ABSTRACT
Motivation: Direct recognition, or direct readout, of DNA bases by a DNA-binding protein involves amino acids that interact directly with features specific to each base. Experimental evidence also shows that in many cases the protein achieves partial sequence specificity by indirect recognition, i.e., by recognizing structural properties of the DNA. (1) Could threading a DNA sequence onto a crystal structure of bound DNA help explain the indirect recognition component of sequence specificity? (2) Might the resulting pure-structure computational motif manifest itself in familiar sequence-based computational motifs?

Results: The starting structure motif was a crystal structure of DNA bound to the integration host factor protein (IHF) of E. coli. IHF is known to exhibit both direct and indirect recognition of its binding sites. (1) Threading DNA sequences onto the crystal structure showed statistically significant partial separation of 60 IHF binding sites from random and intragenic sequences and was positively correlated with binding affinity. (2) The crystal structure was shown to be equivalent to a linear Markov network, and so, to a joint probability distribution over sequences, computable in linear time. It was transformed algorithmically into several common pure-sequence representations, including (a) small sets of short exact strings, (b) weight matrices, (c) consensus regular patterns, (d) multiple sequence alignments, and (e) phylogenetic trees. In all cases the pure-sequence motifs retained statistically significant partial separation of the IHF binding sites from random and intragenic sequences. Most exhibited positive correlation with binding affinity. The multiple alignment showed some conserved columns, and the phylogenetic tree partially mixed low-energy sequences with IHF binding sites but separated high-energy sequences. The conclusion is that deformation energy explains part of indirect recognition, which explains part of IHF sequence-specific binding.

Availability: Code and data on request.
Contact: Nick Steffen for code and Lorenzo Toller for data. nsteffen@uci.edu, Lorenzo_Toller@chiron.it

Keywords: protein-DNA binding sites; sequence motifs or patterns; indirect recognition or readout; integration host factor; IHF.

INTRODUCTION
Sequence implies structure which implies function, and consequently clues to structure, function, and evolution abound in sequence patterns. The sequence patterns considered here govern protein-DNA binding. Some proteins bind more strongly to certain regions of DNA than to other regions, and this is governed by the free binding energy of the protein-DNA interaction.

Sequence motif representations
Common representations for sequence motifs include (a) small sets of short exact strings (e.g., van Helden et al., 1998), (b) weight matrices (e.g., Lawrence et al., 1993), and (c) consensus regular patterns (e.g., Vilo et al., 2000).

Small sets of short exact strings, often those over-represented in the genome, contain strings that occur in protein binding sites or fragments of sites. A weight matrix has rows for bases and columns for sequence motif positions. Here, entries are the probability of observing the base corresponding to the row at the sequence motif position corresponding to the column. A consensus regular pattern (also called a regular expression pattern or a consensus sequence) has a disjunction of bases at each sequence motif position, sometimes augmented by variable-length gaps.

Multiple alignments and phylogenetic trees are also popular tools for depicting related sequences. A multiple alignment shows conservation in its columns, a phylogenetic tree in the way it clusters sequences.

Direct and indirect recognition
Direct recognition occurs when protein amino acid side-chains interact with specific bases in DNA sequences. The pattern of amino acid-nucleotide contacts extracted from a crystal structure can serve as a template for DNA bases.
which define sequence motif positions (Benos et al., 2001; Mandel-Gutfreund et al., 2001). The individual entries of a weight matrix can be interpreted as the binding energies of single base-pairs to the protein’s DNA-binding surface.

There is mounting evidence that DNA structural properties, beyond direct recognition of individual bases, significantly affect protein-DNA interactions (Baldi and Lathrop, 2001, and references therein). Several well-studied experimental systems exhibit what has come to be called indirect readout or indirect recognition. In this case, the protein appears to recognize structural properties of the double helix (Chen et al., 2001, and references therein).

Indirect readout mechanisms include recognition by the protein of structural features in the DNA major and minor grooves, backbone features, intrinsic curvature, hydration shells or spines, and flexibility or deformability.

