
Mid-term Review
Chapters 2-5, 13, 14

• Review Agents (2.1-2.3)
• Review State Space Search

• Problem Formulation (3.1, 3.3)
• Blind (Uninformed) Search (3.4)
• Heuristic Search (3.5)
• Local Search (4.1, 4.2)

• Review Adversarial (Game) Search (5.1-5.4)
• Review Probability & Bayesian Networks (13, 14.1-14.5)

• Please review your quizzes and old CS-171 tests

• At least one question from a prior quiz or old CS-171 test will
appear on the mid-term (and all other tests)

Review Agents
Chapter 2.1-2.3

• Agent definition (2.1)

• Rational Agent definition (2.2)
– Performance measure

• Task evironment definition (2.3)
– PEAS acronym

Agents
• An agent is anything that can be viewed as

perceiving its environment through sensors and
acting upon that environment through actuators

 Human agent:
 eyes, ears, and other organs for sensors;
 hands, legs, mouth, and other body parts for
 actuators

• Robotic agent:
 cameras and infrared range finders for sensors;

various motors for actuators

Agents and environments

• Percept: agent’s perceptual inputs at an
instant

• The agent function maps from percept
sequences to actions: [f: P* A]

• The agent program runs on the physical
architecture to produce f

• agent = architecture + program

• Rational Agent: For each possible percept sequence, a
rational agent should select an action that is expected to
maximize its performance measure, based on the
evidence provided by the percept sequence and
whatever built-in knowledge the agent has.

• Performance measure: An objective criterion for success

of an agent's behavior (“cost”, “reward”, “utility”)

• E.g., performance measure of a vacuum-cleaner agent
could be amount of dirt cleaned up, amount of time
taken, amount of electricity consumed, amount of noise
generated, etc.

Rational agents

Task Environment

• Before we design an intelligent agent, we
must specify its “task environment”:

 PEAS:

 Performance measure
 Environment
 Actuators
 Sensors

Environment types
• Fully observable (vs. partially observable): An agent's

sensors give it access to the complete state of the
environment at each point in time.

• Deterministic (vs. stochastic): The next state of the
environment is completely determined by the current state
and the action executed by the agent. (If the environment
is deterministic except for the actions of other agents, then
the environment is strategic)

• Episodic (vs. sequential): An agent’s action is divided into
atomic episodes. Decisions do not depend on previous
decisions/actions.

• Known (vs. unknown): An environment is considered to
be "known" if the agent understands the laws that govern
the environment's behavior.

Environment types
• Static (vs. dynamic): The environment is unchanged while

an agent is deliberating. (The environment is semidynamic
if the environment itself does not change with the passage
of time but the agent's performance score does)

• Discrete (vs. continuous): A limited number of distinct,
clearly defined percepts and actions.
– How do we represent or abstract or model the world?

• Single agent (vs. multi-agent): An agent operating by itself

in an environment. Does the other agent interfere with my
performance measure?

Review State Space Search
Chapters 3-4

• Problem Formulation (3.1, 3.3)
• Blind (Uninformed) Search (3.4)

• Depth-First, Breadth-First, Iterative Deepening
• Uniform-Cost, Bidirectional (if applicable)
• Time? Space? Complete? Optimal?

• Heuristic Search (3.5)
• A*, Greedy-Best-First

• Local Search (4.1, 4.2)
• Hill-climbing, Simulated Annealing, Genetic Algorithms
• Gradient descent

Problem Formulation
A problem is defined by five items:

 initial state, e.g., "at Arad“
 actions

– Actions(X) = set of actions available in State X
 transition model

– Result(S,A) = state resulting from doing action A in state S
 goal test, e.g., x = "at Bucharest”, Checkmate(x)
 path cost (additive, i.e., the sum of the step costs)

– c(x,a,y) = step cost of action a in state x to reach state y
– assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state

to a goal state

12

Vacuum world state space graph

• states? discrete: dirt and robot locations
• initial state? any
• actions? Left, Right, Suck
• transition model? as shown on graph
• goal test? no dirt at all locations
• path cost? 1 per action

13

Implementation: states vs. nodes
• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree
• A node contains info such as:

– state, parent node, action, path cost g(x), depth, etc.

• The Expand function creates new nodes, filling in the various
fields using the Actions(S) and Result(S,A)functions
associated with the problem.

14

Tree search vs. Graph search
Review Fig. 3.7, p. 77

• Failure to detect repeated states can turn a
linear problem into an exponential one!

• Test is often implemented as a hash table.

Solutions to Repeated States

• Graph search
– never generate a state generated before

• must keep track of all possible states (uses a lot of memory)
• e.g., 8-puzzle problem, we have 9! = 362,880 states
• approximation for DFS/DLS: only avoid states in its (limited) memory:

avoid infinite loops by checking path back to root.

– “visited?” test usually implemented as a hash table
15

S

B

C

S

B C

S C B S

State Space
Example of a Search Tree

faster, but memory inefficient

General tree search
Do not remember visited nodes

Goal test after pop

General graph search
Do remember visited nodes

Goal test after pop

Breadth-first graph search
function BRE ADT H-FIRST-SEARCH(problem) returns a solution, or failure

node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0 if
problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node) frontier ←
a FIFO queue with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the shallowest node in frontier */
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

if problem .GOAL -TEST(child .STAT E) then return SOL UT ION(child)
frontier ← INSE RT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

Goal test before push

Uniform cost graph search: sort by g
A* is identical but uses f=g+h

Greedy best-first is identical but uses h
function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0
frontier ← a priority queue ordered by PAT H-COST, with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the lowest-cost node in frontier */
 if problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node)
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

frontier ← INSE RT(child , frontier)
else if child .STAT E is in frontier with higher PAT H-COST then

replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an
extra check in case a shorter path to a frontier state is discovered. The data structure for frontier
needs to support efficient membership testing, so it should combine the capabilities of a priority
queue and a hash table.

Goal test after pop

Depth-limited search & IDS

Iterate over successors,
 call recursively on each.
Goal test at head of call.

