early, could do more search

• In practice, iterative deepening search (IDS) is used
– IDS runs depth-first search with an increasing depth-limit
– when the clock runs out we use the solution found at the previous 

depth limit 



Heuristics and Game Tree Search: limited  horizon

• The Horizon Effect
– sometimes there’s a major “effect” (such as a piece being captured) 

which is just “below” the depth to which the tree has beenwhich is just below  the depth to which the tree has been 
expanded.

– the computer cannot see that this major event could happen 
because it has a “limited horizon”.

– there are heuristics to try to follow certain branches more deeply to 
detect such important events

– this helps to avoid catastrophic losses due to “short-sightedness”

• Heuristics for Tree Exploration
– it may be better to explore some branches more deeply in the 

ll tt d tiallotted time
– various heuristics exist to identify “promising” branches



Deeper Game Trees



Eliminate Redundant Nodes

• On average, each board position appears in the search tree 
approximately ~10150 / ~1040 ≈ 10100 times.
=> Vastly redundant search effort=> Vastly redundant search effort.

• Can’t remember all nodes (too many).
=> Can’t eliminate all redundant nodes=> Can t eliminate all redundant nodes.

• However, some short move sequences provably lead to a 
redundant position.redundant position.
– These can be deleted dynamically with no memory cost

• Example:Example:
1. P-QR4 P-QR4;  2. P-KR4 P-KR4
leads to the same position as
1 P-QR4 P-KR4; 2 P-KR4 P-QR41. P QR4 P KR4;  2. P KR4 P QR4









The State of Play

• Checkers: 
– Chinook ended 40-year-reign of human world champion Marion 

Tinsley in 1994. y

• Chess: 
– Deep Blue defeated human world champion Garry Kasparov in a 

i t h i 1997six-game match in 1997. 

• Othello: 
human champions refuse to compete against computers: they are– human champions refuse to compete against computers: they are 
too good.

• Go: 
– human champions refuse to compete against computers: they are 

too bad
– b > 300 (!)

• See (e.g.) http://www.cs.ualberta.ca/~games/ for more information





Deep Blue

• 1957: Herbert Simon
– “within 10 years a computer will beat the world chess champion”

• 1997: Deep Blue beats Kasparov

Parallel machine with 30 processors for “software” and 480 VLSI• Parallel machine with 30 processors for “software” and 480 VLSI 
processors for “hardware search”

• Searched 126 million nodes per second on average• Searched 126 million nodes per second on average
– Generated up to 30 billion positions per move
– Reached depth 14 routinely

• Uses iterative-deepening alpha-beta search with transpositioning
– Can explore beyond depth-limit for interesting moves



Summary
• Game playing is best modeled as a search problem

• Game trees represent alternate computer/opponent moves

• Evaluation functions estimate the quality of a given board configuration 
for the Max player. 

• Minimax is a procedure which chooses moves by assuming that the 
opponent will always choose the move which is best for them

• Alpha-Beta is a procedure which can prune large parts of the searchAlpha Beta is a procedure which can prune large parts of the search 
tree and allow search to go deeper 

• For many well-known games, computer algorithms based on heuristic 
search match or out-perform human world expertssearch match or out-perform human world experts.

• Reading:R&N Chapter 6 (3rd ed.), Chapter 5 (2nd ed.).
– For Thursday:  R&N, “Constraint Satisfaction Problems”

• Ch. 6 (3rd ed.); Ch 5 (2nd ed.)


