
Mid-term Review 
Chapters 2-5, 13, 14 

• Review Agents (2.1-2.3) 
• Review State Space Search 

• Problem Formulation (3.1, 3.3) 
• Blind (Uninformed) Search (3.4) 
• Heuristic Search (3.5) 
• Local Search (4.1, 4.2) 

• Review Adversarial (Game) Search (5.1-5.4) 
• Review Probability & Bayesian Networks (13, 14.1-14.5) 

 
• Please review your quizzes and old CS-171 tests 

• At least one question from a prior quiz or old CS-171 test will 
appear on the mid-term (and all other tests) 



Review Agents 
Chapter 2.1-2.3 

• Agent definition (2.1) 
 

• Rational Agent definition (2.2) 
– Performance measure 

 

• Task evironment definition (2.3) 
– PEAS acronym 



Agents 
• An agent is anything that can be viewed as 

perceiving its environment through sensors and 
acting upon that environment through actuators 
 

    Human agent:  
   eyes, ears, and other organs for sensors;  
   hands, legs, mouth, and other body parts for 
   actuators 
 
• Robotic agent:  
    cameras and infrared range finders for sensors; 

various motors for actuators 



Agents and environments 

• Percept: agent’s perceptual inputs at an 
instant 

• The agent function maps from percept 
sequences to actions: [f: P*  A] 

• The agent program runs on the physical 
architecture to produce f 

• agent = architecture + program 



• Rational Agent: For each possible percept sequence, a 
rational agent should select an action that is expected to 
maximize its performance measure, based on the 
evidence provided by the percept sequence and 
whatever built-in knowledge the agent has. 

 
• Performance measure: An objective criterion for success 

of an agent's behavior    (“cost”, “reward”, “utility”) 
 

• E.g., performance measure of a vacuum-cleaner agent 
could be amount of dirt cleaned up, amount of time 
taken, amount of electricity consumed, amount of noise 
generated, etc. 

Rational agents 



Task Environment 

• Before we design an intelligent agent, we 
must specify its “task environment”: 

   
   PEAS: 
 
   Performance measure 
   Environment 
   Actuators 
   Sensors 
 



Environment types 
• Fully observable (vs. partially observable): An agent's 

sensors give it access to the complete state of the 
environment at each point in time. 
 

• Deterministic (vs. stochastic): The next state of the 
environment is completely determined by the current state 
and the action executed by the agent. (If the environment 
is deterministic except for the actions of other agents, then 
the environment is strategic) 
 

• Episodic (vs. sequential): An agent’s action is divided into 
atomic episodes. Decisions do not depend on previous 
decisions/actions. 
 

• Known (vs. unknown):  An environment is considered to 
be "known" if the agent understands the laws that govern 
the environment's behavior. 



Environment types 
• Static (vs. dynamic): The environment is unchanged while 

an agent is deliberating. (The environment is semidynamic 
if the environment itself does not change with the passage 
of time but the agent's performance score does) 
 

• Discrete (vs. continuous): A limited number of distinct, 
clearly defined percepts and actions. 
– How do we represent or abstract or model the world? 

 
• Single agent (vs. multi-agent): An agent operating by itself 

in an environment. Does the other agent interfere with my 
performance measure? 



Review State Space Search 
Chapters 3-4 

• Problem Formulation (3.1, 3.3) 
• Blind (Uninformed) Search (3.4) 

• Depth-First, Breadth-First, Iterative Deepening 
• Uniform-Cost, Bidirectional (if applicable) 
• Time? Space? Complete? Optimal? 

• Heuristic Search (3.5) 
• A*, Greedy-Best-First 

• Local Search (4.1, 4.2) 
• Hill-climbing, Simulated Annealing, Genetic Algorithms 
• Gradient descent 

 



Problem Formulation 
A problem is defined by five items: 
 
    initial state, e.g., "at Arad“ 
    actions 

– Actions(X) = set of actions available in State X 
    transition model 

– Result(S,A) = state resulting from doing action A in state S 
    goal test, e.g., x = "at Bucharest”, Checkmate(x) 
    path cost (additive, i.e., the sum of the step costs) 

– c(x,a,y) = step cost of action a in state x to reach state y 
– assumed to be ≥ 0 

 
A solution is a sequence of actions leading from the initial state 

to a goal state 
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Vacuum world state space graph 

• states? discrete: dirt and robot locations  
• initial state? any 
• actions? Left, Right, Suck 
• transition model? as shown on graph 
• goal test? no dirt at all locations 
• path cost? 1 per action 
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Implementation: states vs. nodes 
• A state is a (representation of) a physical configuration 

 
• A node is a data structure constituting part of a search tree 
• A node contains info such as: 

– state, parent node, action, path cost g(x), depth, etc. 
 
 
 
 
 
 
 

• The Expand function creates new nodes, filling in the various 
fields using the Actions(S) and Result(S,A)functions 
associated with the problem. 
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Tree search vs. Graph search 
Review Fig. 3.7, p. 77 

• Failure to detect repeated states can turn a 
linear problem into an exponential one! 

• Test is often implemented as a hash table. 



Solutions to Repeated States 

• Graph search 
– never generate a state generated before 

• must keep track of all possible states (uses a lot of memory) 
• e.g., 8-puzzle problem, we have 9! = 362,880 states 
• approximation for DFS/DLS: only avoid states in its (limited) memory: 

avoid infinite loops by checking path back to root. 

– “visited?” test usually implemented as a hash table 
15 
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State Space 
Example of a Search Tree 

faster, but memory inefficient 



General tree search 
Do not remember visited nodes 

Goal test after pop 



General graph search 
Do remember visited nodes 

Goal test after pop 



Breadth-first graph search 
function BRE ADT H-FIRST-SEARCH( problem ) returns a solution, or failure 

node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0 if 
problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node ) frontier ← 
a FIFO queue with node as the only element 
explored ← an empty set 
loop do 

if EMPTY?( frontier ) then return failure 
node ← POP( frontier )  /* chooses the shallowest node in frontier */ 
add node .STAT E to explored 
for each action in problem .ACT IONS(node .STAT E) do 

child ← CHILD-NODE( problem , node , action ) 
if child .STAT E is not in explored or frontier then 

if problem .GOAL -TEST(child .STAT E) then return SOL UT ION(child ) 
frontier ← INSE RT(child , frontier ) 

 
Figure 3.11     Breadth-first search on a graph. 

Goal test before push 



Uniform cost graph search: sort by g 
A* is identical but uses f=g+h 

Greedy best-first is identical but uses h 
function UNIFORM-COST-SEARCH( problem ) returns a solution, or failure 

node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0  
frontier ← a priority queue ordered by PAT H-COST, with node as the only element 
explored ← an empty set 
loop do 

if EMPTY?( frontier ) then return failure 
node ← POP( frontier )  /* chooses the lowest-cost node in frontier */ 
 if problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node )  
add node .STAT E to explored 
for each action in problem .ACT IONS(node .STAT E) do 

child ← CHILD-NODE( problem , node , action ) 
if child .STAT E is not in explored or frontier then 

frontier ← INSE RT(child , frontier ) 
else if child .STAT E is in frontier with higher PAT H-COST then 

replace that frontier node with child 
 

Figure 3.14     Uniform-cost search on a graph.  The algorithm is identical to the general 
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an 
extra check in case a shorter path to a frontier state is discovered. The data structure for frontier 
needs to support efficient membership testing, so it should combine the capabilities of a priority 
queue and a hash table. 