Some computational methods have successfully identified indirect readout structure motifs. The deformation energy used here (Olson et al., 1998) leads to low-energy movements characteristic of the transition between B-form and A-form DNA, and so to A-form conformational motifs (Lu et al., 2000). Structure motifs based on minor groove opening (Liu et al., 2000) show that including both sequence and structure motifs improves recognition, and strong minor groove base conservation in sequence logos has been shown to imply DNA distortion or base flipping (Schneider, 2001). DNA structural scales combined with Hidden Markov Models have been used to find promoters and discover DNA structural patterns (Baldi et al., 1998).

In the work most closely related to the threading aspects of this paper, Sarai and colleagues independently applied structure-based threading methods to both direct (Kono and Sarai, 1999) and indirect (Sarai et al., 2001) recognition of protein-DNA binding sites. They showed that both mechanisms contribute significantly to protein-DNA recognition specificity, that their relative contribution varies, and that their combination increases accuracy.

Integration host factor (IHF) protein

IHF occurs ubiquitously in prokaryotes, and has both architectural and regulatory roles (Rice, 1997). It binds DNA non-specifically as a histone-like multipurpose bender of DNA, plays a role in replication, and is necessary for the formation of recombinogenic complexes. In its regulatory role, which concerns this paper, it binds DNA specifically and serves as a transcription factor. Proteins with these properties have been described in all organisms (Hatfield and Benham, 2002).

Its high specificity of binding is obtained despite a relaxed sequence dependency, which makes IHF binding a good example of indirect recognition (Toller et al., 2002). IHF interacts directly with only three bases in the DNA sequence (Rice et al., 1996). This in part explains why consensus-based prediction methods perform poorly with IHF. Sequences that are known to bind IHF strongly will often, but not always, have a short core sequence motif and an AT-rich region flanking this core. The core motif is highly degenerate (Goodrich et al., 1990; Engelhorn et al., 1995; Ussery et al., 2001).

This paper

This paper asks two questions: (1) Could threading a DNA sequence onto a crystal structure of bound DNA help explain the indirect recognition component of sequence specificity? (2) Might the resulting pure-structure computational motif manifest itself in familiar sequence-based computational motifs? The answer shown here is that: (1) Threading methods can partially explain both binding site recognition and binding strength. (2) DNA structure alone can be used to generate sequence motifs that partially recognize protein-DNA binding sites.

METHODS

When a protein binds to DNA, energy is required to deform the DNA from its native shape to its bound conformation. The hypothesis was that this deformation energy should be correlated with binding specificity and affinity, since a protein would be less likely to bind tightly where a large amount of energy is required than where the DNA readily assumes the bound shape.

This paper used a crystal structure and an objective function to estimate deformation energy. The structure motif was extracted from a crystal structure of a protein-DNA complex. It represented the shape of the DNA in its bound state. The objective function modelled the energy difference between DNA in bound and unbound conformations. DNA sequences were threaded onto the structure motif and scored using the objective function.

The structure motif was transformed automatically into several sequence representations: (a) small sets of short exact strings, (b) weight matrices, (c) consensus regular patterns, (d) multiple sequence alignments, and (e) phylogenetic trees. None had any trained parameters because the original structure motif had none. These were tested computationally on known IHF binding sites, random sequences, and *E. coli* intragenic regions. The process is outlined in Figure 1.

Pure-structure motif

A domino model for DNA bending represents the molecule as a series of rigid rectangular solids, or dominos, each taking the place of a base pair (Calladine and Drew, 1992). The relative position of successive dominos, called a dimer step, is specified by the six dimer step parameters: Shift, Slide, Rise, Tilt, Roll, and Twist.

Figure 2 shows an atomic model of a reference DNA sequence bound to the integration host factor (IHF) protein (Rice et al., 1996). Figure 3 shows the corresponding
Fig. 1. Schematic outline of the transformations performed in this paper.

domino model, extracted by fitting a plate to the atoms of each base pair. The structure motif is operationalized by the $6 \times (L-1)$ matrix of dimer step parameters for $L-1$ dimers (L base pairs) extracted from the crystal structure.