Blind Search Strategies (3.4)

• Depth-first: Add successors to front of queue
• Breadth-first: Add successors to back of queue
• Uniform-cost: Sort queue by path cost g(n)
• Depth-limited: Depth-first, cut off at limit l
• Iterated-deepening: Depth-limited, increasing l
• Bidirectional: Breadth-first from goal, too.

• Review “Example hand-simulated search”
– Slides 29-38, Lecture on “Uninformed Search”

Search strategy evaluation
• A search strategy is defined by the order of node

expansion

• Strategies are evaluated along the following dimensions:
– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
– (UCS: C*: true cost to optimal goal; ε > 0: minimum step cost)

Summary of algorithms
Fig. 3.21, p. 91

Generally the preferred
uninformed search strategy

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deepening
DLS

Bidirectional
(if applicable)

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d]

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d]

There are a number of footnotes, caveats, and assumptions.
See Fig. 3.21, p. 91.
[a] complete if b is finite
[b] complete if step costs ≥ ε > 0
[c] optimal if step costs are all identical
 (also if path cost non-decreasing function of depth only)
[d] if both directions use breadth-first search
 (also if both directions use uniform-cost search with step costs ≥ ε > 0)

Summary
• Generate the search space by applying actions to the

initial state and all further resulting states.

• Problem: initial state, actions, transition model, goal
test, step/path cost

• Solution: sequence of actions to goal

• Tree-search (don’t remember visited nodes) vs.
 Graph-search (do remember them)

• Search strategy evaluation: b, d, m (UCS: C*, ε)
– Complete? Time? Space? Optimal?

Heuristic function (3.5)
 Heuristic:
 Definition: a commonsense rule (or set of rules) intended to

increase the probability of solving some problem
 “using rules of thumb to find answers”

 Heuristic function h(n)
 Estimate of (optimal) cost from n to goal
 Defined using only the state of node n
 h(n) = 0 if n is a goal node
 Example: straight line distance from n to Bucharest
Note that this is not the true state-space distance
 It is an estimate – actual state-space distance can be higher

 Provides problem-specific knowledge to the search algorithm

Greedy best-first search
• h(n) = estimate of cost from n to goal

– e.g., h(n) = straight-line distance from n to
Bucharest

• Greedy best-first search expands the node
that appears to be closest to goal.
– Sort queue by h(n)

• Not an optimal search strategy
– May perform well in practice

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Optimal Path

Greedy Best-first Search
With tree search, will become stuck in this loop

Order of node expansion: S A D S A D S A D. . . .
Path found: none Cost of path found: none .

B

D

G

S

A C

h=5

h=7

h=6

h=8 h=9

h=0

Properties of greedy best-first search

• Complete?
– Tree version can get stuck in loops.
– Graph version is complete in finite spaces.

• Time? O(bm)
– A good heuristic can give dramatic improvement

• Space? O(1) tree search, O(bm) graph search
– Graph search keeps all nodes in memory
– A good heuristic can give dramatic improvement

• Optimal? No
– E.g., Arad Sibiu Rimnicu Vilcea Pitesti Bucharest

is shorter!

A* search

• Idea: avoid paths that are already expensive
– Generally the preferred simple heuristic search
– Optimal if heuristic is:
 admissible (tree search)/consistent (graph search)

• Evaluation function f(n) = g(n) + h(n)
– g(n) = known path cost so far to node n.
– h(n) = estimate of (optimal) cost to goal from node n.
– f(n) = g(n)+h(n)
 = estimate of total cost to goal through node n.

• Priority queue sort function = f(n)

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next:
• Children:
• Expanded:
• Frontier: Arad/366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

• Next: Arad/366=0+366
• Children: Sibiu/393=140+253, Timisoara/447=118+329,

Zerind/449=75+374
• Expanded: Arad/366=0+366
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
366=0+366

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: Sibiu/393=140+253
• Children: Arad/646=280+366, Fagaras/415=239+176,

Oradea/671=291+380, RimnicuVilcea/413=220+193
• Expanded: Arad/366=0+366, Sibiu/393=140+253
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374, Arad/646=280+366,
Fagaras/415=239+176, Oradea/671=291+380,
RimnicuVilcea/413=220+193

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: RimnicuVilcea/413=220+193
• Children: Craiova/526=366+160, Pitesti/417=317+100,

Sibiu/553=300+253
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example
Note: The
search below
did not “back
track.” Rather,
both arms are
being pursued
in parallel on
the queue.

A* tree search example:
Simulated queue. City/f=g+h

• Next: Fagaras/415=239+176
• Children: Bucharest/450=450+0, Sibiu/591=338+253
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0, Sibiu/591=338+253

A* tree search example
Note: The
search below
did not “back
track.” Rather,
both arms are
being pursued
in parallel on
the queue.

A* tree search example:
Simulated queue. City/f=g+h

• Next: Pitesti/417=317+100
• Children: Bucharest/418=418+0, Craiova/615=455+160,

RimnicuVilcea/607=414+193
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176,
Pitesti/417=317+100

• Frontier: Arad/366=0+366, Sibiu/393=140+253,
Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0,
Sibiu/591=338+253, Bucharest/418=418+0,
Craiova/615=455+160, RimnicuVilcea/607=414+193

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: Bucharest/418=418+0
• Children: None; goal test succeeds.
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176,
Pitesti/417=317+100, Bucharest/418=418+0

• Frontier: Arad/366=0+366, Sibiu/393=140+253,
Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0,
Sibiu/591=338+253, Bucharest/418=418+0,
Craiova/615=455+160, RimnicuVilcea/607=414+193

Note that
the short
expensive
path stays
on the
queue.
The long
cheap
path is
found and
returned.