Goal test after pop 



Depth-limited search & IDS 

Iterate over successors, 
 call recursively on each. 
Goal test at head of call.  



Blind Search Strategies (3.4) 

• Depth-first: Add successors to front of queue 
• Breadth-first: Add successors to back of queue 
• Uniform-cost: Sort queue by path cost g(n) 
• Depth-limited: Depth-first, cut off at limit l 
• Iterated-deepening: Depth-limited, increasing l 
• Bidirectional: Breadth-first from goal, too. 

 

• Review “Example hand-simulated search” 
– Slides 29-38, Lecture on “Uninformed Search” 



Search strategy evaluation 
• A search strategy is defined by the order of node 

expansion 
 

• Strategies are evaluated along the following dimensions: 
– completeness: does it always find a solution if one exists? 
– time complexity: number of nodes generated 
– space complexity: maximum number of nodes in memory 
– optimality: does it always find a least-cost solution? 

 

• Time and space complexity are measured in terms of  
– b: maximum branching factor of the search tree 
– d: depth of the least-cost solution 
– m: maximum depth of the state space (may be ∞) 
– (UCS: C*: true cost to optimal goal; ε > 0: minimum step cost) 



Summary of algorithms 
Fig. 3.21, p. 91 

Generally the preferred  
uninformed search strategy 

Criterion Breadth-
First 

Uniform-
Cost 

Depth-
First 

Depth-
Limited 

Iterative 
Deepening 
DLS 

Bidirectional 
(if applicable) 

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d] 

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2) 

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2) 

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d] 

There are a number of footnotes, caveats, and assumptions. 
See Fig. 3.21, p. 91. 
[a] complete if b is finite 
[b] complete if step costs ≥ ε > 0 
[c] optimal if step costs are all identical 
     (also if path cost non-decreasing function of depth only) 
[d] if both directions use breadth-first search 
     (also if both directions use uniform-cost search with step costs ≥ ε > 0) 



Summary 
• Generate the search space by applying actions to the 

initial state and all further resulting states. 

• Problem: initial state, actions, transition model, goal 
test, step/path cost 

• Solution: sequence of actions to goal 

• Tree-search (don’t remember visited nodes) vs. 
     Graph-search (do remember them) 

• Search strategy evaluation: b, d, m (UCS: C*, ε) 
– Complete? Time? Space? Optimal? 



Heuristic function (3.5) 
 Heuristic: 
 Definition: a commonsense rule (or set of rules) intended to 

increase the probability of solving some problem 
 “using rules of thumb to find answers” 

 
 Heuristic function h(n) 
 Estimate of (optimal) cost from n to goal 
 Defined using only the state of node n 
 h(n) = 0 if n is a goal node 
 Example: straight line distance from n to Bucharest 
Note that this is not the true state-space distance 
 It is an estimate – actual state-space distance can be higher 

 
 Provides problem-specific knowledge to the search algorithm 

 
 



Greedy best-first search 
• h(n) = estimate of cost from n to goal 

– e.g., h(n) = straight-line distance from n to 
Bucharest 

 

• Greedy best-first search expands the node 
that appears to be closest to goal. 
– Sort queue by h(n) 

 

• Not an optimal search strategy 
– May perform well in practice 



Greedy best-first search example 



Greedy best-first search example 



Greedy best-first search example 



Greedy best-first search example 



Optimal Path 



Greedy Best-first Search 
With tree search, will become stuck in this loop 

Order of node expansion:  S A D S A D S A D. . . . 
Path found:  none              Cost of path found:  none    . 

B 

D 

G 

S 

A C 

h=5 

h=7 

h=6 

h=8 h=9 

h=0 



Properties of greedy best-first search 

• Complete?  
– Tree version can get stuck in loops. 
– Graph version is complete in finite spaces. 

• Time? O(bm) 
– A good heuristic can give dramatic improvement 

• Space? O(1) tree search, O(bm) graph search 
– Graph search keeps all nodes in memory 
– A good heuristic can give dramatic improvement 

• Optimal? No 
– E.g., Arad  Sibiu  Rimnicu Vilcea  Pitesti  Bucharest 

is shorter! 



A* search 

• Idea: avoid paths that are already expensive 
– Generally the preferred simple heuristic search 
– Optimal if heuristic is: 
 admissible (tree search)/consistent (graph search) 

• Evaluation function f(n) = g(n) + h(n) 
– g(n) = known path cost so far to node n. 
– h(n) = estimate of (optimal) cost to goal from node n. 
– f(n) = g(n)+h(n) 
      = estimate of total cost to goal through node n. 

• Priority queue sort function = f(n) 



A* tree search example 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next:  
• Children:  
• Expanded:  
• Frontier: Arad/366=0+366 
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A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Arad/366=0+366 
• Children: Sibiu/393=140+253, Timisoara/447=118+329, 

Zerind/449=75+374 
• Expanded: Arad/366=0+366 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374 
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A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Sibiu/393=140+253 
• Children: Arad/646=280+366, Fagaras/415=239+176, 

Oradea/671=291+380, RimnicuVilcea/413=220+193 
• Expanded: Arad/366=0+366, Sibiu/393=140+253 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374, Arad/646=280+366, 
Fagaras/415=239+176, Oradea/671=291+380, 
RimnicuVilcea/413=220+193 
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A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: RimnicuVilcea/413=220+193 
• Children: Craiova/526=366+160, Pitesti/417=317+100, 

Sibiu/553=300+253 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253 
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A* tree search example 
Note: The 
search below 
did not “back 
track.” Rather, 
both arms are 
being pursued 
in parallel on 
the queue. 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Fagaras/415=239+176  
• Children: Bucharest/450=450+0, Sibiu/591=338+253 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193, Fagaras/415=239+176 
• Frontier: Arad/366=0+366, Sibiu/393=140+253, 

Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253, Bucharest/450=450+0, Sibiu/591=338+253 
 
 
 
 
 



A* tree search example 
Note: The 
search below 
did not “back 
track.” Rather, 
both arms are 
being pursued 
in parallel on 
the queue. 



