
Improving the Quality of Software
Using Testing and Fault Prediction

1

Professor Iftekhar Ahmed
Department of Informatics

https://www.ics.uci.edu/~iftekha/

About me

2

• Research focus: Software testing and analysis.

• 4 years of industry experience.

• Developed the first ever mobile commerce system in

Bangladesh.

• IBM Ph.D. Fellowship (2016, 2017).

• Contributor to Linux Kernel.

The Ariane Rocket Disaster (1996)

3

https://youtu.be/PK_yguLapgA?t=50s

Root cause

4

! Caused due to numeric overflow error
! Attempt to fit 64-bit format data in 16-bit space

! Cost
! $100M’s for loss of mission
!Multi-year setback to the Ariane program

!Read more at http://www.around.com/ariane.html

http://www.around.com/ariane.html

Software is a critical part of our life

5
Source: https://pbs.twimg.com/media/DWwOtruVMAAh1sD.jpg

(Harris et al. 2016)
Code growth and defect in Linux Kernel

Why should we care about software quality?

6

Number of connected devices in IOT
Source:Cisco

Cost of software failure is increasing

The cost of software failure in 2016

Source:Software Fail Watch

7

What do we do to make software better ?

8

We also need to think about the developer

• Lack of developer awareness
• Tools are difficult to use
• Tools are not scalable
• Time constraint

• And many more…

9

We need tools/techniques that are not only

Scalable, Effective

but also

Easy to use

Identifying factors impacting code quality

10

72%

9%

15%
4%

Code metrics Process metrics

Process and code metrics Socio technical metrics

Fault prediction metrics

(Hall et al. 2012)

4%

11

Fault prediction performance

(Hall et al. 2012)

12

We still need better predictors

Merge conflict

13

Merge conflict - a socio-technical factor

• Related to collaborative development work distribution.

• A developer has to interrupt their work

• An immediate concern.

• They are a common occurrence.

• In our corpus, over 19% of merges result in a conflict (6,979 merge conflicts out of 36,111 merges)

14

Prior work on merge conflict

• Merge conflict detection (Brun et al. 2013)

• Merge conflict resolution (Apel et al.2013)

• Awareness for reducing merge conflicts (Sarma et al. 2007)

• Merge conflict categorization (Brun et al. 2013)

What is the effect of merge conflict on code quality measured by bug
proneness and code smells?

15

Code smell, a technical factor

• Developed to identify future maintainability problems
• Neither syntax errors nor compiler warnings
• Symptoms of poor design or implementation choices

16

God class

“God class tends to concentrate functionality from several unrelated classes”
Arise when developers do not fully exploit the advantages of object-oriented design

High Coupling
(Capsules Providing Foreign Data)

Low Cohesion
(Tight Capsule Cohesion)

High Complexity
(Weighted Operation Count)

God ClassAND

17

Prior work on code smell

• Detection techniques (Palomba et al. 2013)

• Association with bugs (Oliva et al. 2013)

• Categorizations (Marticorena et al. 2006)

Interaction of code smell and merge conflict on code quality?

18

Steps of empirical analysis

19

Tracking program elements

Commits

NLP Classification

Bag of
words

Features

Classifier comparison

Statements

Code smell detection

Code smell categorization

Labeled commits

Github

900

AST walker

200

Builds
312

143

Lines of Code >= 500 & with merge conflicts

143

Merge conflict detection

Merge conflict categorization

Projects

Statements involved in
merge conflict and
having code smell

• Used 1,500 manually classified commits as
training data.

• Cohen's Kappa of 0.90.
• Analyzed 11,566 commits.
• Stop word removal
• Potter’s stemming

Github

900

AST walker

200

Builds
312

143

Lines of Code >= 500 & with merge conflicts

143

Merge conflict detection

Merge conflict categorization

Projects

Statements

Code smell detection

Code smell categorization

Commits

NLP Classification

Bag of
words

Features

Classifier comparison

Time

Tracking conflicted smelly lines

\

Lines involved in
merge conflict with

code smells

20

Steps of empirical analysis

21

Tracking program elements

Commits

NLP Classification

Bag of
words

Features

Classifier comparison

Statements

Code smell detection

Code smell categorization

Labeled commits

Github

900

AST walker

200

Builds
312

143

Lines of Code >= 500 & with merge conflicts

143

Merge conflict detection

Merge conflict categorization

Projects

Statements involved in
merge conflict and
having code smell

File,Project,Developer feature extraction

Merge conflict features using AST parser

Projects

Feature selection
Regression model

building

of bug fixes per
statement

Github

900

AST walker

200

Builds
312

143

Lines of Code >= 500 & with merge conflicts

143

Merge conflict detection

Merge conflict categorization

Projects

Statements

Code smell detection

Code smell categorization

Commits

NLP Classification

Bag of
words

Features

Classifier comparison

Features

22

Program elements involved in a merge conflict have an average of 6.54 smells,
while those that don't have an average of 1.92.

Relationship between code smells and merge conflict

Elements involved in a conflict contain 3x more
code smells than element not involved in a

conflict.

23

Which code smells are more associated with merge conflict?

Smell
Pearson correlation
coefficient with # of

conflicts

God Class 0.18

Internal Duplication 0.17

Distorted Hierarchy 0.13

These 3 smells are indicative of bad code structure,
at a class level.

24

Factor Coefficients
In Deps 3.19

Out Deps -0.05
Noncore author -3.79

No. Authors 0.12
No. Classes -0.37
No. Methods 0.24

AST diff 0.00
LOC diff 0.01

No. of Smells 0.42

What about bugs?

25

Ahmed et al. 2018 (work in progress)

What does this mean?

• A new socio-technical factor for bug prediction

• Statements involved in a merge conflict with
code smells

• Elements involved in a conflict contain 3x more code smells than element not involved in a conflict.

• All smells do not contribute equally.

Week-wise average project smelliness
Ahmed et al. 2015

• Longer a project runs the more smelly it becomes.

• More likely to run into merge conflicts.

26

27

What about systems that behave stochastically?

Stochastic systems

28

• Stochastic in nature

• Bugs in are often non-deterministic.

Number of autonomous and semi-autonomous cars
Source:JP morgan Number of connected devices in IOT

Source:Cisco

Revenue from AI enterprise applications
Source: Statistica

Testing challenges for autonomous vehicles

29

Tesla autopilot failed to recognize a white truck against
bright sky leading to fatal crash

Enter mutation analysis

30

• Addressing the Oracle Problem

d = b^3 - 4 * a * c

d = b^2 + 4 * a * c

d = b^2 - 4 + a * c

(a = 0, b = 0, c = 0) => (d = 0)

(a = 1, b = 1, c = 1) => (d = -3)

(a = 0, b = 2, c = 0) => (d = 4)

Mutants killed by
test cases

Test
cases

• Mutants look like real bugs

The mutation analysis process

31

Original

Program

Create

Mutants

Mutated

Program
Test

s
Test

Mutants
Any Live
mutants

Any mutations that
are caught by tests
are killed No

Test
Complete

Yes

Problems
with tests

New

Tests

New Test data

Update Test suite

Simulating robust physical perturbations
• Mutating inputs to each subsystem (Fuzzing)

32
Evtimov et al. 2017

• Ensuring mutated inputs are realistic
• Identifying important regions of the image using saliency map
• Adversarial testing meets mutation testing
• Mutating combinations of subsystems together (Higher Order Mutants)

Conclusion

33