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Bucharest/
418=418+0

…
…

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Bucharest/
418=418+0 …

…

Arad/
366=0+366

Properties of A*

• Complete? Yes
 (unless there are infinitely many nodes with f ≤ f(G);
 can’t happen if step-cost ≥ ε > 0)
• Time/Space? Exponential O(bd)
 except if:
• Optimal? Yes
 (with: Tree-Search, admissible heuristic;
 Graph-Search, consistent heuristic)
• Optimally Efficient? Yes
 (no optimal algorithm with same heuristic is guaranteed to expand

fewer nodes)

* *| () () | (log ())h n h n O h n− ≤

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal

state from n.
• An admissible heuristic never overestimates the cost to

reach the goal, i.e., it is optimistic
• Example: hSLD(n) (never overestimates the actual road

distance)
• Theorem: If h(n) is admissible, A* using TREE-SEARCH is

optimal

Consistent heuristics
(consistent => admissible)

• A heuristic is consistent if for every node n, every successor n' of n
generated by any action a,

 h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n’) = g(n’) + h(n’) (by def.)
 = g(n) + c(n,a,n') + h(n’) (g(n’)=g(n)+c(n.a.n’))
 ≥ g(n) + h(n) = f(n) (consistency)
f(n’) ≥ f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem:
 If h(n) is consistent, A* using GRAPH-SEARCH is optimal

It’s the triangle
inequality !

keeps all checked nodes in
memory to avoid repeated states

Optimality of A* (proof)
Tree Search, where h(n) is admissible

• Suppose some suboptimal goal G2 has been generated and is in the
frontier. Let n be an unexpanded node in the frontier such that n is on a
shortest path to an optimal goal G.

• f(G2) = g(G2) since h(G2) = 0
• f(G) = g(G) since h(G) = 0
• g(G2) > g(G) since G2 is suboptimal

• f(G2) > f(G) from above, with h=0
• h(n) ≤ h*(n) since h is admissible (under-estimate)
• g(n) + h(n) ≤ g(n) + h*(n) from above
• f(n) ≤ f(G) since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G)
• f(n) < f(G2) from above

We want to prove:
 f(n) < f(G2)
(then A* will expand n before G2)

Dominance

• IF h2(n) ≥ h1(n) for all n
 THEN h2 dominates h1

– h2 is almost always better for search than h1
– h2 guarantees to expand no more nodes than does h1
– h2 almost always expands fewer nodes than does h1
– Not useful unless both h1 & h2 are admissible/consistent

• Typical 8-puzzle search costs
 (average number of nodes expanded):

– d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

– d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

Local search algorithms (4.1, 4.2)

• In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-queens
• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it.
• Very memory efficient (only remember current state)

Random Restart Wrapper
• These are stochastic local search methods

– Different solution for each trial and initial state

• Almost every trial hits difficulties (see below)
– Most trials will not yield a good result (sadly)

• Many random restarts improve your chances

– Many “shots at goal” may, finally, get a good one

• Restart a random initial state; many times
– Report the best result found; across many trials

Random Restart Wrapper
 BestResultFoundSoFar <- infinitely bad;

 UNTIL (you are tired of doing it) DO {

 Result <- (Local search from random initial state);

 IF (Result is better than BestResultFoundSoFar)

 THEN (Set BestResultFoundSoFar to Result);

}

RETURN BestResultFoundSoFar;

Typically, “you are tired of doing it” means that some resource limit is
exceeded, e.g., number of iterations, wall clock time, CPU time, etc. It
may also mean that Result improvements are small and infrequent,
e.g., less than 0.1% Result improvement in the last week of run time.

Local Search Difficulties

• Problems: depending on state, can get stuck in local maxima
– Many other problems also endanger your success!!

These difficulties apply to ALL local search algorithms, and become MUCH more
difficult as the dimensionality of the search space increases to high dimensions.

Local Search Difficulties

• Ridge problem: Every neighbor appears to be downhill
– But the search space has an uphill!! (worse in high dimensions)

These difficulties apply to ALL local search algorithms, and become MUCH more
difficult as the dimensionality of the search space increases to high dimensions.

Ridge:
Fold a piece of
paper and hold
it tilted up at an
unfavorable
angle to every
possible search
space step.
Every step
leads downhill;
but the ridge
leads uphill.

Hill-climbing search

• "Like climbing Everest in thick fog with
amnesia"

•

Simulated annealing search

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

•

Improvement: Track the
BestResultFoundSoFar.
Here, this slide follows
Fig. 4.5 of the textbook,
which is simplified.

P(accepting a worse successor)
Decreases as Temperature T decreases

Increases as | ∆ E | decreases
(Sometimes step size also decreases with T)

Tem
perature

e^(∆E / T)
Temperature T

High Low

|∆E |
High Medium Low

Low High Medium

Your “random restart
wrapper” starts here.

Goal: “Ratchet” up a jagged slope
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)

A
Value=42

B
Value=41

C
Value=45

D
Value=44

E
Value=48

F
Value=47

G
Value=51

Va
lu

e

Arbitrary (Fictitious) Search Space Coordinate

You want to get
here. HOW??

This is an
illustrative
cartoon.

E
Value=48

∆E(ED)=-4
∆E(EF)=-1

P(ED) ≈.018
P(EF)≈.37

C
Value=45

∆E(CB)=-4
∆E(CD)=-1
P(CB) ≈.018
P(CD)≈.37

B
Value=41
∆E(BA)=1
∆E(BC)=4
P(BA)=1
P(BC)=1

Goal: “Ratchet” up a jagged slope
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)

A
Value=42

∆E(AB)=-1
P(AB) ≈.37

D
Value=44
∆E(DC)=1
∆E(DE)=4
P(DC)=1
P(DE)=1

F
Value=47
∆E(FE)=1
∆E(FG)=4
P(FE)=1
P(FG)=1

G
Value=51

∆E(GF)=-4
P(GF) ≈.018

x -1 -4

ex ≈.37 ≈.018

Your “random
restart wrapper”
starts here.

From A you will accept a move to B with P(AB) ≈.37.
From B you are equally likely to go to A or to C.
From C you are ≈20X more likely to go to D than to B.
From D you are equally likely to go to C or to E.
From E you are ≈20X more likely to go to F than to D.
From F you are equally likely to go to E or to G.
Remember best point you ever found (G or neighbor?).

This is an
illustrative
cartoon.

Genetic algorithms (Darwin!!)
• A state = a string over a finite alphabet (an individual)

• Start with k randomly generated states (a population)

• Fitness function (= our heuristic objective function).

– Higher fitness values for better states.