A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Pitesti/417=317+100  
• Children: Bucharest/418=418+0, Craiova/615=455+160, 

RimnicuVilcea/607=414+193 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193, Fagaras/415=239+176, 
Pitesti/417=317+100 

• Frontier: Arad/366=0+366, Sibiu/393=140+253, 
Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253, Bucharest/450=450+0, 
Sibiu/591=338+253, Bucharest/418=418+0, 
Craiova/615=455+160, RimnicuVilcea/607=414+193 
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A* tree search example: 
Simulated queue.  City/f=g+h 

• Next: Bucharest/418=418+0  
• Children: None; goal test succeeds. 
• Expanded: Arad/366=0+366, Sibiu/393=140+253, 

RimnicuVilcea/413=220+193, Fagaras/415=239+176, 
Pitesti/417=317+100, Bucharest/418=418+0 

• Frontier: Arad/366=0+366, Sibiu/393=140+253, 
Timisoara/447=118+329, Zerind/449=75+374, 
Arad/646=280+366, Fagaras/415=239+176, 
Oradea/671=291+380, RimnicuVilcea/413=220+193, 
Craiova/526=366+160, Pitesti/417=317+100, 
Sibiu/553=300+253, Bucharest/450=450+0, 
Sibiu/591=338+253, Bucharest/418=418+0, 
Craiova/615=455+160, RimnicuVilcea/607=414+193 
 
 
 
 
 
 

Note that 
the short 
expensive 
path stays 
on the 
queue. 
The long 
cheap 
path is 
found and 
returned. 
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Properties of A* 

• Complete? Yes 
 (unless there are infinitely many nodes with f ≤ f(G); 
 can’t happen if step-cost ≥ ε > 0) 
• Time/Space? Exponential O(bd) 
           except if:   
• Optimal? Yes 
 (with: Tree-Search, admissible heuristic; 
 Graph-Search, consistent heuristic) 
• Optimally Efficient? Yes 
 (no optimal algorithm with same heuristic is guaranteed to expand 

fewer nodes) 

* *| ( ) ( ) | (log ( ))h n h n O h n− ≤



Admissible heuristics 

• A heuristic h(n) is admissible if for every node n, 
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal 

state from n. 
• An admissible heuristic never overestimates the cost to 

reach the goal, i.e., it is optimistic 
• Example: hSLD(n) (never overestimates the actual road 

distance) 
• Theorem: If h(n) is admissible, A* using TREE-SEARCH is 

optimal 



Consistent heuristics 
(consistent => admissible) 

• A heuristic is consistent if for every node n, every successor n' of n 
generated by any action a,    
 

      h(n) ≤ c(n,a,n') + h(n') 
 

• If h is consistent, we have 
 

f(n’) = g(n’) + h(n’)                   (by def.) 
       = g(n) + c(n,a,n') + h(n’)    (g(n’)=g(n)+c(n.a.n’))  
       ≥ g(n) + h(n) = f(n)            (consistency) 
f(n’)   ≥ f(n) 
 
• i.e., f(n) is non-decreasing along any path. 

 
• Theorem:  
     If h(n) is consistent, A* using GRAPH-SEARCH is optimal 

It’s the triangle 
inequality ! 

keeps all checked nodes in 
memory to avoid repeated states 



Optimality of A* (proof) 
Tree Search, where h(n) is admissible 

• Suppose some suboptimal goal G2 has been generated and is in the 
frontier. Let n be an unexpanded node in the frontier such that n is on a 
shortest path to an optimal goal G. 
 
 
 

• f(G2)  = g(G2) since h(G2) = 0  
• f(G)   = g(G) since h(G) = 0  
• g(G2) > g(G)  since G2 is suboptimal  

• f(G2)  > f(G) from above, with h=0  
• h(n) ≤ h*(n)  since h is admissible (under-estimate) 
• g(n) + h(n) ≤ g(n) + h*(n)  from above 
• f(n)  ≤ f(G)  since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G) 
• f(n)  < f(G2) from above 

 

We want to prove: 
 f(n) < f(G2) 
(then A* will expand n before G2) 



Dominance 

• IF h2(n) ≥ h1(n) for all n 
 THEN h2 dominates h1  

– h2 is almost always better for search than h1 
– h2 guarantees to expand no more nodes than does h1 
– h2 almost always expands fewer nodes than does h1 
– Not useful unless both h1 & h2 are admissible/consistent 

 
• Typical 8-puzzle search costs 
 (average number of nodes expanded): 

– d=12 IDS = 3,644,035 nodes 
  A*(h1) = 227 nodes  
  A*(h2) = 73 nodes  

– d=24  IDS = too many nodes 
  A*(h1) = 39,135 nodes  
  A*(h2) = 1,641 nodes  



Local search algorithms (4.1, 4.2) 

• In many optimization problems, the path to the goal is 
irrelevant; the goal state itself is the solution 

 
• State space = set of "complete" configurations 
• Find configuration satisfying constraints, e.g., n-queens 
• In such cases, we can use local search algorithms 
• keep a single "current" state, try to improve it. 
• Very memory efficient (only remember current state) 



Random Restart Wrapper 
• These are stochastic local search methods 

– Different solution for each trial and initial state 
 

• Almost every trial hits difficulties (see below) 
– Most trials will not yield a good result (sadly) 

 
• Many random restarts improve your chances 

– Many “shots at goal” may, finally, get a good one 
 

• Restart a random initial state; many times 
– Report the best result found; across many trials 



Random Restart Wrapper 
    BestResultFoundSoFar <- infinitely bad; 

    UNTIL ( you are tired of doing it ) DO { 

 Result <- ( Local search from random initial state ); 

 IF ( Result is better than BestResultFoundSoFar ) 

     THEN ( Set BestResultFoundSoFar to Result ); 

} 

RETURN BestResultFoundSoFar; 

Typically, “you are tired of doing it” means that some resource limit is 
exceeded, e.g., number of iterations, wall clock time, CPU time, etc. It 
may also mean that Result improvements are small and infrequent, 
e.g., less than 0.1% Result improvement in the last week of run time. 



Local Search Difficulties 

• Problems: depending on state, can get stuck in local maxima 
– Many other problems also endanger your success!! 

 

These difficulties apply to ALL local search algorithms, and become MUCH more 
difficult as the dimensionality of the search space increases to high dimensions. 



Local Search Difficulties 

• Ridge problem: Every neighbor appears to be downhill 
– But the search space has an uphill!! (worse in high dimensions) 

These difficulties apply to ALL local search algorithms, and become MUCH more 
difficult as the dimensionality of the search space increases to high dimensions. 

Ridge: 
Fold a piece of 
paper and hold 
it tilted up at an 
unfavorable 
angle to every 
possible search 
space step. 
Every step 
leads downhill; 
but the ridge 
leads uphill. 



Hill-climbing search 

• "Like climbing Everest in thick fog with 
amnesia" 

•  
 



Simulated annealing search 

• Idea: escape local maxima by allowing some "bad" 
moves but gradually decrease their frequency 

•  
 

Improvement: Track the 
BestResultFoundSoFar. 
Here, this slide follows 
Fig. 4.5 of the textbook, 
which is simplified. 



P(accepting a worse successor)  
Decreases as Temperature T decreases 

Increases as | ∆ E | decreases 
(Sometimes step size also decreases with T) 

Tem
perature 

e^( ∆E / T ) 
Temperature T 

High Low 

|∆E | 
High Medium Low 

Low High Medium 



Your “random restart 
wrapper” starts here. 

Goal:  “Ratchet” up a jagged slope 
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale) 

A 
Value=42 

B 
Value=41 

C 
Value=45 

D 
Value=44 

E 
Value=48 

F 
Value=47 

G 
Value=51 

Va
lu

e 

Arbitrary (Fictitious) Search Space Coordinate 

You want to get 
here.  HOW?? 

