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My research (overview)

•Machine learning in bioinformatics (e.g., ensembles of 
profile Hidden Markov Models)
• Novel heuristics for NP-hard optimization problems
• Discrete and graph-theoretic algorithms for phylogeny 

estimation
• Collaborations with biologists and historical linguists



Orangutan Gorilla Chimpanzee Human

From the Tree of the Life Website,
University of Arizona

Phylogeny (evolutionary tree)



Phylogeny Problem
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Phylogeny estimation as a statistical problem

• Assume DNA sequences are generated on an unknown model tree, and try 
to infer the tree from the observed sequences seen at the leaves

NP-hard optimization problems
Large datasets
Years of CPU time for standard methods

This research combines many types of computer science:
Algorithm design, proofs, implementation, simulations and testing



Statistical Consistency/Identifiability

error

Data



Genome-scale data?

error

Length of the genome 



Gene tree discordance
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Multiple causes for discord, including 
• Incomplete Lineage Sorting (ILS), 
• Gene Duplication and Loss (GDL), 

and
• Horizontal Gene Transfer (HGT)
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Avian Phylogenomics Project 
Erich Jarvis, 
HHMI 

Guojie Zhang,  
BGI 

•  Approx. 50 species, whole genomes 
•  14,000 loci 
•  Multi-national team (100+ investigators) 
•  8 papers published in special issue of Science 2014 

Biggest computational challenges:  
 1. Multi-million site maximum likelihood analysis (~300 CPU years, 
  and 1Tb of distributed memory, at supercomputers around world) 
 2. Constructing “coalescent-based” species tree from 14,000  
  different gene trees 
  

MTP Gilbert, 
Copenhagen 

Siavash Mirarab,   Tandy Warnow, 
Texas                Texas and UIUC 

Major challenge: Massive gene tree heterogeneity
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Gene evolution model
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ACTGC-CCCCG  
AATGC-CCCCG  
-CTGCACACGG
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Sequence evolution model
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Sequence data
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Gene tree Gene tree Gene tree Gene tree

Step 1: infer gene trees (traditional methods)

Step 2: infer species trees



ASTRAL 
[Mirarab, et al., ECCB/Bioinformatics, 2014]

• Optimization Problem (NP-Hard):

• Theorem: Statistically consistent under the multi-
species coalescent model when solved exactly

15

Find the species tree with the maximum number of induced 
quartet trees shared with the collection of input gene trees

Set of quartet trees 
induced by T

a gene tree

Score(T ) =
X

t2T
]Q(T�)�\�Q(t)]

all input gene trees
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ASTRAL uses 
dynamic 
programming 
to solve a 
constrained 
version of this 
problem, and is 
provably 
statistically 
consistent



ASTRAL – pros and cons

• The good: ASTRAL is
• Most popular statistically consistent method for species tree estimation 

among biologists
• Very fast for many datasets (much faster than concatenation) 

• The mixed: 
• Concatenation can be more accurate under some conditions

• The bad: 
• ASTRAL can fail to complete on large enough datasets within reasonable time 

frames (days of computation)



Decompose 
species set into 
pairwise disjoint 
subsets.Full

species
set

Build a tree on each
subset

Compute tree on entire set of species 
using “Disjoint Tree Merger” method

Tree
on full

species set

Auxiliary
Info

(e.g., distance
matrix)

Divide-and-Conquer using Disjoint Tree Mergers
Note: use most 
accurate method 
on subsets, and 
treat as absolute 
constraints
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Bioinformatics, Volume 35, Issue 14, July 2019, Pages i417–i426, https://doi.org/10.1093/bioinformatics/btz344

The content of this slide may be subject to copyright: please see the slide notes for details.

Impact of using TreeMerge with ASTRAL-III on 1000 species and 1000 genes

Theorem: 
TreeMerge+ASTRAL
is statistically consistent 
and polynomial time

Empirical: TreeMerge 
maintains accuracy, 
reduces running time, 
and improves scalability



Decompose 
species set into 
pairwise disjoint 
subsets.Full

species
set

Build a tree on each
subset

Compute tree on entire set of species 
using “Disjoint Tree Merger” method

Tree
on full

species set

Auxiliary
Info

(e.g., distance
matrix)

DTMs can be used for any tree estimation problem
Note: use most 
accurate method 
on subsets, and 
treat as absolute 
constraints
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Figure by Luay Nakhleh, TREE 2013

The species tree has one 
duplication (at the root), 
which produces a gene 
family tree that has two 
copies of the species tree!

Multi-copy trees: MUL-trees

Gene Family Trees



Problem: Given set of MUL-trees, infer the species treeFastMulRFS 7

Y

A B C D

(a) Species tree T ⇤

dup

D

Y1

A1 B1 C1

Y2

A2 B2 C2

(b) Gene tree M1 with one duplication.

dup

D

Y1

A1 X C1

Y2

A2 B2 X

(c) Gene tree M2 with one duplication
and two losses.

dup

D

Y1

A1 X C1

Y2

X B2 X

(d) Gene tree with one duplication and
three losses.