• Select individuals for next generation based on fitness
– P(individual in next gen.) = individual fitness/Σ population fitness

• Crossover fit parents to yield next generation (off-spring)

• Mutate the offspring randomly with some low probability

fitness =
#non-attacking
queens

• Fitness function: #non-attacking queen pairs

– min = 0, max = 8 × 7/2 = 28

• Σ_i fitness_i = 24+23+20+11 = 78
• P(child_1 in next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31%
• P(child_2 in next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc

probability of being
in next generation =
fitness/(Σ_i fitness_i)

How to convert a
fitness value into a
probability of being in
the next generation.

Review Adversarial (Game) Search
Chapter 5.1-5.4

• Minimax Search with Perfect Decisions (5.2)
– Impractical in most cases, but theoretical basis for analysis

• Minimax Search with Cut-off (5.4)
– Replace terminal leaf utility by heuristic evaluation function

• Alpha-Beta Pruning (5.3)
– The fact of the adversary leads to an advantage in search!

• Practical Considerations (5.4)
– Redundant path elimination, look-up tables, etc.

Games as Search
• Two players: MAX and MIN
• MAX moves first and they take turns until the game is over

– Winner gets reward, loser gets penalty.
– “Zero sum” means the sum of the reward and the penalty is a constant.

• Formal definition as a search problem:

– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess.
– Player(s): Defines which player has the move in a state.
– Actions(s): Returns the set of legal moves in a state.
– Result(s,a): Transition model defines the result of a move.
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.)
– Terminal-Test(s): Is the game finished? True if finished, false otherwise.
– Utility function(s,p): Gives numerical value of terminal state s for player p.

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe.
• E.g., win (+1), lose (0), and draw (1/2) in chess.

• MAX uses search tree to determine “best” next move.

An optimal procedure:
The Min-Max method

Will find the optimal strategy and best next move for Max:

• 1. Generate the whole game tree, down to the leaves.

• 2. Apply utility (payoff) function to each leaf.

• 3. Back-up values from leaves through branch nodes:

– a Max node computes the Max of its child values
– a Min node computes the Min of its child values

• 4. At root: choose move leading to the child of highest value.

Two-Ply Game Tree

Two-Ply Game Tree

The minimax decision

Minimax maximizes the utility of
the worst-case outcome for Max

Pseudocode for Minimax
Algorithm

function MINIMAX-DECISION(state) returns an action
 inputs: state, current state in game
return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a))

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← +∞
 for a in ACTIONS(state) do
 v ← MIN(v,MAX-VALUE(Result(state,a)))
 return v

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← −∞
 for a in ACTIONS(state) do
 v ← MAX(v,MIN-VALUE(Result(state,a)))
 return v

Properties of minimax
• Complete?

– Yes (if tree is finite).

• Optimal?
– Yes (against an optimal opponent).
– Can it be beaten by an opponent playing sub-optimally?

• No. (Why not?)

• Time complexity?
– O(bm)

• Space complexity?

– O(bm) (depth-first search, generate all actions at once)
– O(m) (backtracking search, generate actions one at a time)

Static (Heuristic) Evaluation Functions

• An Evaluation Function:
– Estimates how good the current board configuration is for a player.
– Typically, evaluate how good it is for the player, how good it is for

the opponent, then subtract the opponent’s score from the
player’s.

– Othello: Number of white pieces - Number of black pieces
– Chess: Value of all white pieces - Value of all black pieces

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

• If the board evaluation is X for a player, it’s -X for the opponent

– “Zero-sum game”

General alpha-beta pruning
• Consider a node n in the tree ---

• If player has a better choice at:

– Parent node of n
– Or any choice point further

up

• Then n will never be reached in
play.

• Hence, when that much is
known about n, it can be
pruned.

Alpha-beta Algorithm
• Depth first search

– only considers nodes along a single path from root at any time

 α = highest-value choice found at any choice point of path for MAX
 (initially, α = −infinity)
 β = lowest-value choice found at any choice point of path for MIN
 (initially, β = +infinity)

• Pass current values of α and β down to child nodes during search.
• Update values of α and β during search:

– MAX updates α at MAX nodes
– MIN updates β at MIN nodes

• Prune remaining branches at a node when α ≥ β

Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
 inputs: state, current state in game
 v←MAX-VALUE(state, - ∞ , +∞)
 return the action in ACTIONS(state) with value v

function MAX-VALUE(state,α , β) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← - ∞
 for a in ACTIONS(state) do
 v ← MAX(v, MIN-VALUE(Result(s,a), α , β))
 if v ≥ β then return v
 α ← MAX(α ,v)
 return v

(MIN-VALUE is defined analogously)

When to Prune?

• Prune whenever α ≥ β.

– Prune below a Max node whose alpha value becomes greater than or
equal to the beta value of its ancestors.

• Max nodes update alpha based on children’s returned values.

– Prune below a Min node whose beta value becomes less than or equal
to the alpha value of its ancestors.

• Min nodes update beta based on children’s returned values.

α/β Pruning vs. Returned Node Value

• Some students are confused about the use of
α/β pruning vs. the returned value of a node

• α/β are used ONLY FOR PRUNING
– α/β have no effect on anything other than pruning
– IF (α >= β) THEN prune & return current node value

• Returned node value = “best” child seen so far
– Maximum child value seen so far for MAX nodes
– Minimum child value seen so far for MIN nodes
– If you prune, return to parent “best” child so far

• Returned node value is received by parent

Alpha-Beta Example Revisited

α, β, initial values
Do DF-search until first leaf

α=−∞
β =+∞

α=−∞
β =+∞

α, β, passed to kids

Review Detailed Example of Alpha-Beta
Pruning in lecture slides.

Alpha-Beta Example (continued)

MIN updates β, based on kids

α=−∞
β =+∞

α=−∞
β =3

Alpha-Beta Example (continued)

α=−∞
β =3

MIN updates β, based on kids.
No change.

α=−∞
β =+∞

Alpha-Beta Example (continued)

MAX updates α, based on kids.
α=3
β =+∞

3 is returned
as node value.

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =2

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =2

α ≥ β,
so prune.

