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I. INTRODUCTION

This dissertation is building towards a flexible and scalable
middleware for sentient spaces wherein sensors are used to
observe the state of a physical environment in real time to
create awareness which, in turn, is used to build applica-
tions that bring new functionalities and/or new efficiencies
to the environment. Examples of such sentient spaces could
be as varied as smart buildings that use video sensors for
surveillance or for building pervasive applications such as
person locator to dynamically instrumented crisis sites wherein
sensors carried by first responders and/or brought to crisis
sites are used to monitor the crisis site and the progress of
response activities. The key goal of this work is towards
developing a robust and scalable middleware technology that
can handle challenges related to heterogeneity of sensors,
limited resources (e.g., network bandwidth), and the need
for rapid deployment (e.g., self-calibration of sensing), and
programmability (e.g., hiding complexity of sensor and sensor
programming from the application writers).

These research objectives are deeply related to two areas
that have had significant research interests in the past: stream
processing systems, and sensor networks. However, none of
the existing research in these areas meets the challenges posed
by sentient spaces.

II. ADDRESSED CHALLENGES

The background for this dissertation are two problems
published in MMCN 2008[1] and 2009[2].

The first problem studied was that of Recalibration in
State Monitoring Sensors. Sensors are deployed usually in an
unsupervised environment where physical perturbations might
lead to incorrect output generated by the sensor. To support the
automatic recovery of sensors from such situations, a general
purpose framework was developed that exploits the sensor’s
observed system semantics and performs an automated recali-
bration of the detection parameters. The main idea behind the
approach is to model the monitored system as a finite state
machine and learn the semantics of transitions between states.
Once the sensor deviates from the learnt model, the algorithm
attempts to find a new set of parameters that maximize the
consistency with the learnt model.

We observe that the task of low level event detection is to
detect the state of an observed system, based on sensor read-
ings, reliably. Thus sensor readings are translated to a finite
set of possible system states, which represent the observed
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Fig. 1: The 4 different states in our example. The black/white
cells represent dark/bright average pixel color.

system’s state. For example, the state of the coffee machine in
our office kitchen can be represented by four states of interest:
“Empty”, “Half-Full”, “Full” and “Coffee-Pot Off”, illustrated
in Fig. 1. The semantic characteristics of the monitored system
(which in this case represent the temporal characteristics of
coffee drinking) are captured by a temporal state transition
model: psemantic(Si|S1, .., Si−1) which is the probability of
the system being at state Si at time ti, given it was at states
S1, .., Si−1 at times t1, .., ti−1.

The Recalibration Process is initiated when the set of de-
tected states deviates significantly from the system’s semantic
model, assumed to occur due to physical perturbations, e.g.,
change in the field of view.
The input for the recalibration process are the system seman-
tics and a stream of past sensor observations:

O = {o1 =< t1, f1 >, o2 =< t2, f2 >, .., on =< tn, tn >}
where fi is a vector of extracted features, (e.g., color or

texture features for a video sensor) and ti is its corresponding
timestamp. As a first step, the feature level processing takes
place: the observations are clustered into k clusters (k is
the number of monitored system’s states), based on feature
similarity. Assuming that changes in the feature values rep-
resent changes in the system’s state, these clusters represent
the different states of the monitored system. At the second
step the algorithm takes into account the system semantics and
determines which system state is represented by which cluster.
Each possible assignment of states to clusters (k! possible
assignments) translates to a temporal state transition model,
which is evaluated against the system semantics. The algorithm
efficiently finds the assignment of states to clusters which
maximizes the consistency with the semantic model. The new
states assigned to the sensor observations O are used to tune
the parameters of the detection algorithm after the physical
perturbations. In our case, the detection algorithm labels new
observations by finding the nearest neighbor among k different
representative features, each represents one system state (see
Fig. 1).