Published objective function

Deformation of a dimer step requires energy that is a function of the nucleotides which compose it and the amount by which it is deformed. Olson et al. (1998) model this as a spring, using a harmonic function. This requires an equilibrium position and force constant for each pair of nucleotides and each pair of dimer step parameters. The necessary constants are estimated from the Boltzmann transform of a frequency analysis of the six dimer step parameters in crystal structures of proteins bound to DNA. Numeric values in this paper are as in (Olson et al., 1998).

The objective function used here sums dimer energy over the dimer steps in the motif. A dimer step corresponds to adjacent dominos in Figure 3. The dimer energy $\Delta E(i, x, y)$ at dimer step i with flanking nucleotides x and y corresponds to the energy required to displace x and y from equilibrium to positions in the structure motif at step i. The total deformation energy $\Delta E_{total}(S)$ corresponds to the energy difference between sequence S in bound and unbound conformations.

$$\Delta E_{total}(S) = \sum_{i=1}^{L-1} \Delta E(i, x, y) \tag{1}$$

Fig. 2. IHF bound to DNA. A crystallographic nick in the DNA has been smoothed (Phoebe Rice, personal communication).
energies as the negative logarithm of unnormalized sequences on the structure motif. Because the underlying each node Pearl (1988, p. 105), i.e., over the space of all consistent joint probability distribution over all bases at

\[\Delta E(i, x, y) = \frac{1}{2} \sum_{j=1}^{6} \sum_{k=1}^{6} f_{jk} \Delta \theta_j \Delta \theta_k (i, x, y) \]

(2)

\[\Delta \theta_j (i, x, y) = \theta_j (i) - \theta_j^0 (x, y) \]

(3)

where \(S \) is a sequence of length \(L \), \(\theta_j (i) \) is dimer step parameter \(j \) from dimer step \(i \) (i.e., the \(j \)th value of Shift, Slide, etc., from the structure motif at \(i \)), \(\theta_j^0 (x, y) \) is the equilibrium value of the dimer step parameter \(j \) for flanking bases \(x \) and \(y \), and the \(f_{jk} \) are elastic constants impeding deformations (Olson et al., 1998).

Structure = Markov network

Here we show that the pure-structure motif shown in Figure 3 is a Markov network (Pearl, 1988). Each dimer node corresponds to a node representing a random variable \(X_i \in \{ A, C, G, T \} \). Each dimer step \(\theta (i) \) corresponds to an edge linking the nodes \(\{ X_i, X_{i+1} \} \) on either side of the step. The graph cliques \(\mathbf{c}_j = \{ X_i, X_{i+1} \} \) are the pairs of nodes flanking each dimer step.

Boltzmann’s transform, \(P \propto \exp(-E/k_B T) \), yields energies as the negative logarithm of unnormalized probabilities. Equation 1 yields an energy in units of \(k_B T \), so the unnormalized probability of observing bases \(x \) and \(y \) at dimer \(i \) is \(\exp(-\Delta E(i, x, y)) \). Thus, \(\exp(-\Delta E(i, x_i, x_{i+1})) \) is a compatibility function \(g_i (\mathbf{c}_j) \) measuring the relative compatibility of any two bases in clique \(\mathbf{c}_j \).

Consequently, a Gibbs potential yields a complete and consistent joint probability distribution over all bases at each node Pearl (1988, p. 105), i.e., over the space of all sequences on the structure motif. Because the underlying graph is linear, the normalizing constant, here \(\alpha \), as well as the marginal probability \(W_{i,j} \) of observing base \(i \) at node \(j \), can be computed in time linear in the length of the structure motif (Pearl, 1988).