α=3
β =+∞

Alpha-Beta Example (continued)

2 is returned
as node value.

MAX updates α, based on kids.
No change. α=3

β =+∞

Alpha-Beta Example (continued)

,
α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

,

α=3
β =14

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

,

α=3
β =5

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =+∞ 2 is returned

as node value.

2

Alpha-Beta Example (continued)

Max calculates the same
node value, and makes the
same move!

2

Review Detailed Example of Alpha-Beta
Pruning in lecture slides.

Review Probability (Chapter 13)
You will be expected to know

• Basic probability notation/definitions:
– Probability model, unconditional/prior and

conditional/posterior probabilities, factored
representation (= variable/value pairs), random variable,
(joint) probability distribution, probability density function
(pdf), marginal probability, (conditional) independence,
normalization, etc.

• Basic probability formulae:
– Probability axioms, sum rule, product rule, Bayes’ rule.

• How to use Bayes’ rule:
– Naïve Bayes model (naïve Bayes classifier)

Syntax

•Basic element: random variable
•Similar to propositional logic: possible worlds defined by assignment of

values to random variables.

•Booleanrandom variables

 e.g., Cavity (= do I have a cavity?)
•Discreterandom variables

 e.g., Weather is one of
<sunny,rainy,cloudy,snow>

•Domain values must be exhaustive and mutually exclusive

•Elementary proposition is an assignment of a value to a random variable:
 e.g., Weather = sunny; Cavity = false(abbreviated as ¬cavity)

•Complex propositions formed from elementary propositions and standard

logical connectives :
 e.g., Weather = sunny ∨ Cavity = false

Probability
• P(a) is the probability of proposition “a”

– e.g., P(it will rain in London tomorrow)
– The proposition a is actually true or false in the real-world

• Probability Axioms:
– 0 ≤ P(a) ≤ 1
– P(NOT(a)) = 1 – P(a) => ΣA P(A) = 1
– P(true) = 1
– P(false) = 0
– P(A OR B) = P(A) + P(B) – P(A AND B)

• Any agent that holds degrees of beliefs that contradict these

axioms will act irrationally in some cases

• Rational agents cannot violate probability theory.
─ Acting otherwise results in irrational behavior.

Conditional Probability
• P(a|b) is the conditional probability of proposition a,

conditioned on knowing that b is true,
– E.g., P(rain in London tomorrow | raining in London today)
– P(a|b) is a “posterior” or conditional probability
– The updated probability that a is true, now that we know b
– P(a|b) = P(a ∧ b) / P(b)
– Syntax: P(a | b) is the probability of a given that b is true

• a and b can be any propositional sentences
• e.g., p(John wins OR Mary wins | Bob wins AND Jack loses)

• P(a|b) obeys the same rules as probabilities,
– E.g., P(a | b) + P(NOT(a) | b) = 1
– All probabilities in effect are conditional probabilities

• E.g., P(a) = P(a | our background knowledge)

Concepts of Probability
• Unconditional Probability

─ P(a), the probability of “a” being true, or P(a=True)
─ Does not depend on anything else to be true (unconditional)
─ Represents the probability prior to further information that may adjust it

(prior)

• Conditional Probability
─ P(a|b), the probability of “a” being true, given that “b” is true
─ Relies on “b” = true (conditional)
─ Represents the prior probability adjusted based upon new information “b”

(posterior)
─ Can be generalized to more than 2 random variables:

 e.g. P(a|b, c, d)

• Joint Probability
─ P(a, b) = P(a ˄ b), the probability of “a” and “b” both being true
─ Can be generalized to more than 2 random variables:

 e.g. P(a, b, c, d)

Basic Probability Relationships
• P(A) + P(¬ A) = 1

– Implies that P(¬ A) = 1 ─ P(A)

• P(A, B) = P(A ˄ B) = P(A) + P(B) ─ P(A ˅ B)
– Implies that P(A ˅ B) = P(A) + P(B) ─ P(A ˄ B)

• P(A | B) = P(A, B) / P(B)
– Conditional probability; “Probability of A given B”

• P(A, B) = P(A | B) P(B)
– Product Rule (Factoring); applies to any number of variables
– P(a, b, c,…z) = P(a | b, c,…z) P(b | c,...z) P(c|...z)...P(z)

• P(A) = ΣB,C P(A, B, C) = Σb∈B,c∈C P(A, b, c)
– Sum Rule (Marginal Probabilities); for any number of variables
– P(A, D) = ΣB ΣC P(A, B, C, D) = Σb∈B Σc∈C P(A, b, c, D)

• P(B | A) = P(A | B) P(B) / P(A)
– Bayes’ Rule; for any number of variables

You need to
know these !

Summary of Probability Rules
• Product Rule:

– P(a, b) = P(a|b) P(b) = P(b|a) P(a)
– Probability of “a” and “b” occurring is the same as probability of “a” occurring

given “b” is true, times the probability of “b” occurring.
 e.g., P(rain, cloudy) = P(rain | cloudy) * P(cloudy)

• Sum Rule: (AKA Law of Total Probability)

– P(a) = Σb P(a, b) = Σb P(a|b) P(b), where B is any random variable
– Probability of “a” occurring is the same as the sum of all joint probabilities

including the event, provided the joint probabilities represent all possible
events.

– Can be used to “marginalize” out other variables from probabilities, resulting
in prior probabilities also being called marginal probabilities.
 e.g., P(rain) = ΣWindspeed P(rain, Windspeed)
 where Windspeed = {0-10mph, 10-20mph, 20-30mph, etc.}

• Bayes’ Rule:

- P(b|a) = P(a|b) P(b) / P(a)
- Acquired from rearranging the product rule.
- Allows conversion between conditionals, from P(a|b) to P(b|a).

 e.g., b = disease, a = symptoms
 More natural to encode knowledge as P(a|b) than as P(b|a).

Full Joint Distribution

• We can fully specify a probability space by
constructing a full joint distribution:
– A full joint distribution contains a probability for

every possible combination of variable values.
– E.g., P(J=f, M=t, A=t, B=t, E=f)

• From a full joint distribution, the product rule,
sum rule, and Bayes’ rule can create any
desired joint and conditional probabilities.