The k centroids of the labeled clusters, generated by the
recalibration algorithm, represent the new set of parameters



tuned by the recalibration process.
The second problem studied is that of Scheduling Under

Resource Constraints. In particular, consider a real-time
tracking system which is responsible of monitoring human
activity as observed by a large number of camera sensors.
When considering systems of relatively large scale, constraints
arise from network bandwidth restrictions, I/O and disk usage
from writing images, and CPU usage needed to extract features
from the images. Assume that, due to resource constraints,
only a subset of sensors can be probed at any given time unit.
The “best” subset of sensors to probe under a user-specified
objective (e.g., detecting as much motion as possible, maxi-
mizing probability of detecting “suspecious” events). With this
objective, we would like to probe a camera when we expect
motion, but would not like to waste resources on a non-active
camera.

The main idea behind our approach is the use of sensor
semantics to guide the scheduling of resources. We learn a
dynamic probabilistic model of motion correlations between
cameras, and use the model to guide resource allocation for
our sensor network.

Formally, we define a plan for N cameras to be a binary
vector of length N that specifies which cameras will be
probed in the next time instant. Plan = {Ci|1 ≤ i ≤ N},
where Ci ∈ {0, 1}. The cameras were selected to optimize an
application-dependant benefit function (BF). For example, a
particular application may want all image frames for which
there is motion (all motion events are equally important),
while another application may define that two images of two
different individuals are more important than two of the same
person. Another consideration is the cost of a plan, in terms of
network resources, referred to as cost function (CF). Different
plans may not cost the same in terms of network resources
since it may be less expensive to probe the same sensor at
the next time instant. In a fully general model, one might also
place the number of sensor probes K into the cost function.

Learning the Habits of People’s Whereabouts: Monitoring
a real-time activity can benefit from accurate predictions, given that
these predictions arrive early enough, for the real-time process to take
action and the process is fast enough to act on it.

We collected motion from a dozen camera sensors spread across
two floors in our CS building. The semantics of interest included:
1. A-priori knowledge of where motion is likely to be. In the case
of the building, it is likely that the camera at the front door will
see more motion than other cameras. 2. Self correlation of camera
stream over time. Given that a camera observes an event and given
the camera’s field of view (FOV), one could predict the probability
that the event will continue. For instance, a camera focussing on a
long corridor will have a person in view for a longer period of time
compared to a camera that is focused on an exit door.
3. Cross-Correlations between cameras. Clearly a person who exits
a FOV of one camera will be captured by another depending upon
the trajectory of the individual and the placement of the cameras.
The Real-Time Scheduling of Data Collection: takes place
after every probe of the sensors by the system. The monitoring
system is overwhelmed by the number of sensors, and can only
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Fig. 2: Illustration of a Conditional Correlation of Motion
Between Cameras.

monitor a small subset of all sensors at any given instant of
time. Based on the partial information of people’s whereabouts
collected by the system’s probes and the learnt semantics, the
algorithm efficiently computes the best set of sensors to probe
in the next time instant, to maximize the monitoring system’s
informative probes (for example, probes that contain motion).

III. FUTURE WORK

While the dissertation work has to date focused on exploit-
ing semantics for calibration and scheduling in multimedia
streams, it is headed towards both semantic event stream
management and a high level query language support to build
applications on top of the multimedia sensor infrastructure.
In this context, we are working on a prototype system,
SATViewer which visualizes streams collected from multiple
sensors.

The key challenge in supporting a higher level query lan-
guage over sensor captured streams is that of uncertainty in the
semantic meaning of the captured information. For example,
consider a query for streams containing entity ei. Arguably,
streams with a clear front picture will be returned with high
recall and precision. However, there might be many other
important streams which contain entity ei which will probably
not be returned as an answer, simply because the underlying
processing fails to recognize ei in it. We plan to address the
uncertainty problem by learning entity semantics to reduce
the uncertainty about an entity when only partial identifying
information is available incorporating techniques for semantic
entity resolution.

The key challenge in designing a visualization tool for a
pervasive system is that of information overload - limitations
in user perception and in available display sizes prevent
easy assimilation of information from massive databases of
stored sensor data. For instance, in our setting, we have
over 200 camera sensors deployed at two buildings; even a
very simple query interested in monitoring these buildings
will have to visualize 400 streams (audio/video) for any
given time. In SATViewer,we plan to address the information
overload problem using two key strategies – (a) ranking and
prioritization of relevant sensor streams and (b) summarization
of selected sensor streams. Both will exploit semantics of
different modalities.
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