This is an 
illustrative 
cartoon. 



E 
Value=48 

∆E(ED)=-4 
∆E(EF)=-1 

P(ED) ≈.018 
P(EF)≈.37 

C 
Value=45 

∆E(CB)=-4 
∆E(CD)=-1 
P(CB) ≈.018 
P(CD)≈.37 

B 
Value=41 
∆E(BA)=1 
∆E(BC)=4 
P(BA)=1 
P(BC)=1 

Goal:  “Ratchet” up a jagged slope 
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale) 

A 
Value=42 

∆E(AB)=-1 
P(AB) ≈.37 

D 
Value=44 
∆E(DC)=1 
∆E(DE)=4 
P(DC)=1 
P(DE)=1 

F 
Value=47 
∆E(FE)=1 
∆E(FG)=4 
P(FE)=1 
P(FG)=1 

G 
Value=51 

∆E(GF)=-4 
P(GF) ≈.018 

x -1 -4 

ex ≈.37 ≈.018 

Your “random 
restart wrapper” 
starts here. 

From A you will accept a move to B with P(AB) ≈.37. 
From B you are equally likely to go to A or to C. 
From C you are ≈20X more likely to go to D than to B. 
From D you are equally likely to go to C or to E. 
From E you are ≈20X more likely to go to F than to D. 
From F you are equally likely to go to E or to G. 
Remember best point you ever found (G or neighbor?). 

This is an 
illustrative 
cartoon. 



Genetic algorithms (Darwin!!) 
• A state = a string over a finite alphabet (an individual) 

 
• Start with k randomly generated states (a population) 
 
• Fitness function (= our heuristic objective function). 

– Higher fitness values for better states. 
 

• Select individuals for next generation based on fitness 
– P(individual in next gen.) = individual fitness/Σ population fitness 

 
• Crossover fit parents to yield next generation (off-spring) 

 
• Mutate the offspring randomly with some low probability 



fitness =  
#non-attacking 
queens 

 
 
 
 

 
• Fitness function: #non-attacking queen pairs 

– min = 0, max = 8 × 7/2 = 28 

• Σ_i fitness_i = 24+23+20+11 = 78 
• P(child_1 in next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31% 
• P(child_2 in next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc 

probability of being  
in next generation = 
fitness/(Σ_i fitness_i) 

How to convert a 
fitness value into a 
probability of being in 
the next generation. 



Review Adversarial (Game) Search 
Chapter 5.1-5.4 

• Minimax Search with Perfect Decisions (5.2) 
– Impractical in most cases, but theoretical basis for analysis 

• Minimax Search with Cut-off (5.4) 
– Replace terminal leaf utility by heuristic evaluation function 

• Alpha-Beta Pruning (5.3) 
– The fact of the adversary leads to an advantage in search! 

• Practical Considerations (5.4) 
– Redundant path elimination, look-up tables, etc. 



Games as Search 
• Two players: MAX and MIN 
• MAX moves first and they take turns until the game is over 

– Winner gets reward, loser gets penalty. 
– “Zero sum” means the sum of the reward and the penalty is a constant. 

 
• Formal definition as a search problem: 

– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess. 
– Player(s): Defines which player has the move in a state. 
– Actions(s): Returns the set of legal moves in a state. 
– Result(s,a): Transition model defines the result of a move. 
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.) 
– Terminal-Test(s): Is the game finished?  True if finished, false otherwise. 
– Utility function(s,p): Gives numerical value of terminal state s for player p. 

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe. 
• E.g., win (+1), lose (0), and draw (1/2) in  chess. 

 

• MAX uses  search tree to determine “best” next move. 

 



An optimal procedure: 
The Min-Max method 

Will find the optimal strategy and best next move for Max: 
 
• 1. Generate the whole game tree, down to the leaves. 

 
• 2. Apply utility (payoff) function to each leaf. 

 
• 3.  Back-up values from leaves through branch nodes: 

– a Max node computes the Max of its child values 
– a Min node computes the Min of its child values 

 
• 4. At root: choose move leading to the child of highest value. 

 



Two-Ply Game Tree 



Two-Ply Game Tree 

The minimax decision 

Minimax maximizes the utility of 
the worst-case outcome for Max 



Pseudocode for Minimax 
Algorithm 

function MINIMAX-DECISION(state) returns an action 
   inputs: state, current state in game 
return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a)) 

function MIN-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← +∞ 
   for a  in ACTIONS(state) do 
      v ← MIN(v,MAX-VALUE(Result(state,a))) 
   return v 

function MAX-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← −∞ 
   for a  in ACTIONS(state) do 
      v ← MAX(v,MIN-VALUE(Result(state,a))) 
   return v 



Properties of minimax 
• Complete?    

– Yes (if tree is finite). 
 

• Optimal?  
– Yes (against an optimal opponent). 
– Can it be beaten by an opponent playing sub-optimally? 

• No.  (Why not?) 
 

• Time complexity? 
– O(bm) 

 
• Space complexity? 

– O(bm)   (depth-first search, generate all actions at once) 
– O(m)   (backtracking search, generate actions one at a time) 

 





Static (Heuristic) Evaluation Functions 

• An Evaluation Function: 
– Estimates how good the current board configuration is for a player. 
– Typically, evaluate how good it is for the player, how good it is for 

the opponent, then subtract the opponent’s score from the 
player’s. 

– Othello: Number of white pieces - Number of black pieces 
– Chess:  Value of all white pieces - Value of all black pieces 
 

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1]. 
 
• If the board evaluation  is X for a player, it’s -X for the opponent 

– “Zero-sum game” 





General alpha-beta pruning 
• Consider a node n in the tree --- 

 
• If player has a better choice at: 

– Parent node of n 
– Or any choice point further 

up 
 

• Then n will never be reached in 
play. 
 

• Hence, when that much is 
known about n, it can be 
pruned. 



Alpha-beta Algorithm 
• Depth first search 

– only considers nodes along a single path from root at any time 
 

 α =  highest-value choice found at any choice point of path for MAX 
  (initially, α =  −infinity) 
 β = lowest-value choice found at any choice point of path for MIN 
   (initially, β =  +infinity) 
 
•  Pass current values of α and β down to child nodes during search. 
• Update values of α and β during search: 

– MAX updates α at MAX nodes 
– MIN updates β at MIN nodes 

•  Prune remaining branches at a node when α ≥ β 



Pseudocode for Alpha-Beta Algorithm 

function ALPHA-BETA-SEARCH(state) returns an action 
   inputs: state, current state in game 
   v←MAX-VALUE(state, - ∞ , +∞) 
   return the action in ACTIONS(state) with value v 

function MAX-VALUE(state,α , β) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← - ∞ 
   for a in ACTIONS(state) do 
      v ← MAX(v, MIN-VALUE(Result(s,a), α , β)) 
     if v ≥ β then return v 
     α ← MAX(α ,v) 
   return v 

(MIN-VALUE is defined analogously) 



When to Prune?  

• Prune whenever α ≥ β. 
 

– Prune below a Max node whose alpha value becomes greater than or 
equal to the beta value of its ancestors. 