Computing with Probabilities: Law of Total Probability

Law of Total Probability (aka “summing out” or marginalization)
 P(a) = Σb P(a, b)
 = Σb P(a | b) P(b) where B is any random variable

Why is this useful?

 Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any
“marginal” probability (e.g., P(b)) by summing out the other
variables, e.g.,

 P(b) = Σa Σc Σd P(a, b, c, d)

We can compute any conditional probability given a joint distribution, e.g.,

 P(c | b) = Σa Σd P(a, c, d | b)
 = Σa Σd P(a, c, d, b) / P(b)
 where P(b) can be computed as above

Computing with Probabilities:
The Chain Rule or Factoring

We can always write
 P(a, b, c, … z) = P(a | b, c, …. z) P(b, c, … z)
 (by definition of joint probability)

Repeatedly applying this idea, we can write
 P(a, b, c, … z) = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z)

This factorization holds for any ordering of the variables

This is the chain rule for probabilities

Independence
• Formal Definition:

– 2 random variables A and B are independent iff:
 P(a, b) = P(a) P(b), for all values a, b

• Informal Definition:
– 2 random variables A and B are independent iff:
 P(a | b) = P(a) OR P(b | a) = P(b), for all values a, b
– P(a | b) = P(a) tells us that knowing b provides no change in our probability

for a, and thus b contains no information about a.

• Also known as marginal independence, as all other variables have
been marginalized out.

• In practice true independence is very rare:

– “butterfly in China” effect
– Conditional independence is much more common and useful

Conditional Independence
• Formal Definition:

– 2 random variables A and B are conditionally independent given C iff:
 P(a, b|c) = P(a|c) P(b|c), for all values a, b, c

• Informal Definition:
– 2 random variables A and B are conditionally independent given C iff:
 P(a|b, c) = P(a|c) OR P(b|a, c) = P(b|c), for all values a, b, c
– P(a|b, c) = P(a|c) tells us that learning about b, given that we already know c,

provides no change in our probability for a, and thus b contains no
information about a beyond what c provides.

• Naïve Bayes Model:
– Often a single variable can directly influence a number of other variables, all

of which are conditionally independent, given the single variable.
– E.g., k different symptom variables X1, X2, … Xk, and C = disease, reducing to:
 P(X1, X2,…. XK | C) = P(C) Π P(Xi | C)

Examples of Conditional Independence
• H=Heat, S=Smoke, F=Fire

– P(H, S | F) = P(H | F) P(S | F)
– P(S | F, S) = P(S | F)
– If we know there is/is not a fire, observing heat tells us no more

information about smoke

• F=Fever, R=RedSpots, M=Measles
– P(F, R | M) = P(F | M) P(R | M)
– P(R | M, F) = P(R | M)
– If we know we do/don’t have measles, observing fever tells us no

more information about red spots

• C=SharpClaws, F=SharpFangs, S=Species
– P(C, F | S) = P(C | S) P(F | S)
– P(F | S, C) = P(F | S)
– If we know the species, observing sharp claws tells us no more

information about sharp fangs

Review Bayesian Networks (Chapter 14.1-5)
• You will be expected to know:

• Basic concepts and vocabulary of Bayesian networks.

– Nodes represent random variables.
– Directed arcs represent (informally) direct influences.
– Conditional probability tables, P(Xi | Parents(Xi)).

• Given a Bayesian network:

– Write down the full joint distribution it represents.
– Inference by Variable Elimination

• Given a full joint distribution in factored form:

– Draw the Bayesian network that represents it.

• Given a variable ordering and background assertions of conditional
independence among the variables:
– Write down the factored form of the full joint distribution, as simplified by the

conditional independence assertions.

Bayesian Networks
• Represent dependence/independence via a directed graph

– Nodes = random variables
– Edges = direct dependence

• Structure of the graph Conditional independence

• Recall the chain rule of repeated conditioning:

• Requires that graph is acyclic (no directed cycles)
• 2 components to a Bayesian network

– The graph structure (conditional independence assumptions)
– The numerical probabilities (of each variable given its parents)

The full joint distribution The graph-structured approximation

• A Bayesian network specifies a joint distribution in a structured form:

• Dependence/independence represented via a directed graph:

− Node = random variable
− Directed Edge = conditional dependence
− Absence of Edge = conditional independence

•Allows concise view of joint distribution relationships:

− Graph nodes and edges show conditional relationships between variables.
− Tables provide probability data.

Bayesian Network

A B

C

p(A,B,C) = p(C|A,B)p(A|B)p(B)
 = p(C|A,B)p(A)p(B)

Full factorization

After applying
conditional
independence
from the graph

Examples of 3-way Bayesian Networks

A B

C

Independent Causes:
p(A,B,C) = p(C|A,B)p(A)p(B)

“Explaining away” effect:
Given C, observing A makes B less likely
e.g., earthquake/burglary/alarm example

A and B are (marginally) independent
but become dependent once C is known

You heard alarm, and observe Earthquake
…. It explains away burglary

Nodes: Random Variables
 A, B, C
Edges: P(Xi | Parents) Directed edge from parent nodes to Xi
 A C
 B C

Independent Causes
A Earthquake
B Burglary
C Alarm

Examples of 3-way Bayesian Networks

A C B Marginal Independence:
p(A,B,C) = p(A) p(B) p(C)

Nodes: Random Variables
 A, B, C
Edges: P(Xi | Parents) Directed edge from parent nodes to Xi
 No Edge!

Extended example of 3-way Bayesian Networks

A

C B

Conditionally independent effects:
p(A,B,C) = p(B|A)p(C|A)p(A)

B and C are conditionally independent
Given A

“Where there’s Smoke, there’s Fire.”

If we see Smoke, we can infer Fire.

If we see Smoke, observing Heat tells
us very little additional information.