Equation 5 relates \(g_i (\mathbf{c}_j) \), a compatibility function on clique \(\mathbf{c}_j \), to \(\Delta E \). Equation 6 gives the Gibbs potential by which the \(g_i \) yield a joint probability distribution over sequences. Equation 7 gives the normalizing constant (or partition function) as the sum over all sequences of the product over all cliques. Equation 8 distributes the sums over the products. The recursive sum \(f_i (j) \) is the part of equation 8 to the right of \(x_i \) assuming \(x_i = j \), and \(b_i (j) \) is the same to the left of \(x_i \). The weight matrix entry \(W_{i,j} \) is the marginal probability that \(S_j = i \).

\[g_i (\mathbf{c}_j) = g_i (x_i, x_{i+1}) = \exp(-\Delta E(i, x_i, x_{i+1})) \]

(4)

\[P(S) = \alpha^{-1} \prod_{i=1}^{L-1} g_i (S_i, S_{i+1}) \]

(5)

\[\alpha = \sum_{x_1 \ldots x_L} \prod_{i=1}^{L} g_i (\mathbf{c}_i) \]

(6)

\[\Delta \theta_j (i, x, y) = \theta_j (i) - \theta_j^0 (x, y) \]

(7)

\[= \sum_{x_1} \sum_{x_2} g_1 (x_1, x_2) g_2 (x_2, x_3) \ldots \]

\[\ldots \sum_{x_L} g_{L-1} (x_{L-1}, x_L) \]

(8)

\[= \sum_{x_1} f_i (x_1) = \sum_{x_L} b_i (x_L) \]

(9)

\[W_{i,j} = b_j (i) f_j (i) / \alpha \]

(10)

\[f_i (x) = \begin{cases} \sum_{i+1} g_i (x, x_{i+1}) f_{i+1} (x_{i+1}), & \text{if } i < L \\ 1, & \text{otherwise} \end{cases} \]

(11)

\[b_i (x) = \begin{cases} \sum_{i-1} b_{i-1} (x_{i-1}) g_{i-1} (x_{i-1}, x), & \text{if } i > 1 \\ 1 & \text{otherwise} \end{cases} \]

(12)

Sequence sets and scoring

All sequences used here are of length \(L = 34 \).

TEST SET (one set): A set of 60 IHF binding sites was assembled from the literature. Of these, 28 were strong or medium binders and of good measurement quality.

SMALL SETS OF SHORT EXACT STRINGS (two sets): A set of 10000 random sequences (GC content 50.8%, as in the \(E. coli \) genome) was generated and sorted by \(\Delta E_{\text{total}} \); its lowest-energy 100 were used as one set. The 100 globally lowest-energy sequences were enumerated and used as the second set.

CONTROL SETS (two sets): One was a new set of 10000 random sequences. The second was 10000 sequences randomly selected from \(E. coli \) intragenic (coding) regions.
SCORING: The score of a sequence against a small set of short exact strings is its average Hamming distance over every short string in the small set. Its score against a weight matrix is the sum over each column of the negative logarithm of the probability corresponding to the base in that position of the sequence. Its score against a consensus regular pattern is the sum over matched disjuncts in the pattern of the negative logarithm of the quantity four divided by the size of the disjunct.

ALGORITHMS

This section gives the algorithms shown in Figure 1. L, GC, and TH are fixed in advance, based on prior knowledge, and not treated as trained parameters.

Algorithm 1

Generate N random sequences of GC content desired, return the M of lowest ΔE_{total}.

Algorithm 2

Each successive call to Next_Best_Seq() returns the globally next-best sequence. Qs is a $4 \times (L-1)$ array of initially empty priority queues with smallest value on top. The queues hold state between calls. Queue Qs[i,j] holds those subsequences of length $L + 1 - j$ that begin with base i. The algorithm proceeds by dynamic programming.

Algorithm 3

Joint_Probability() implements equation 6, Norm() implements equation 9, and Forward() implements equation 11.

Algorithm 4

Weight_Matrix() implements equation 10 and Backward() implements equation 12.

Algorithm 5

$W_{i,j} = (C_{i,j} + 1)/\sum_{k=1}^{4}(C_{k,j} + 1)$, where W is the returned weight matrix and $C_{i,j}$ is the number of counts of base i at position j.

Algorithm 6

Run EMBOSS (Rice et al., 2000).

Algorithm 7

The algorithm collects all letters in W that exceed a specified probability threshold TH.