• Max nodes update alpha based on children’s returned values. 
 

– Prune below a Min node whose beta value becomes less than or equal 
to the alpha value of its ancestors. 

• Min nodes update beta based on children’s returned values. 



α/β Pruning vs. Returned Node Value 

• Some students are confused about the use of 
α/β pruning vs. the returned value of a node 

• α/β are used ONLY FOR PRUNING 
– α/β have no effect on anything other than pruning 
– IF (α >= β) THEN prune & return current node value 

• Returned node value = “best” child seen so far 
– Maximum child value seen so far for MAX nodes 
– Minimum child value seen so far for MIN nodes 
– If you prune, return to parent “best” child so far 

• Returned node value is received by parent 



Alpha-Beta Example Revisited 

α, β, initial values 
Do DF-search until first leaf 

α=−∞ 
β =+∞ 

α=−∞ 
β =+∞ 

α, β, passed to kids 

Review Detailed Example of Alpha-Beta 
Pruning in lecture slides. 



Alpha-Beta Example (continued) 

MIN updates β, based on kids 

α=−∞ 
β =+∞ 

α=−∞ 
β =3 



Alpha-Beta Example (continued) 

α=−∞ 
β =3 

MIN updates β, based on kids. 
No change. 

α=−∞ 
β =+∞ 



Alpha-Beta Example (continued) 

MAX updates α, based on kids. 
α=3 
β =+∞ 

3 is returned 
as node value. 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 

α=3 
β =+∞ 

α, β, passed to kids 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 

α=3 
β =2 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

α=3 
β =2 

α ≥ β, 
so prune. 

α=3 
β =+∞ 



Alpha-Beta Example (continued) 

2 is returned 
as node value. 

MAX updates α, based on kids. 
No change. α=3 

β =+∞ 



Alpha-Beta Example (continued) 

, 
α=3 
β =+∞ 

α=3 
β =+∞ 

α, β, passed to kids 



Alpha-Beta Example (continued) 

, 

α=3 
β =14 

α=3 
β =+∞ 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

, 

α=3 
β =5 

α=3 
β =+∞ 

MIN updates β, 
based on kids. 



Alpha-Beta Example (continued) 

α=3 
β =+∞ 2 is returned 

as node value. 

2 



Alpha-Beta Example (continued) 

Max calculates the same 
node value, and makes the 
same move! 

2 

Review Detailed Example of Alpha-Beta 
Pruning in lecture slides. 



Review Probability (Chapter 13) 
You will be expected to know 

• Basic probability notation/definitions: 
– Probability model, unconditional/prior and 

conditional/posterior probabilities, factored 
representation (= variable/value pairs), random variable, 
(joint) probability distribution, probability density function 
(pdf), marginal probability, (conditional) independence, 
normalization, etc. 

• Basic probability formulae: 
– Probability axioms, sum rule, product rule, Bayes’ rule. 

• How to use Bayes’ rule: 
– Naïve Bayes model (naïve Bayes classifier) 

 



Syntax 
 

•Basic element: random variable 
•Similar to propositional logic: possible worlds defined by assignment of 

values to random variables. 
 

•Booleanrandom variables 

 e.g., Cavity (= do I have a cavity?) 
•Discreterandom variables 

 e.g., Weather is one of 
<sunny,rainy,cloudy,snow> 

•Domain values must be exhaustive and mutually exclusive 
 

•Elementary proposition is an assignment of a value to a random variable: 
 e.g., Weather = sunny; Cavity = false(abbreviated as ¬cavity) 

 
•Complex propositions formed from elementary propositions and standard 

logical connectives : 
 e.g., Weather = sunny ∨  Cavity = false 

 



Probability 
• P(a) is the probability of proposition “a” 

– e.g., P(it will rain in London tomorrow) 
– The proposition a is actually true or false in the real-world 
 

• Probability Axioms: 
– 0  ≤ P(a) ≤ 1 
– P(NOT(a))  = 1 – P(a) =>  ΣA P(A) = 1 
– P(true)  =  1 
– P(false) =  0 
– P(A OR B) = P(A) + P(B) – P(A AND B) 

 
• Any agent that holds degrees of beliefs that contradict these 

axioms will act irrationally in some cases 
 

• Rational agents cannot violate probability theory. 
─ Acting otherwise results in irrational behavior. 

 
 
 
 
 

 



Conditional Probability 
• P(a|b) is the conditional probability of proposition a, 

conditioned on knowing that b is true, 
– E.g., P(rain in London tomorrow | raining in London today) 
– P(a|b) is a “posterior” or conditional probability 
– The updated probability that a is true, now that we know b 
– P(a|b) = P(a ∧ b) / P(b) 
– Syntax:  P(a | b) is the probability of a given that b is true 

• a and b can be any propositional sentences 
• e.g., p( John wins OR Mary wins | Bob wins AND Jack loses) 

 

• P(a|b) obeys the same rules as probabilities, 
– E.g., P(a | b)  + P(NOT(a) | b) = 1 
– All probabilities in effect are conditional probabilities 

• E.g., P(a) = P(a | our background knowledge) 

 
 
 
 
 
 

 



Concepts of Probability 
• Unconditional Probability  

─ P(a), the probability of “a” being true, or P(a=True) 
─ Does not depend on anything else to be true (unconditional) 
─ Represents the probability prior to further information that may adjust it 

(prior) 
 

• Conditional Probability  
─ P(a|b), the probability of “a” being true, given that “b” is true 
─ Relies on “b” =  true (conditional) 
─ Represents the prior probability adjusted based upon new information “b” 

(posterior) 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a|b, c, d) 
 

• Joint Probability  
─ P(a, b) = P(a ˄ b), the probability of “a” and “b” both being true 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a, b, c, d) 
 

 
 

 
 
 
 
 

 



Basic Probability Relationships 
• P(A) + P(¬ A) = 1 

– Implies that P(¬ A) = 1 ─ P(A) 

• P(A, B) = P(A ˄ B) = P(A) + P(B) ─ P(A ˅ B) 
– Implies that P(A ˅ B) = P(A) + P(B) ─ P(A ˄ B) 

• P(A | B) = P(A, B) / P(B) 
– Conditional probability; “Probability of A given B” 

• P(A, B) = P(A | B) P(B) 
– Product Rule (Factoring); applies to any number of variables 
– P(a, b, c,…z) = P(a | b, c,…z) P(b | c,...z) P(c|...z)...P(z) 

• P(A) =  ΣB,C P(A, B, C) =  Σb∈B,c∈C P(A, b, c) 
– Sum Rule (Marginal Probabilities); for any number of variables 
– P(A, D) = ΣB  ΣC  P(A, B, C, D) = Σb∈B  Σc∈C  P(A, b, c, D) 

• P(B | A) = P(A | B) P(B) / P(A) 
– Bayes’ Rule; for any number of variables 

 
 

 

 
 

 

You need to  
know these ! 