Common Cause
A : Fire
B: Heat
C: Smoke

Examples of 3-way Bayesian Networks

A C B

Markov dependence:
p(A,B,C) = p(C|B) p(B|A)p(A)

A affects B and B affects C
Given B, A and C are independent

e.g.
If it rains today, it will rain tomorrow with 90%

On Wed morning…
If you know it rained yesterday,
it doesn’t matter whether it rained on Mon

Nodes: Random Variables
 A, B, C
Edges: P(Xi | Parents) Directed edge from parent nodes to Xi
 A B
 B C

Markov Dependence
A Rain on Mon
B Ran on Tue
C Rain on Wed

Naïve Bayes Model (section 20.2.2 R&N

3rd ed.)

X1 X2 X3

C

Xn

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about
computing the probability of a class from input attributes of an example.

Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally
equivalent expression that involves only P(C) and P(X1,…Xn | C).
Then assume that feature values are conditionally independent given class,
which allows us to turn P(X1,…Xn | C) into Πi P(Xi | C).

We estimate P(C) easily from the frequency with which each class appears
within our training data, and we estimate P(Xi | C) easily from the frequency
with which each Xi appears in each class C within our training data.

Naïve Bayes Model (section 20.2.2 R&N

3rd ed.)

X1 X2 X3

C

Xn

Bayes Rule: P(C | X1,…Xn) is proportional to P (C) Πi P(Xi | C)
[note: denominator P(X1,…Xn) is constant for all classes, may be ignored.]

Features Xi are conditionally independent given the class variable C

• choose the class value ci with the highest P(ci | x1,…, xn)
• simple to implement, often works very well
• e.g., spam email classification: X’s = counts of words in emails

Conditional probabilities P(Xi | C) can easily be estimated from labeled date

• Problem: Need to avoid zeroes, e.g., from limited training data
• Solutions: Pseudo-counts, beta[a,b] distribution, etc.

Naïve Bayes Model (2)
 P(C | X1,…Xn) = α P (C) Π i P(Xi | C)

Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data

P(C = cj) ≈ #(Examples with class label C = cj) / #(Examples)

P(Xi = xik | C = cj)
 ≈ #(Examples with attribute value Xi = xik and class label C = cj)
 / #(Examples with class label C = cj)

Usually easiest to work with logs
 log [P(C | X1,…Xn)]
 = log α + log P (C) + Σ log P(Xi | C)

DANGER: What if ZERO examples with value Xi = xik and class label C = cj ?
An unseen example with value Xi = xik will NEVER predict class label C = cj !

Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc.
Theoretical solutions: Bayesian inference, beta distribution, etc.

Bigger Example
• Consider the following 5 binary variables:

– B = a burglary occurs at your house
– E = an earthquake occurs at your house
– A = the alarm goes off
– J = John calls to report the alarm
– M = Mary calls to report the alarm

• Sample Query: What is P(B|M, J) ?
• Using full joint distribution to answer this question requires

– 25 - 1= 31 parameters

• Can we use prior domain knowledge to come up with a
Bayesian network that requires fewer probabilities?

Constructing a Bayesian Network: Step 1
• Order the variables in terms of influence (may be a partial

order), e.g., {E, B} -> {A} -> {J, M}

• P(J, M, A, E, B) = P(J, M | A, E, B) P(A| E, B) P(E, B)

 ≈ P(J, M | A) P(A| E, B) P(E) P(B)

 ≈ P(J | A) P(M | A) P(A| E, B) P(E) P(B)

 These conditional independence assumptions are reflected in

the graph structure of the Bayesian network

Constructing this Bayesian Network: Step 2

• P(J, M, A, E, B) =
 P(J | A) P(M | A) P(A | E, B) P(E) P(B)

• There are 3 conditional probability tables (CPDs) to be determined:

 P(J | A), P(M | A), P(A | E, B)
– Requiring 2 + 2 + 4 = 8 probabilities

• And 2 marginal probabilities P(E), P(B) -> 2 more probabilities

• Where do these probabilities come from?
– Expert knowledge
– From data (relative frequency estimates)
– Or a combination of both - see discussion in Section 20.1 and 20.2 (optional)

The Resulting Bayesian Network

The Bayesian Network from a
different Variable Ordering

Computing Probabilities from a
Bayesian Network

P(B)
.001

B E P(A)
t t .95
t f .94
f t .29
f f .001

P(E)
.002

A P(J)
t .90
f .05

A P(M)
t .70
f .01

B E

A

M J

(Alarm)

(Earthquake) (Burglary)

(John calls) (Mary calls)

Shown below is the Bayesian network for the Burglar Alarm problem, i.e.,
 P(J,M,A,B,E) = P(J | A) P(M | A) P(A | B, E) P(B) P(E).

Suppose we wish to compute P(J=f ∧ M=t ∧ A=t ∧ B=t ∧ E=f):

P(J=f ∧ M=t ∧ A=t ∧ B=t ∧ E=f)

= P(J=f | A=t) * P(M=t | A=t) * P(A=t | B=t ∧ E=f) * P(B=t) * P(
E=f)

 = .10 * .70 * .94 * .001 * .998

Note: P(E=f) = [1 ─ P(E=t)] = [1 ─ .002)] = .998
 P(J=f | A=t) = [1 ─ P(J=t | A=t)] = .10

Inference in Bayesian Networks
Simple Example

A B

C

D

}
}
}

Query Variables A, B

Hidden Variable C

Evidence Variable D

P(A)
.05
Disease1

P(B)
.02
Disease2

A B P(C|A,B)
 t t .95
 t f .90
 f t .90
 f f .005
TempReg

C P(D|C)
 t .95
 f .002
Fever

Note: Not an anatomically correct model of how diseases cause fever!

Suppose that two different diseases influence some imaginary internal body
temperature regulator, which in turn influences whether fever is present.

(A=True, B=False | D=True) : Probability of getting Disease1 when we observe Fever

Inference in Bayesian Networks

• X = { X1, X2, …, Xk } = query variables of interest
• E = { E1, …, El } = evidence variables that are observed
• Y = { Y1, …, Ym } = hidden variables (nonevidence, nonquery)

• What is the posterior distribution of X, given E?
– P(X | e) = α Σ y P(X, y, e)

• What is the most likely assignment of values to X, given E?
– argmax x P(x | e) = argmax x Σ y P(x, y, e)

Normalizing constant α = Σx Σ y P(X, y, e)

A B

C

D

What is the posterior conditional
distribution of our query variables,
given that fever was observed?

