UCI University of
California, Irvine

Improving the Quality of Software
Using Testing and Fault Prediction

Professor Iftekhar Ahmed
Department of Informatics
https://www.ics.uci.edu/~iftekha/

About me

Research focus: Software testing and analysis.

4 years of industry experience.
e Developed the first ever mobile commerce system in
Bangladesh.
IBM Ph.D. Fellowship (2016, 2017).

Contributor to Linux Kernel.

The Ariane Rocket Disaster (1996)

https://youtu.be/PK ygulLapgA?t=50s

Root cause

e Caused due to numeric overflow error
e Attempt to fit 64-bit format data in 16-bit space

e Cost
e $100M’s for loss of mission
e Multi-year setback to the Ariane program

e Read more at http://www.around.com/ariane.html

http://www.around.com/ariane.html

Software is a critical part of our life

Source: https://pbs.twimg.com/media/DWwOtruVMAAh1sD.jpg

5

Why should we care about software quality?

1,400
1,200

«» 1,000

H

« 800

2 600

£

]

Z 400
200
0

1,000
I I I
2.2.16 2.4.5 2.4.19 2.4.21

1,200

Billions of devices

60

vl
o

=y
o

w
o

N
o

[
o

50.1
42.1

34.8
28.4
14.2
% I

2012 2013 2014 2015 2016 2017 2018 2019 2020

Code growth and defect in Linux Kernel
(Harris et al. 2016)

Number of connected devices in IOT

Source:Cisco

Cost of software failure is increasing

USD $1.1 trillion 363 companies

in assets affected

4.4 billion customers
affected lost years

The cost of software failure in 2016
Source:Software Fail Watch

What do we do to make software better ?

We also need to think about the developer

e Lac We need tools/techniques that are not only
° TOO| Scalable, Effective

but also

Easy to use

ldentifying factors impacting code quality

-

Technical aspects \

. Development
workflow

Fault prediction metrics

= Code metrics ® Process metrics

al metrics

(Hall et al. 2012)

11

Fault prediction performance

Performance
o O O O o O o O (=]

M Precision M Recall B F-measure

(Hall et al. 2012)

12

Merge conflict

Alice Master Bob
t1 [fy.fs.fs] Alice's first commit
t, [fy.f2] Bob's first commit
ts) Alice's merge commit

ts [f7.fa] () Bob's second commit

ts C}/ Bob's merge commit

DC = E, NE, DirectConflicts: { f,}

O Some checks were not successful Hide all checks

1 errored and 1 successful checks

X & continuous-integration/travis-ci/pr — The Travis Cl build could not complete ... Details
v @ continuous-integration/appveyor/pr — AppVeyor build succeeded Details

IS branci as conftlicis that must be resolve
Only those with write access to this repository can merge pull requests.

Conflicting files

runtime-testsuite/test/org/antlr/v4/test/runtime/java/api/TestVisitors. java

Merge conflict - a socio-technical factor

* Related to collaborative development work distribution.
A developer has to interrupt their work

« An immediate concern.
« They are a common occurrence.

* In our corpus, over 19% of merges result in a conflict (6,979 merge conflicts out of 36,111 merges)

.}" O Some checks were not successful Hide all checks
1 errored and 1 successful checks —_—

<

x & continuous-integration/travis-ci/pr — The Travis Cl build could not complete ... Details

v & continuous-integration/appveyor/pr — AppVeyor build succeeded Details

Conflicting files

runtime-testsuite/test/org/antlr/vd4/test/runtime/java/api/TestVisitors. java

14

Prior work on merge conflict

- Merge conflict detection (Brun et al. 2013)
« Merge conflict resolution (Apel et al.2013)
- Awareness for reducing merge conflicts (Sarma et al. 2007)

- Merge conflict categorization (Brun et al. 2013)

What is the effect of merge conflict on code quality measured by bug
proneness and code smells?

15

Code smell, a technical factor

- Developed to identify future maintainability problems
* Neither syntax errors nor compiler warnings
- Symptoms of poor design or implementation choices

BAD CODE

@& O\

God class

“God class tends to concentrate functionality from several unrelated classes”
Arise when developers do not fully exploit the advantages of object-oriented design

Main Controller Class

Records

Images

1]

N

Table2

+ Data_List_Provider
+ Status

+ Mode

+ User

+ Group

+ Date_Time

+ ACL

ErrorSet]

Datal

Group4

v

+ Start()

+ Stop()

+ Initialize()

+ Set_Mode()
+ Login()

+ Set_Status()
+ Do_This()

+ Do_That()

Users

\ Figurel

17

High Coupling

(Capsules Providing Foreign Data)

Low Cohesion

(Tight Capsule Cohesion)

High Complexity

(Weighted Operation Count)

AND

God Class

Prior work on code smell

e Detection techniques (Palomba et al. 2013)
e Association with bugs (Oliva et al. 2013)

e Categorizations (Marticorena et al. 2000)

[Interaction of code smell and merge conflict on code quality?]