Algorithm 8

Figure 4 shows histograms of deformation energies for the sequences considered. The test set of IHF binding
proteins showed statistically significant separation from random and E. coli intra-genic sequences \((p < 5 \times 10^{-18})\). Figure 5 shows the relationship between IHF binding affinity and deformation energy. Only the 28 medium or strong binders of good measurement quality were used (Tolleri, 2002). Deformation energy was positively correlated with binding affinity \((r = 0.33)\).

Table 1 shows the lowest-energy 10 out of 10,000 random sequences by Algorithm 1, and the 10 globally lowest-energy sequences by Algorithm 2.

Figure 6 shows each representation's separation of 60 known IHF binding sites from unrelated (random or intragenic) sequences. Every case showed statistically significant separation \((p < 5 \times 10^{-8} \text{ or better})\). Generally, weight matrices produced the largest separation and consensus patterns the smallest. Sequence motifs derived from the globally lowest-energy sequences produced greater separation than those from the lowest random sequences. The previously published weight matrix, extracted from IHF binding sites, produced the largest separation.
Table 2 shows the correlation between binding affinity for the 28 strong and medium IHF binding sites in the test set and their score against all sequence motifs in Figure 6. The only negative correlations arose from consensus sequences, which performed worst in Figure 6.

Table 3 shows a multiple alignment of consensus regular patterns built by EMBOSS (Rice et al., 2000) from Table 1(B,C) extended to 100 sequences each, and by Algorithm 7 from the joint probability distribution extracted from the Markov network. Some columns, e.g., the A-tract and RTTR sequence motif, are well conserved across all patterns. In contrast, the ATCA motif, including two of the three bases IHF uses for direct recognition, is conserved only across the sequence-derived patterns.

Figure 7 shows a phylogenetic tree built by PHYLIP (Felsenstein, 1993) from the 10 strongest binding IHF sites, plus the 10 lowest-energy and 10 highest-energy of 10 000 random sequences. There is some mixing between IHF binding sites (IB2, 4, 6) and low-energy random sequences (RL3, 4), but high-energy random sequences are separated from IHF binding sites by at least four links (IB7 to RH5, 7).
and intragenic sequences. Most exhibited positive correlation with binding affinity. Conservation was observed in some columns of a multiple alignment. A phylogenetic tree separated high-energy random sequences from, but partially mixed low-energy sequences with, known IHF binding sites. In summary: Carry-over occurred from a DNA crystal structure to the purely sequence-based representations used by common popular pattern-based inference methods.

Not all known IHF binding sites have a low deformation energy. It is possible that not all IHF/DNA complexes have the same conformation, that the direct recognition energetics contribute more than the indirect recognition energetics, or that other indirect effects are operative. For example, IHF binding sites often exhibit an A-tract or AT-rich region, which may have an associated hydration spine that contributes additional indirect recognition.

Implications of these results are: (a) Some current sequence motifs probably implicitly recognize structural properties of DNA. Structure can be important even when sequence is relatively conserved. (b) Higher-order sequence models of structure-based motifs should be useful, since structure-based signals involve two or more bases. (c) DNA deformation energy is a useful computational tool. (d) Structure might usefully inform sequence motif methods, e.g., the joint probability distribution might produce better prior distributions, initial weights, or starting positions, than would random values.

Deformation energy alone is not diagnostic for binding sites, but this would be expected because IHF is known to bind using both direct and indirect recognition mechanisms. It does appear to explain some aspects of IHF binding, as shown by the partial separation of IHF binding sites from random sequences and the positive correlation of binding affinity with deformation energy. The use of structure motifs in addition to sequence motifs may improve binding site recognition, particularly when sequence is not well conserved in some parts of the binding site.

ACKNOWLEDGEMENTS

Phoebe Rice kindly supplied the smoothed atomic model of bound IHF. Thanks to Wilma Olson and Victor Zhurkin for discussion about their potential. Thanks to Craig Benham, Steve Hampson, the IBaM seminar, and the blind referees, for helpful comments on the paper. Domino model made using X3DNA by X.-J.Lu. Figures 2 and 3 visualization from RASMOL by R.Sayle. Figure 7 visualization redrawn from TREEVIEW by R.Page.

REFERENCES