Fig. 2: Impact of gene duplications and losses on species tree estimation

using RFS-multree methods. Subfigure (a) shows a species tree T
⇤ and

subfigures (b) through (d) show three gene family trees that evolved within
the species tree. Subfigure (b) shows gene family tree M1 with a duplication
event in species Y (i.e., the most recent common ancestor of species A, B, and
C). Note that all edges in M1 below the duplication node (shown in red) fail
to induce bipartitions and so will be contracted, and will therefore not impact
the solution space for the RFS-multree criterion. Subfigure (c) shows gene tree
M2 with a duplication event in species Y followed by the first copy of the gene
being lost from species B and the second copy of the gene being lost from
species C. Because one of the species that evolved from Y retains both copies of
the gene, the non-trivial edges in M2 below the duplication node fail to induce
bipartitions, and so these edges also do not impact the solution space for RFS-
multree. Subfigure (d) shows gene family tree M3 with a duplication event in
species Y followed by the first copy of the gene being lost from species B and
the second copy of the gene being lost from both species A and C. None of the
species that evolved from Y retain both copies of the gene, so all edges below the
duplication node induce bipartitions and hence will not be contracted; we refer
to this situation as “adversarial gene duplication and loss,” because it produces
bipartitions in the singly-labeled trees in PX that conflict with the species tree
(shown in blue). Such a scenario leads to the possibility that the true species
tree may not be an optimal solution to the RFS-multree problem.

Many methods, but 
until Fall 2019, none 
proven statistically 
consistent under GDL



Theorem (Legried, Molloy, Warnow, and Roch, 
2019): ASTRAL-multi is statistically consistent 
under GDL and runs in polynomial time.

Theorem (Molloy and Warnow, 2019): 
FastMulRFS is statistically consistent under a 
generic duplication-only or loss-only model, and 
runs in polynomial time.

Note: Both methods use dynamic programming 
to solve NP-hard discrete optimization problems 
within constrained search space in polynomial 
time.

Papers on bioRxiv (under review)
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FastMulRFS vs MulRF, ASTRAL-multi, and DupTree

28 Molloy and Warnow
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Fig. 5: Species tree error (i.e., normalized RF distance) and running time (sec-
onds) are shown for FastMulRFS, MulRF, ASTRAL-multi, and DupTree under
the easier model conditions, each with 100 species. The model conditions have
substantial GTEE (52%), low GDL (D/L rate: 1⇥ 107), very low ILS (2%), and
varying numbers of genes. Red dots (first row of each subfigure) and bars (second
row of each subfigure) are means for 10 replicate data sets.
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Fig. 6: Species tree error (i.e., normalized RF distance) and running time (sec-
onds) are shown for FastMulRFS, MulRF, ASTRAL-multi, and DupTree, under
the harder model conditions, each with 100 species. The model conditions have
substantial GTEE (52%), high GDL (D/L rate: 5⇥ 107), moderate ILS (12%),
and varying numbers of genes. Red dots (first row of each subfigure) and bars
(second row of each subfigure) are means for 10 replicate data sets.

Results on 100-species datasets with moderate GDL, moderately high ILS, and high GTEE
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Results on 100-species datasets with moderate GDL, moderately high ILS, and high GTEE

Results on data (100 species): 

• FastMulRFS and MulRF tied for 
best in terms of accuracy

• FastMulRFS is by far the fastest

Molloy and Warnow, bioRxiv 2019 
doi: https://doi.org/10.1101/835553

Data: 100 species, moderate GDL, moderately high ILS, 
high gene tree estimation error



Opportunities for PhD students:

• Large impact on biology through innovative algorithm design
• Interesting mathematical problems, including discrete algorithms and 

machine learning
• Not necessary to understand biology (seriously!)
• Most important skills: enjoying coding, testing, looking at data, and 

collaborating with other people.
• Many types of research: high performance computing, parallel algorithms, 

graph algorithms, combinatorial optimization, machine learning, etc.

My students go on to successful careers in academia (UCSD, Rice, etc.) and 
industry (Apple, Google, Amazon)



Acknowledgments

Papers available at http://tandy.cs.illinois.edu/papers.html

Presentations available at http://tandy.cs.illinois.edu/talks.html

Funding: NSF (CCF 1535977 and also NSF Graduate Fellowship to Erin Molloy)

Supercomputers: Blue Waters and Campus Cluster, both supported by NCSA

http://tandy.cs.illinois.edu/papers.html
http://tandy.cs.illinois.edu/talks.html


Approaches:
• NP-hard optimization problems and large datasets
• Statistical estimation under stochastic models of evolution 
• Probabilistic analysis of algorithms
• Graph-theoretic divide-and-conquer
• Chordal graph theory
• Combinatorial optimization

“Big Data”:
• Heterogeneous
• Large
• Noisy
• Error-ridden
• Streaming
• Model-misspecification


