

This young bird closely resembles its parents which are about a third larger. The white flecks on the face are maliophaga eggs. Most bird ice taxa found on Hostman are unique to this host. © 2009 Photo and Comment by **Petrogytyh** Licensed under Draitbe Common <u>Mitschim 2.0 or Uniter version</u> <u>Ambedien 2.0 or Uniter version</u>

Machine Learning and Discrete Algorithms for Reconstructing the Tree of Life

Tandy Warnow The University of Illinois

My research (overview)

- Machine learning in bioinformatics (e.g., ensembles of profile Hidden Markov Models)
- Novel heuristics for NP-hard optimization problems
- Discrete and graph-theoretic algorithms for phylogeny estimation
- Collaborations with biologists and historical linguists

Phylogeny (evolutionary tree)

From the Tree of the Life Website, University of Arizona

Phylogeny estimation as a statistical problem

• Assume DNA sequences are generated on an unknown model tree, and try to infer the tree from the observed sequences seen at the leaves

NP-hard optimization problems Large datasets Years of CPU time for standard methods

This research combines many types of computer science: Algorithm design, proofs, implementation, simulations and testing

Statistical Consistency/Identifiability

error

Data

error

Length of the genome

Gene tree discordance

Multiple causes for discord, including

- Incomplete Lineage Sorting (ILS),
- Gene Duplication and Loss (GDL), and
- Horizontal Gene Transfer (HGT)

Gene tree discordance

Multiple causes for discord, including

- Incomplete Lineage Sorting (ILS),
- Gene Duplication and Loss (GDL), and
- Horizontal Gene Transfer (HGT)

Avian Phylogenomics Project

Erich Jarvis, HHMI MTP Gilbert, Copenhagen Guojie Zhang, BGI Siavash Mirarab, Texas Tandy Warnow, Texas and UIUC

- Approx. 50 species, whole genomes
- 14,000 loci
- Multi-national team (100+ investigators)
- 8 papers published in special issue of Science 2014

Major challenge: Massive gene tree heterogeneity

ASTRAL

- [Mirarab, et al., ECCB/Bioinformatics, 2014]
- Optimization Problem (NP-Hard):

Find the species tree with the maximum number of induced quartet trees shared with the collection of input gene trees

Set of quartet trees induced by T
$$Score(T) = \sum_{t \in \mathcal{T}} |Q(T) \cap Q(t)|$$
 a gene tree all input gene trees

• **Theorem**: <u>Statistically consistent</u> under the multispecies coalescent model when solved exactly

ASTRAL

[Mirarab, et al., ECCB/Bioinformatics, 2014]

• Optimization Problem (NP-Hard):

a gene tree

Find the species tree with the maximum number of induced <u>quartet trees</u> shared with the collection of input gene trees

> Set of quartet trees induced by T $Score(T) = \sum |Q(T) \cap Q(t)|$ all input gene trees

ASTRAL uses dynamic programming to solve a constrained version of this problem, and is provably statistically consistent

• Theorem: Statistically consistent under the multispecies coalescent model when solved exactly

 $t \in \mathcal{T}$

ASTRAL – pros and cons

- The good: ASTRAL is
 - Most popular statistically consistent method for species tree estimation among biologists
 - Very fast for many datasets (much faster than concatenation)
- The mixed:
 - Concatenation can be more accurate under some conditions
- The bad:
 - ASTRAL can fail to complete on large enough datasets within reasonable time frames (days of computation)

Divide-and-Conquer using Disjoint Tree Mergers

Compute tree on entire set of species using "Disjoint Tree Merger" method

Divide-and-Conquer using Disjoint Tree Mergers

Impact of using TreeMerge with ASTRAL-III on 1000 species and 1000 genes

Theorem: TreeMerge+ASTRAL is **statistically consistent** and **polynomial time**

Empirical: TreeMerge maintains accuracy, reduces running time, and improves scalability

Bioinformatics, Volume 35, Issue 14, July 2019, Pages i417–i426, https://doi.org/10.1093/bioinformatics/btz344

DTMs can be used for <u>any tree estimation problem</u>

Compute tree on entire set of species using "Disjoint Tree Merger" method

Gene tree discordance

Multiple causes for discord, including

- Incomplete Lineage Sorting (ILS),
- Gene Duplication and Loss (GDL), and
- Horizontal Gene Transfer (HGT)

Gene Family Trees

The species tree has one duplication (at the root), which produces a gene family tree that has two copies of the species tree!

Multi-copy trees: MUL-trees

Figure by Luay Nakhleh, TREE 2013

Problem: Given set of MUL-trees, infer the species tree

Many methods, but until Fall 2019, none proven statistically consistent under GDL

three losses.

Papers on bioRxiv (under review)

Theorem (Molloy and Warnow, 2019): FastMulRFS is statistically consistent under a generic duplication-only or loss-only model, and runs in polynomial time.

Theorem (Molloy and Warnow, 2019): FastMulRFS is statistically consistent under a generic duplication-only or loss-only model, and runs in polynomial time.

Note: Both methods use dynamic programming to solve NP-hard **discrete optimization problems** within constrained search space in polynomial time.

Theorem (Molloy and Warnow, 2019): **FastMulRFS** is statistically consistent under a generic duplication-only or loss-only model, and runs in polynomial time.

Note: Both methods use dynamic programming to solve NP-hard **discrete optimization problems** within constrained search space in polynomial time.

Results on data (100 species):

- FastMulRFS and MulRF tied for best in terms of accuracy
- FastMulRFS is by far the fastest

Data: 100 species, moderate GDL, moderately high ILS, high gene tree estimation error

ASTRAL DupTree FastMulRFS MulRF

Molloy and Warnow, bioRxiv 2019 doi: https://doi.org/10.1101/835553

Opportunities for PhD students:

- Large impact on biology through innovative algorithm design
- Interesting mathematical problems, including discrete algorithms and machine learning
- Not necessary to understand biology (seriously!)
- Most important skills: enjoying coding, testing, looking at data, and collaborating with other people.
- Many types of research: high performance computing, parallel algorithms, graph algorithms, combinatorial optimization, machine learning, etc.

My students go on to successful careers in academia (UCSD, Rice, etc.) and industry (Apple, Google, Amazon)

Acknowledgments

Papers available at <u>http://tandy.cs.illinois.edu/papers.html</u> Presentations available at <u>http://tandy.cs.illinois.edu/talks.html</u>

Funding: NSF (CCF 1535977 and also NSF Graduate Fellowship to Erin Molloy) **Supercomputers:** Blue Waters and Campus Cluster, both supported by NCSA

Phylogenetic Inference

"Big Data":

- Heterogeneous
- Large
- Noisy
- Error-ridden
- Streaming
- Model-misspecification

Approaches:

- NP-hard optimization problems and large datasets
- Statistical estimation under stochastic models of evolution
- Probabilistic analysis of algorithms
- Graph-theoretic divide-and-conquer
- Chordal graph theory
- Combinatorial optimization