18

Steps of empirical analysis

Github —
900 Bag of
Builds words
312 3 . Features
AST walker Commits 2l R . .a s
po rasssnaniy NLP |Classification | | |25 TPite positive
Lines of Code >= with merge conflicts R) . . .
- te negative + False positive
e Classifier comparison .
o USe) mz_an,!,rltg y classitie commits ¢
‘True positive
Merge conflict detection Recall = — -
True negative + False negative
Merge conflict categorization]
;Sta;ments :
... Precision * Recall
Code smell detection F measure = 2 * —
Tracking p)gram elements Precision + Recall
Code smell categorization

Statements involved in
merge conflict and 1 9
having code smell

Tracking conflicted smelly lines

—
O
N

G ——

Bug fix Bugfix ~ Other

L 9

g

' Q

A
T

merge conflict with
eeeeeeeeee

5.
(¢

20

Steps of empirical analysis

Github
900
Builds

\12/

AST walker

200
with merge conflicts

Lines of Code >=

Merge conflict detection

Merge conflict categorization

.llllIllllIllIllIllllllllllllllllllllll‘Ill
i Statements

u

Code smell detection

Code smell categorization

Statements involved
merge conflict and
having code smell

Commits

'..‘ Projects

*

=
Bag of
words
A Features
0" ..’
+* A
NLP Classification

Classifier comparison

File,Project,Developer feature extraction

Merge conflict features using AST parser

Features
."0.
R

Tracking program elements

in

* L] .0
“
tans® = =P
H

Feature selection

Regression model
building

statement

of bug fixes per

22

Relationship between code smells and merge conflict

Program elements involved in a merge conflict have an average of 6.54 smells,
while those that don't have an average of 7.92.

Elements involved in a conflict contain 3x more

code smells than element not involved in a
conflict.

23

Which code smells are more associated with merge conflict?

Pearson correlation
Smell coefficient with # of
conflicts

God Class

Internal Duplication

Distorted Hierarchy

These 3 smells are indicative of bad code structure,
at a class level.

24

What about bugs?

Factor
In Deps

o) - .
VulL weps

Noncore author
No. Authors
No. Classes
No. Methods

AST diff
LOC diff
No. of Smells

Coefficients

25

Review to commit ratio

°© o o
8 8

e
8 8 8 8

© ©
8 8

2.00
0.9
0.64

Linux kernel

1.92
7 1.00
0.14
GCC Python

M Core M Non-core

Open Office

OpenMRS

Ahmed et al. 2018 (work in progress)

What does this mean?

e Elements involved in a conflict contain 3x more code smells than element not involved in a conflict.

e All smells do not contribute equally.

0.15-

Longer a project runs the more smelly it becomes.

o
L

e More likely to run into merge conflicts.

Normalized Smell Count
o
:

e A new socio-technical factor for bug prediction

;

e Statements involved in a merge conflict with)
code smells : - - - —

Week

Week-wise average project smelliness
Ahmed et al. 2015

26

What about systems that behave stochastically?

¢

27

Stochastic systems

e Stochastic in nature

° Bugs N are ¢ s | e |

31,236.92

B0, ------nnnmmmmmemssssssssssssssssssm s S oo D B D D B S e S S e e I A3 6 A h L b B e b B e e A A AR A AL A S S S S SRR

20
18 ‘ 50.1
— 25000 --- L T BB T | |
§ 16 e 42.1
= 14 | |3
E | g 7 1] 1| |1 R R R R o T e L A ook ol oo e ool oo SO R S SL ST SIS I SISURT ST SURRIe st ELSLSLLn [] 34.8
g 12 § 8.4
3 10 | B .
3 a | é 15m0 ... 1 '
é 4 _/ 10000 oo SSSSSUUUUIURURUUSUIUIURURIURURURUUUPIUIURURIURURUUUUUUUUUIUOITRo WU e 00 |
2 o050 075 1.0 '
o | - . A g
50w .. 1 |

2,867.54

2017 2018 201

. S 1.622.4 5 2017 2018 2019 2020
0 —— B - L
2016* 2017* 2018* 2019* 2020* 2021* 2022 2023* 2024* 2025* F
Number of autonor Revenue from Al enterprise applications devices in IOT
St Y Source: Statistica

Source:Cisco

28

Testing challenges for autonomous vehicles

Tesla autopilot failed to recognize a white truck against

bright sky leading to fatal crash

29

Enter mutation analysis

NOT SURE IF QUALITY IS REALLY
GOOD

e Addressing the Oracle Problem

e Mutants look like real bugs
A =b? — 4dac

OR TESTING WAS REALLY LOUSY

Ly

. .
. .
“““
. "
“““
. .
. .
. Y
. ",
* “,
. [.
. G
.....
[3d ay
. ay
[,
«
. LY
[N ",
. .
. ~y
[N ,
“““
.* “
“““
-

d=bAr3-4*a*c d=br2-4+a*c

@ d=b+4*a*c @

@» (@=0,b=0,c=0)=>(d=0)
Mutants killed by Test @G» (a=1,b=1,c=1)=>(d=-3)

cases
test cases @E» (@=0,b=2,c=0)=>(d=4)

30

The mutation analysis process

@ D
Original
@ _Program Update Test suite New
Create Tests 7
Mutan : New Test data

Test

T / Yes
T E? Any mutatidvisttids
m are caught by tests | Any Live

AN 2 are Killed '

mutants No

Test

31

Simulating robust physical perturbatlons

-
e Mutating inputs to each subsystem (Fuzzing) 'ﬁ

e Mutating combinations of subsystems together (Higher Order Mutants) w
- Adversarial testing meets mutation testing

¢ |dentifying important regions of the image using saliency map
e Ensuring mutated inputs are realistic

(a) Original Image (b) Saliency map

Evtimov et al. 2017
32

Conclusion

Software is a critical part of our life _
Testing works but ... Stochastic systems and Flaky test

+ Test coverage is not enough. * Stochastic in nature

» There is a limit on return on investment. * Bugs in are often non-deterministic.
* High _coverag.e doesn’t guarantee bug free software. o A flaky test is a test which could fail or pass for the same configuration
+ Continuous improvement related to coverage (vs. mere

measure of “tested or not?”) is not evident

+ We need to move beyond coverage to measure the quality of the in the code
tests.

¢ Harmful to developers because test failures do not always indicate bugs

Unique challenges Rise of Machine Learning

31269

~ e

= '

Revenue from Al enterprise applications

Source: Statistica

33