Summary of Probability Rules 
• Product Rule: 

– P(a, b) = P(a|b) P(b)  = P(b|a) P(a) 
– Probability of “a” and “b” occurring is the same as probability of “a” occurring 

given “b” is true, times the probability of “b” occurring. 
 e.g., P( rain, cloudy ) = P(rain | cloudy) * P(cloudy) 

 
• Sum Rule: (AKA Law of Total Probability) 

– P(a) =  Σb P(a, b) =  Σb  P(a|b) P(b),   where B is any random variable 
– Probability of “a” occurring is the same as the sum of all joint probabilities 

including the event, provided the joint probabilities represent all possible 
events. 

– Can be used to “marginalize” out other variables from probabilities, resulting 
in prior probabilities also being called marginal probabilities. 
 e.g., P(rain) = ΣWindspeed P(rain, Windspeed) 
  where Windspeed = {0-10mph, 10-20mph, 20-30mph, etc.} 

 
• Bayes’ Rule: 

- P(b|a) =  P(a|b) P(b)  / P(a) 
- Acquired from rearranging the product rule. 
- Allows conversion between conditionals, from  P(a|b) to P(b|a). 

 e.g.,  b = disease, a = symptoms 
         More natural to encode knowledge as P(a|b) than as P(b|a). 

 
 



Full Joint Distribution 

• We can fully specify a probability space by 
constructing a full joint distribution: 
– A full joint distribution contains a probability for 

every possible combination of variable values.  
– E.g., P( J=f, M=t, A=t, B=t, E=f ) 

 

• From a full joint distribution, the product rule, 
sum rule, and Bayes’ rule can create any 
desired joint and conditional probabilities. 

    

 



Computing with Probabilities: Law of Total Probability 

Law of Total Probability (aka “summing out” or marginalization) 
             P(a)  = Σb  P(a, b)  
                     = Σb  P(a | b) P(b)        where B is any random variable 
 
  

Why is this useful? 

  Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any 
“marginal” probability (e.g., P(b)) by summing out the other 
variables, e.g., 

                   

                 P(b)  = Σa Σc Σd P(a, b, c, d)  
 

We can compute any conditional probability given a joint distribution, e.g., 
                

              P(c | b)  = Σa Σd P(a, c, d | b)  
                        =  Σa Σd P(a, c, d, b) / P(b)   
                          where P(b) can be computed as above 
 
 

 

 
 



Computing with Probabilities: 
The Chain Rule or Factoring 

We can always write 
      P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z) 
                                       (by definition of joint probability) 
 
Repeatedly applying this idea, we can write 
       P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z) 
 
This factorization holds for any ordering of the variables 
 
This is the chain rule for probabilities 
 



Independence 
• Formal Definition: 

– 2 random variables A and B are independent iff: 
   P(a, b) = P(a) P(b),     for all values a, b 

 

• Informal Definition: 
– 2 random variables A and B are independent iff: 
              P(a | b) = P(a)     OR   P(b | a) = P(b),   for all values a, b 
– P(a | b) = P(a) tells us that knowing b provides no change in our probability 

for a, and thus b contains no information about a. 
 

• Also known as marginal independence, as all other variables have 
been marginalized out. 

 
• In practice true independence is very rare: 

– “butterfly in China” effect 
– Conditional independence is much more common and useful   

 
 



Conditional Independence 
• Formal Definition: 

– 2 random variables A and B are conditionally independent given C iff: 
  P(a, b|c) = P(a|c) P(b|c),     for all values a, b, c 
 

• Informal Definition: 
– 2 random variables A and B are conditionally independent given C iff: 
  P(a|b, c) = P(a|c)     OR   P(b|a, c) = P(b|c),   for all values a, b, c 
– P(a|b, c) = P(a|c) tells us that learning about b, given that we already know c, 

provides no change in our probability for a, and thus b contains no 
information about a beyond what c provides. 
 

• Naïve Bayes Model: 
– Often a single variable can directly influence a number of other variables, all 

of which are conditionally independent, given the single variable. 
– E.g., k different symptom variables X1, X2, … Xk, and C = disease, reducing to: 
  P(X1, X2,…. XK | C) = P(C) Π  P(Xi | C) 

 

 



Examples of Conditional Independence 
• H=Heat, S=Smoke, F=Fire 

– P(H, S | F) = P(H | F) P(S | F) 
– P(S | F, S) = P(S | F) 
– If we know there is/is not a fire, observing heat tells us no more 

information about smoke 

• F=Fever, R=RedSpots, M=Measles 
– P(F, R | M) = P(F | M) P(R | M) 
– P(R | M, F) = P(R | M) 
– If we know we do/don’t have measles, observing fever tells us no 

more information about red spots 

• C=SharpClaws, F=SharpFangs, S=Species 
– P(C, F | S) = P(C | S) P(F | S) 
– P(F | S, C) = P(F | S) 
– If we know the species, observing sharp claws tells us no more 

information about sharp fangs 



Review Bayesian Networks (Chapter 14.1-5) 
• You will be expected to know: 

 
• Basic concepts and vocabulary of Bayesian networks. 

– Nodes represent random variables. 
– Directed arcs represent (informally) direct influences. 
– Conditional probability tables, P( Xi | Parents(Xi) ). 

 
• Given a Bayesian network: 

– Write down the full joint distribution it represents. 
– Inference by Variable Elimination 

 
• Given a full joint distribution in factored form: 

– Draw the Bayesian network that represents it. 
 

• Given a variable ordering and background assertions of conditional 
independence among the variables: 
– Write down the factored form of the full joint distribution, as simplified by the 

conditional independence assertions. 

 



Bayesian Networks 
• Represent dependence/independence via a directed graph   

– Nodes = random variables 
– Edges = direct dependence 

• Structure of the graph  Conditional independence 
 

• Recall the chain rule of repeated conditioning: 
 
 

 
 

 
• Requires that graph is acyclic (no directed cycles) 
• 2 components to a Bayesian network 

– The graph structure (conditional independence assumptions) 
– The numerical probabilities (of each variable given its parents) 

 

The full joint distribution The graph-structured approximation 



•   A Bayesian network specifies a joint distribution in a structured form: 

 

 

 

 

   

 
• Dependence/independence represented via a directed graph:   

− Node   = random variable 
− Directed Edge  = conditional dependence 
− Absence of Edge  = conditional independence 
 

 
•Allows concise view of joint distribution relationships:   

− Graph nodes and edges show conditional relationships between variables. 
− Tables provide probability data. 
 

Bayesian Network 

A B 

C 

p(A,B,C) = p(C|A,B)p(A|B)p(B) 
   = p(C|A,B)p(A)p(B) 

Full factorization 

After applying 
conditional 
independence 
from the graph 



Examples of 3-way Bayesian Networks 

A B 

C 

Independent Causes: 
p(A,B,C) = p(C|A,B)p(A)p(B) 
 
“Explaining away” effect: 
Given C, observing A makes B less likely 
e.g., earthquake/burglary/alarm example 
 
A and B are (marginally) independent  
but become dependent once C is known 
 
You heard alarm, and observe Earthquake 
…. It explains away burglary   

Nodes: Random Variables 
 A, B, C 
Edges: P(Xi | Parents)    Directed edge from parent nodes to Xi 
 A  C 
 B  C 

Independent Causes 
A Earthquake 
B Burglary 
C Alarm 



Examples of 3-way Bayesian Networks 

A C B Marginal Independence: 
p(A,B,C) = p(A) p(B) p(C) 

Nodes: Random Variables 
 A, B, C 
Edges: P(Xi | Parents)    Directed edge from parent nodes to Xi 
 No Edge!  