P(A,B|d) = α Σ c P(A,B,c,d)
 = α Σ c P(A)P(B)P(c|A,B)P(d|c)
 = α P(A)P(B) Σ c P(c|A,B)P(d|c)

P(A)
.05
Disease1

P(B)
.02
Disease2

A B P(C|A,B)
 t t .95
 t f .90
 f t .90
 f f .005
TempReg

C P(D|C)
 t .95
 f .002
Fever

P(a,b|d) = α P(a)P(b) Σ c P(c|a,b)P(d|c) = α P(a)P(b){ P(c|a,b)P(d|c)+P(¬c|a,b)P(d|¬c) }
 = α .05x.02x{.95x.95+.05x.002} ≈ α .000903 ≈ .014
P(¬a,b|d) = α P(¬a)P(b) Σ c P(c|¬a,b)P(d|c) = α P(¬a)P(b){ P(c|¬a,b)P(d|c)+P(¬c|¬a,b)P(d|¬c) }
 = α .95x.02x{.90x.95+.10x.002} ≈ α .0162 ≈ .248
P(a,¬b|d) = α P(a)P(¬b) Σ c P(c|a,¬b)P(d|c) = α P(a)P(¬b){ P(c|a,¬b)P(d|c)+P(¬c|a,¬b)P(d|¬c) }
 = α .05x.98x{.90x.95+.10x.002} ≈ α .0419 ≈ .642
P(¬a,¬b|d) = α P(¬a)P(¬b) Σ c P(c|¬a,¬b)P(d|c) = α P(¬a)P(¬b){ P(c|¬a,¬b)P(d|c)+P(¬c|¬a,¬b)P(d|¬c) }
 = α .95x.98x{.005x.95+.995x.002} ≈ α .00627 ≈ .096
α ≈ 1 / (.000903+.0162+.0419+.00627) ≈ 1 / .06527 ≈ 15.32 [Note: α = normalization constant, p. 493]

Inference by Variable Elimination

Mid-term Review
Chapters 2-5, 13, 14

• Review Agents (2.1-2.3)
• Review State Space Search

• Problem Formulation (3.1, 3.3)
• Blind (Uninformed) Search (3.4)
• Heuristic Search (3.5)
• Local Search (4.1, 4.2)

• Review Adversarial (Game) Search (5.1-5.4)
• Review Probability & Bayesian Networks (13, 14.1-14.5)

• Please review your quizzes and old CS-171 tests

• At least one question from a prior quiz or old CS-171 test will
appear on the mid-term (and all other tests)

	Mid-term Review�Chapters 2-5, 13, 14
	Review Agents�Chapter 2.1-2.3
	Agents
	Agents and environments
	Rational agents
	Task Environment
	Environment types
	Environment types
	Review State Space Search�Chapters 3-4
	Problem Formulation
	Vacuum world state space graph
	Implementation: states vs. nodes
	Tree search vs. Graph search�Review Fig. 3.7, p. 77
	Solutions to Repeated States
	General tree search�Do not remember visited nodes
	General graph search�Do remember visited nodes
	Breadth-first graph search
	Uniform cost graph search: sort by g�A* is identical but uses f=g+h�Greedy best-first is identical but uses h
	Depth-limited search & IDS
	Blind Search Strategies (3.4)
	Search strategy evaluation
	Summary of algorithms�Fig. 3.21, p. 91
	Summary
	Heuristic function (3.5)
	Greedy best-first search
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Optimal Path
	Greedy Best-first Search�With tree search, will become stuck in this loop
	Properties of greedy best-first search
	A* search
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	Properties of A*
	Admissible heuristics
	Consistent heuristics�(consistent => admissible)
	Optimality of A* (proof)�Tree Search, where h(n) is admissible
	Dominance
	Local search algorithms (4.1, 4.2)
	Random Restart Wrapper
	Random Restart Wrapper
	Local Search Difficulties
	Local Search Difficulties
	Hill-climbing search
	Simulated annealing search
	P(accepting a worse successor) �Decreases as Temperature T decreases�Increases as | E | decreases�(Sometimes step size also decreases with T)
	Goal: “Ratchet” up a jagged slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Goal: “Ratchet” up a jagged slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Genetic algorithms (Darwin!!)
	Slide Number 75
	Review Adversarial (Game) Search�Chapter 5.1-5.4
	Games as Search
	An optimal procedure:�The Min-Max method
	Two-Ply Game Tree
	Two-Ply Game Tree
	Pseudocode for Minimax Algorithm
	Properties of minimax
	Slide Number 83
	Static (Heuristic) Evaluation Functions
	Slide Number 85
	General alpha-beta pruning
	Alpha-beta Algorithm
	Pseudocode for Alpha-Beta Algorithm
	When to Prune?
	α/β Pruning vs. Returned Node Value
	Alpha-Beta Example Revisited
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Review Probability (Chapter 13)�You will be expected to know
	Syntax
	Probability
	Conditional Probability
	Concepts of Probability
	Basic Probability Relationships
	Summary of Probability Rules
	Full Joint Distribution
	Computing with Probabilities: Law of Total Probability
	Computing with Probabilities:�The Chain Rule or Factoring
	Independence
	Conditional Independence
	Examples of Conditional Independence
	Review Bayesian Networks (Chapter 14.1-5)
	Bayesian Networks
	Bayesian Network
	Examples of 3-way Bayesian Networks
	Examples of 3-way Bayesian Networks
	Extended example of 3-way Bayesian Networks
	Examples of 3-way Bayesian Networks
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (2)
	Bigger Example
	Constructing a Bayesian Network: Step 1
	Constructing this Bayesian Network: Step 2
	The Resulting Bayesian Network
	The Bayesian Network from a different Variable Ordering
	Computing Probabilities from a Bayesian Network
	Inference in Bayesian Networks�Simple Example
	Inference in Bayesian Networks
	Slide Number 136
	Mid-term Review�Chapters 2-5, 13, 14