Extended example of 3-way Bayesian Networks 

A 

C B 

Conditionally independent effects: 
p(A,B,C) = p(B|A)p(C|A)p(A) 
 
B and C are conditionally independent 
Given A 
 
“Where there’s Smoke, there’s Fire.” 
 
If we see Smoke, we can infer Fire. 
 
If we see Smoke, observing Heat tells 
us very little additional information. 

Common Cause 
A : Fire 
B:  Heat 
C: Smoke 



Examples of 3-way Bayesian Networks 

A C B 

Markov dependence: 
p(A,B,C) = p(C|B) p(B|A)p(A) 
 
A affects B and B affects C 
Given B, A and C are independent 
 
e.g.  
If it rains today,  it will rain tomorrow with 90% 
 
On Wed morning… 
If you know it rained yesterday,  
it doesn’t matter whether it rained on Mon 

Nodes: Random Variables 
 A, B, C 
Edges: P(Xi | Parents)    Directed edge from parent nodes to Xi 
 A  B 
 B  C 

Markov Dependence 
A Rain on Mon 
B Ran on Tue 
C Rain on Wed 



Naïve Bayes Model                  (section 20.2.2 R&N 

3rd ed.) 

X1 X2 X3 

C 

Xn 

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about 
computing the probability of a class from input attributes of an example. 
 
Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally 
equivalent expression that involves only P(C) and P(X1,…Xn  | C). 
Then assume that feature values are conditionally independent given class, 
which allows us to turn P(X1,…Xn  | C) into Πi  P(Xi | C). 
 
We estimate P(C) easily from the frequency with which each class appears 
within our training data, and we estimate P(Xi | C) easily from the frequency 
with which each Xi appears in each class C within our training data. 



Naïve Bayes Model                  (section 20.2.2 R&N 

3rd ed.) 

X1 X2 X3 

C 

Xn 

Bayes Rule:    P(C | X1,…Xn)  is proportional to P (C)  Πi  P(Xi | C) 
[note: denominator P(X1,…Xn)  is constant for all classes, may be ignored.] 
 
Features Xi are conditionally independent given the class variable C 

• choose the class value ci with the highest P(ci | x1,…, xn) 
• simple to implement, often works very well 
• e.g., spam email classification: X’s = counts of words in emails 

 
Conditional probabilities P(Xi | C) can easily be estimated from labeled date 

• Problem:  Need to avoid zeroes, e.g., from limited training data 
• Solutions: Pseudo-counts, beta[a,b] distribution, etc. 



Naïve Bayes Model (2) 
                 P(C | X1,…Xn)  =  α  P (C)  Π i  P(Xi | C) 
 
Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data 
 
P(C = cj)  ≈ #(Examples with class label C = cj)  /  #(Examples) 
 
P(Xi = xik | C = cj) 
      ≈ #(Examples with attribute value Xi = xik and class label C = cj)  
  /  #(Examples with class label C = cj) 
 
Usually easiest to work with logs 
 log [ P(C | X1,…Xn) ] 
   =  log α  + log P (C) +   Σ  log P(Xi | C) 
 
DANGER: What if ZERO examples with value Xi = xik and class label C = cj ? 
An unseen example with value Xi = xik will NEVER predict class label C = cj ! 
 
Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc. 
Theoretical solutions: Bayesian inference, beta distribution, etc. 



Bigger Example 
• Consider the following 5 binary variables: 

– B = a burglary occurs at your house 
– E = an earthquake occurs at your house 
– A = the alarm goes off 
– J  = John calls to report the alarm 
– M = Mary calls to report the alarm 

 

• Sample Query: What is P(B|M, J) ? 
• Using full joint distribution to answer this question requires  

– 25 - 1= 31 parameters 

•  Can we use prior domain knowledge to come up with a 
Bayesian network that requires fewer probabilities? 



Constructing a Bayesian Network: Step 1 
• Order the variables in terms of influence (may be a partial 

order), e.g., {E, B} -> {A} -> {J, M} 
 
• P(J, M, A, E, B) =  P(J, M | A, E, B) P(A| E, B) P(E, B) 

 
                           ≈  P(J, M | A)         P(A| E, B) P(E) P(B) 
 
       ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) 
 
   
    These conditional independence assumptions are reflected in 

the graph structure of the Bayesian network 

 
 
 

 



Constructing this Bayesian Network: Step 2 
 
• P(J, M, A, E, B) =     
         P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B) 
 
 
 
 

 
• There are 3 conditional probability tables (CPDs) to be determined: 

 P(J | A),  P(M | A),  P(A | E, B)  
– Requiring 2 + 2 + 4 = 8 probabilities 

 
• And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities 

 
 

• Where do  these probabilities come from? 
– Expert knowledge 
– From data (relative frequency estimates) 
– Or a combination of both - see discussion in Section 20.1 and 20.2 (optional) 

 
 
 
 
 
 

 



The Resulting Bayesian Network 



The Bayesian Network from a 
different Variable Ordering 



Computing Probabilities from a 
Bayesian Network 

 
 
P(B) 
.001 
  
B E P(A) 
t t .95 
t f .94 
f t .29 
f f .001 

 
 

P(E) 
.002 

A P(J) 
t .90 
f .05 

A P(M) 
t .70 
f .01 

B E 

A 

M J 

(Alarm) 

(Earthquake) (Burglary) 

(John calls) (Mary calls) 

Shown below is the Bayesian network for the Burglar Alarm problem, i.e., 
 P(J,M,A,B,E) = P(J | A) P(M | A) P(A | B, E) P(B) P(E).  

Suppose we wish to compute P( J=f ∧ M=t ∧ A=t ∧ B=t ∧ E=f ): 
 
P( J=f ∧ M=t ∧ A=t ∧ B=t ∧ E=f ) 

= P( J=f | A=t ) * P( M=t | A=t ) * P( A=t | B=t ∧ E=f ) * P( B=t ) * P( 
E=f ) 

 = .10 * .70 * .94 * .001 * .998 
 
Note:  P( E=f ) = [ 1 ─ P( E=t ) ] = [ 1 ─ .002 ) ] = .998 
           P( J=f | A=t ) = [ 1 ─ P( J=t | A=t ) ] = .10 



Inference in Bayesian Networks 
Simple Example 

A B 

C 

D 

} 
} 
} 

Query Variables A, B 

Hidden Variable C 

Evidence Variable D 

P(A) 
.05 
Disease1 

P(B) 
.02 
Disease2 

A B P(C|A,B) 
 t  t .95 
 t  f .90 
 f  t .90 
 f  f .005 
TempReg 

C P(D|C) 
 t     .95 
 f     .002 
Fever 

Note: Not an anatomically correct model of how diseases cause fever! 
 
Suppose that two different diseases influence some imaginary internal body 
temperature regulator, which in turn influences whether fever is present. 

(A=True, B=False | D=True) : Probability of getting Disease1 when we observe Fever 



Inference in Bayesian Networks 

• X = { X1, X2, …, Xk } = query variables of interest 
• E = { E1, …, El } = evidence variables that are observed 
• Y = { Y1, …, Ym } = hidden variables (nonevidence, nonquery) 

 
 

• What is the posterior distribution of X, given E? 
– P( X | e ) = α Σ y  P( X, y, e ) 

 
 

• What is the most likely assignment of values to X, given E? 
– argmax x P( x | e )  = argmax x  Σ y  P( x, y, e ) 

Normalizing constant α  = Σx  Σ y  P( X, y, e ) 



A B 

C 

D 

What is the posterior conditional 
distribution of our query variables, 
given that fever was observed? 
 
P(A,B|d) = α Σ c  P(A,B,c,d) 
 = α Σ c  P(A)P(B)P(c|A,B)P(d|c) 
 = α P(A)P(B) Σ c  P(c|A,B)P(d|c) 

P(A) 
.05 
Disease1 

P(B) 
.02 
Disease2 

A B P(C|A,B) 
 t  t .95 
 t  f .90 
 f  t .90 
 f  f .005 
TempReg 

C P(D|C) 
 t     .95 
 f     .002 
Fever 

P(a,b|d) = α P(a)P(b) Σ c  P(c|a,b)P(d|c) = α P(a)P(b){ P(c|a,b)P(d|c)+P(¬c|a,b)P(d|¬c) } 
 = α .05x.02x{.95x.95+.05x.002} ≈ α .000903 ≈ .014 
P(¬a,b|d) = α P(¬a)P(b) Σ c  P(c|¬a,b)P(d|c) = α P(¬a)P(b){ P(c|¬a,b)P(d|c)+P(¬c|¬a,b)P(d|¬c) } 
 = α .95x.02x{.90x.95+.10x.002} ≈ α .0162 ≈ .248 
P(a,¬b|d) = α P(a)P(¬b) Σ c  P(c|a,¬b)P(d|c) = α P(a)P(¬b){ P(c|a,¬b)P(d|c)+P(¬c|a,¬b)P(d|¬c) } 
 = α .05x.98x{.90x.95+.10x.002} ≈ α .0419 ≈ .642 
P(¬a,¬b|d) = α P(¬a)P(¬b) Σ c  P(c|¬a,¬b)P(d|c) = α P(¬a)P(¬b){ P(c|¬a,¬b)P(d|c)+P(¬c|¬a,¬b)P(d|¬c) } 
 = α .95x.98x{.005x.95+.995x.002} ≈ α .00627 ≈ .096 
α ≈ 1 / (.000903+.0162+.0419+.00627) ≈ 1 / .06527 ≈ 15.32    [Note: α = normalization constant, p. 493] 

Inference by Variable Elimination 



Mid-term Review 
Chapters 2-5, 13, 14 

• Review Agents (2.1-2.3) 
• Review State Space Search 

• Problem Formulation (3.1, 3.3) 
• Blind (Uninformed) Search (3.4) 
• Heuristic Search (3.5) 
• Local Search (4.1, 4.2) 

• Review Adversarial (Game) Search (5.1-5.4) 
• Review Probability & Bayesian Networks (13, 14.1-14.5) 

 
• Please review your quizzes and old CS-171 tests 

• At least one question from a prior quiz or old CS-171 test will 
appear on the mid-term (and all other tests) 


	Mid-term Review�Chapters 2-5, 13, 14
	Review Agents�Chapter 2.1-2.3
	Agents
	Agents and environments
	Rational agents
	Task Environment
	Environment types
	Environment types
	Review State Space Search�Chapters 3-4
	Problem Formulation
	Vacuum world state space graph
	Implementation: states vs. nodes
	Tree search vs. Graph search�Review Fig. 3.7, p. 77
	Solutions to Repeated States
	General tree search�Do not remember visited nodes
	General graph search�Do remember visited nodes
	Breadth-first graph search
	Uniform cost graph search: sort by g�A* is identical but uses f=g+h�Greedy best-first is identical but uses h
	Depth-limited search & IDS
	Blind Search Strategies (3.4)
	Search strategy evaluation
	Summary of algorithms�Fig. 3.21, p. 91
	Summary
	Heuristic function (3.5)
	Greedy best-first search
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Optimal Path
	Greedy Best-first Search�With tree search, will become stuck in this loop
	Properties of greedy best-first search
	A* search
	A* tree search example
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	A* search example:�Simulated queue.  City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	A* tree search example:�Simulated queue.  City/f=g+h
	Properties of A*
	Admissible heuristics
	Consistent heuristics�(consistent => admissible)
	Optimality of A* (proof)�Tree Search, where h(n) is admissible
	Dominance
	Local search algorithms (4.1, 4.2)
	Random Restart Wrapper
	Random Restart Wrapper
	Local Search Difficulties
	Local Search Difficulties
	Hill-climbing search
	Simulated annealing search
	P(accepting a worse successor) �Decreases as Temperature T decreases�Increases as |  E | decreases�(Sometimes step size also decreases with T)
	Goal:  “Ratchet” up a jagged slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Goal:  “Ratchet” up a jagged slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Genetic algorithms (Darwin!!)
	Slide Number 75
	Review Adversarial (Game) Search�Chapter 5.1-5.4
	Games as Search
	An optimal procedure:�The Min-Max method
	Two-Ply Game Tree
	Two-Ply Game Tree
	Pseudocode for Minimax Algorithm
	Properties of minimax
	Slide Number 83
	Static (Heuristic) Evaluation Functions
	Slide Number 85
	General alpha-beta pruning
	Alpha-beta Algorithm
	Pseudocode for Alpha-Beta Algorithm
	When to Prune? 
	α/β Pruning vs. Returned Node Value
	Alpha-Beta Example Revisited
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Review Probability (Chapter 13)�You will be expected to know
	Syntax
	Probability
	Conditional Probability
	Concepts of Probability
	Basic Probability Relationships
	Summary of Probability Rules
	Full Joint Distribution
	Computing with Probabilities: Law of Total Probability
	Computing with Probabilities:�The Chain Rule or Factoring
	Independence
	Conditional Independence
	Examples of Conditional Independence
	Review Bayesian Networks (Chapter 14.1-5)
	Bayesian Networks
	Bayesian Network
	Examples of 3-way Bayesian Networks
	Examples of 3-way Bayesian Networks
	Extended example of 3-way Bayesian Networks
	Examples of 3-way Bayesian Networks
	Naïve Bayes Model                  (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model                  (section 20.2.2 R&N 3rd ed.)
	Naïve Bayes Model (2)
	Bigger Example
	Constructing a Bayesian Network: Step 1
	Constructing this Bayesian Network: Step 2
	The Resulting Bayesian Network
	The Bayesian Network from a different Variable Ordering
	Computing Probabilities from a Bayesian Network
	Inference in Bayesian Networks�Simple Example
	Inference in Bayesian Networks
	Slide Number 136
	Mid-term Review�Chapters 2-5, 13, 14

